Discussion of Implicit Fiscal Guarantee for Monetary Stability by G. Gaballo and Mengus

Guido Ascari University of Oxford and Pavia

Money in the Digital Age Bank of Finland & CEPR Conference 12-13 June 2018

1 / 12

Summary

- Very nice paper on a very fundamental questions
 - when money has value?
 - hyperinflations?
 - monetary and fiscal policy interactions
- At the core of macro/ monetary economics
- Virtue: simplicity
- Still preliminary, high potential

Summary	Comments
⊙●	000000000
Summary	

Summary

- Simple OLG model with money (Samuelson, 1956; Gale 1973)
- No policy
- 2 Optimal policy with state-contingent taxes
- 3 Optimal policy without state-contingent taxes
- Results
 - 1: three different equilibria: pure monetary equilibrium, asymptotic autarky equilibrium, pure autarky equilibrium
 - 2: rules out hyperinflations and autarky: only equilibrium = the efficient monetary one
 - 3: which equilibrium depends on the degree of benevolence and the ratio taxes/endowment

Outline

- Brock (1974, 1975), Wallace (1981) and Obstfeld and Rogoff (1983,2017): fiscal backing and hyperinflation equilibria
 - hyperinflations can always arise in pure fiat money models
 - ...but they are spectacularly fragile => easy to rule out: the government credibly guarantees an extremely small trade-in value for currency
- Sargent and Wallace (1981) unpleasant monetarist arithmetic

Brock (1974, 1975)

$$\underbrace{m_t \left[u'(y) - v'(m_t) \right]}_{A(m)} = \beta u'(y) m_{t+1}}_{B(m)}$$

- ∢ ≣ →

Comments

Obstfled and Rogoff (2017), based on Wallace (1981)

$$\underbrace{m_{t}u'(w^{v}-m_{t})}_{A(m)} = \underbrace{u'(w^{o}+m_{t+1})m_{t+1}}_{B(m)}$$

6 / 12

Summary	Comments
oo	000●00000
Comments	

Monetary and Fiscal authority budget constraint: M_t = liabilities of public sector

$$\frac{M_t}{P_t} = \frac{M_{t-1}}{P_t} + T_{t,o} + G_t - T_{t,y}$$
$$m_t = \left(\frac{1}{\Pi_{t-1}}\right) m_{t-1} - PB_t$$

∃ >

Summary	Comments
oo	000●00000
Comments	

Monetary and Fiscal authority budget constraint: M_t = liabilities of public sector

$$\frac{M_t}{P_t} = \frac{M_{t-1}}{P_t} + T_{t,o} + G_t - T_{t,y}$$
$$m_t = \left(\frac{1}{\Pi_{t-1}}\right) m_{t-1} - PB_t$$

Assume $PB_t = 0 =>$ no taxes/spending: $m_t = \left(\frac{1}{\Pi_{t-1}}\right) m_{t-1}$.

7 / 12

Summary	Comments
oo	000●00000
Comments	

Monetary and Fiscal authority budget constraint: M_t = liabilities of public sector

$$egin{aligned} rac{M_t}{P_t} &= rac{M_{t-1}}{P_t} + T_{t,o} + G_t - T_{t,y} \ m_t &= \left(rac{1}{\Pi_{t-1}}
ight) m_{t-1} - PB_t \end{aligned}$$

- Assume $PB_t = 0 =>$ no taxes/spending: $m_t = \left(\frac{1}{\Pi_{t-1}}\right) m_{t-1}$.
- Existence of a non-monetary equilibrium requires that the return from money is the same as the one of storage: $\theta < 1$

$$\frac{1}{\Pi} = \theta \Longrightarrow \Pi = \theta^{-1} > 1 \Longrightarrow \text{ INFLATION}$$

Summary	Comments
00	000●00000
Comments	

Monetary and Fiscal authority budget constraint: M_t = liabilities of public sector

$$\frac{M_t}{P_t} = \frac{M_{t-1}}{P_t} + T_{t,o} + G_t - T_{t,y}$$
$$m_t = \left(\frac{1}{\Pi_{t-1}}\right) m_{t-1} - PB_t$$

• Assume $PB_t = 0 =>$ no taxes/spending: $m_t = \left(\frac{1}{\Pi_{t-1}}\right) m_{t-1}$.

