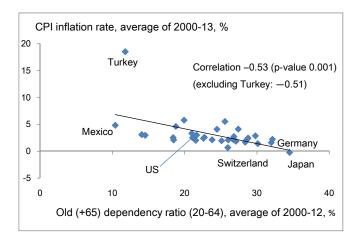
Discussion of "The Age-Structure–Inflation Puzzle" by Mikael Juselius and Elod Takats

Kozo Ueda¹

October 2017 @ BoF-CEPR Conference


¹Waseda University

Ueda

Juselius-Takats

Negative Correlation bw Aging and Inflation in OECD Countries

Aging correlated with deflation. See Katagiri, Konishi, and Ueda (2014)

Motivation

- The authors cast a doubt on such a naive observation.
- Yes, there are a number of issues/problems.
 - Age structure (not just 2 generations of the young & the old)
 - Spurious correlation (non-stationary, a third variable)
 - Sausality and relation (demography exogenous while inflation endogenous)
 - Time horizon (a population effect on inflation is a short-run or long-run phenomenon?)

Summary

- Empirical study
 - Panel data analysis
- Find an opposite result:
 - The young and old (dependents) are inflationary, whereas the working age population is disinflationary.
 - Sizable impact of demographic changes on inflation

Comments

- Very very important work for monetary policy
- If true, we definitely need a theory.
- But is it really true?
 - Some strange pent-up feelings.
 - Why??? Spurious correlation, time horizon

1. Age structure

Rich age structure

- k: 17 five-year age cohorts
- t: yearly from 1955 to 2010
- j: 22 advanced countries
- Key equation (3)

$$\pi_{jt} = \mu + \mu_{j0} + \Sigma_{p=1}^{P} \gamma_p \tilde{n}_{pjt} + \beta X_{jt} + \varepsilon_{jt},$$

where

$$\tilde{n}_{pjt} = \Sigma_{k=1}^{17} k^p (n_{kjt} - 1/17).$$

 \tilde{n}_{pjt} captures the deviation of demographic structure from p-th degree polynomial (P < K).

What is \tilde{n}_{pjt} ?

$$\tilde{n}_{pjt} = \Sigma_{k=1}^{3} k^{p} (n_{kjt} - 1/3).$$

3-generations (K = 3) & 2-th degree (P = 2)

Case	n _{1jt}	n _{2jt}	n _{3jt}		Case	ñ _{1jt}	ñ _{2jt}
1	0.33	0.33	0.33		1	0	0
2	0.50	0.33	0.17	\rightarrow	2	-0.33	-1.33
3	0.17	0.33	0.50		3	0.33	1.33
4	0.25	0.50	0.25		4	0	-0.17

Thus, the coefficient on \tilde{n}_{pjt} captures the effect of demographic structure on inflation.

< ロ > < 同 > < 三 > < 三

2. Spurious correlation

Non-stationary?

- Yes, \tilde{n}_{pjt} is considered to be I(1).
- ▶ Because of five-year age cohorts, \tilde{n}_{pjt-1} is almost identical to \tilde{n}_{pjt} .
 - * Provided $\tilde{n}_{pjt} = \tilde{n}_{pjt-1} + \mu_{pjt}$, μ_{pjt} is close to an exogenous random variable.
 - * If equation (3) holds, use \tilde{n}_{pjt-1} and μ_{pjt} instead and a coefficient on \tilde{n}_{pjt-1} should be the same as that on μ_{pjt} .
- Relatedly, expected demographic change vs unexpected demographic change

- Maybe, a time horizon for the authors' analysis is not so short as one year.
 - Interested in long-run trend.
 - Indeed, equation (4) (Models 6 and 7) is the error correction model (ECM), where equation (3) serves as the long-run relation:

$$\Delta \pi_{jt} = \mu + \mu_{j0} + \dots - \alpha \left(\pi_{jt-1} - \Sigma_{\rho=1}^{P} \gamma_{\rho} \tilde{n}_{\rho jt-1} + \dots \right) + \beta X_{jt} + \varepsilon_{jt}.$$

I definitely prefer this specification.

Further Questions: Final Comments

But further questions

- Is this enough to exclude a spurious correlation?
- A third variable?
 - ★ Population growth
 - * Lagged $\Delta \pi_{jt}$ (dynamic panel in equation (4). Actually, equation (5) includes this. Why not in equations (3) and (4)?)
- Why use of annual data?
- Is demographic strcture really exogenous?
 - * In a long time horizon (decades), it may be endogenous.