Existence of a non-monetary equilibrium requires that the return from money is the same as the one of storage: $\theta < 1$

$$\frac{1}{\Pi} = \theta \Longrightarrow \Pi = \theta^{-1} > 1 \Longrightarrow \text{ INFLATION}$$

The real value of money, m, shrinks over time, every initial price level corresponds to a perfect-foresight equilibrium: indeterminate initial price level.

Discussion of Gaballo and E. Megus

©Guido Ascari, University of Oxford and Pavia

7 / 12

	Comments 0000●0000
omments	

Assume $PB_t = PB > 0$, $\forall t$ and non-monetary equilibrium so that $\left(\frac{1}{\Pi_{t-1}}\right) = \theta < 1$

Assume PB_t = PB > 0, ∀t and non-monetary equilibrium so that (1/(Π_{t-1})) = θ < 1
Then m_t = (1/(Π_{t-1})) m_{t-1} − PB is a stable difference equation in m_t....roll backward

$$m_t = \sum_{i=0}^{t-1} -\theta^s PB + \theta^t m_0$$

but as $t - > \infty$, the RHS $- > \left(-\frac{PB}{1-\theta}\right) < 0...$ which cannot be: wealth is insufficient to pay taxes

Assume PB_t = PB > 0, ∀t and non-monetary equilibrium so that (1/(Π_{t-1})) = θ < 1
Then m_t = (1/(Π_{t-1})) m_{t-1} − PB is a stable difference equation in m_t....roll backward

$$m_t = \sum_{i=0}^{t-1} -\theta^s PB + \theta^t m_0$$

but as $t - > \infty$, the RHS $- > \left(-\frac{PB}{1-\theta}\right) < 0...$ which cannot be: wealth is insufficient to pay taxes

The individual recognizes taxation as reducing her wealth => incentive to save => downward pressure on prices => fight inflation and push the value of govt. liabilities back up towards the monetary equilibrium

8 / 12

Summary	Comments
SO	00000●000
Comments	

In case of fiscal backing, hence:

9 / 12

■ In case of fiscal backing, hence:

 \blacksquare positive return on money is possible => deflation: $\Pi < 1$

- In case of fiscal backing, hence:
 - positive return on money is possible => deflation: \$\Pi < 1\$
 \$m_t = (\frac{1}{\Pi_{t-1}}) m_{t-1} PB\$ is stable forward in time:
 \$m_t = PDV(future PBs)\$

- In case of fiscal backing, hence:
 - positive return on money is possible => deflation: \$\Pi < 1\$
 \$m_t = (\frac{1}{\Pi_{t-1}}) m_{t-1} PB\$ is stable forward in time:
 \$m_t = PDV(future PBs)\$
- Note if PB < 0.... then $m = -\frac{PB}{1-\theta} =>$ link with FTPL?

- In case of fiscal backing, hence:
 - positive return on money is possible => deflation: \$\Pi < 1\$
 \$m_t = (\frac{1}{\Pi_{t-1}}) m_{t-1} PB\$ is stable forward in time:
 \$m_t = PDV(future PBs)\$
- Note if PB < 0.... then $m = -\frac{PB}{1-\theta} =>$ link with FTPL?
- Is optimal policy / or state-contingent taxes changing this fundamental equilibrium property?

 Two objectives: 1) finance G; 2) Efficiency: equalize consumption across states

A B < A B </p>

< 67 ▶

- Two objectives: 1) finance G; 2) Efficiency: equalize consumption across states
- Two instruments: T_y , m.

∃ → (∃ →

< 67 ▶

c	0			

- Two objectives: 1) finance G; 2) Efficiency: equalize consumption across states
- **Two instruments:** T_y , m.
- Uses taxes to finance G and inflation to reach efficiency (monetary equilibrium)

Summary 00	Co
Comments	

- Two objectives: 1) finance G; 2) Efficiency: equalize consumption across states
- **Two instruments:** T_y , m.
- Uses taxes to finance G and inflation to reach efficiency (monetary equilibrium)
- If cannot adjust taxes, then need to use seigniorage to finance G => trade-off

mments

	Com
	000
omments	

- Two objectives: 1) finance G; 2) Efficiency: equalize consumption across states
- **Two instruments:** T_y , m.
- Uses taxes to finance G and inflation to reach efficiency (monetary equilibrium)
- If cannot adjust taxes, then need to use seigniorage to finance G => trade-off
- Intuitively: required seigniorage might be too high if:

ments

- Two objectives: 1) finance G; 2) Efficiency: equalize consumption across states
- **Two instruments:** T_y , m.
- Uses taxes to finance G and inflation to reach efficiency (monetary equilibrium)
- If cannot adjust taxes, then need to use seigniorage to finance G => trade-off
- Intuitively: required seigniorage might be too high if:

• 1) taxes are too low:
$$\frac{\overline{T}}{W} < threshold$$

- Two objectives: 1) finance G; 2) Efficiency: equalize consumption across states
- **Two instruments:** T_y , m.
- Uses taxes to finance G and inflation to reach efficiency (monetary equilibrium)
- If cannot adjust taxes, then need to use seigniorage to finance G => trade-off
- Intuitively: required seigniorage might be too high if:
 - 1) taxes are too low: $\frac{\overline{T}}{W} < threshold$
 - **2**) the govt. is too greedy: λ large

- Two objectives: 1) finance G; 2) Efficiency: equalize consumption across states
- **Two instruments:** T_y , m.
- Uses taxes to finance G and inflation to reach efficiency (monetary equilibrium)
- If cannot adjust taxes, then need to use seigniorage to finance G => trade-off
- Intuitively: required seigniorage might be too high if:
 - 1) taxes are too low: $\frac{\overline{T}}{W} < threshold$
 - **2**) the govt. is too greedy: λ large
- Remind of Sargent/Wallace

optimal policy ... no forward-looking

글 > - + 글 >

ም.

- optimal policy ... no forward-looking
- Essentiality of money!...is OLG the right framework? e.g., money not demanded if there's a productive asset => Kyiotaki/Wright (1989), Lagos/Wright (2003)

- optimal policy ... no forward-looking
- Essentiality of money!...is OLG the right framework? e.g., money not demanded if there's a productive asset => Kyiotaki/Wright (1989), Lagos/Wright (2003)
- dollarization (Cooper and Kempf, 2001) => one monetary eq. disappear / delegating monetary authority

- optimal policy ... no forward-looking
- Essentiality of money!...is OLG the right framework? e.g., money not demanded if there's a productive asset => Kyiotaki/Wright (1989), Lagos/Wright (2003)
- dollarization (Cooper and Kempf, 2001) => one monetary eq. disappear / delegating monetary authority
- legal tender (currency must be accepted for repayment of debt, or to pay taxes)

Summary	Comments
00	00000000
Comments	

To conclude

The problem is that the consolidated government budget constraint features seigniorage which depends on the demand for money which in turn depends on expectations: this tends to create multiple equilibria

"As Hahn (1965) argued over a half century ago, the absence of a rigorous and realistic theory of money opens up the possibility of multiplicities such as the nonmonetary equilibrium, and this is a continuing discomfort for macroeconomics." (Obstfled and Rogoff, 2017)

 This paper is definitely a step forward towards our understanding of such fundamental and difficult issues.