Discussion 'P2P Lending: Information Externalities, Social Networks and Loan's Substitution' by Faia and Paiella

discussed by Linda Schilling - Ecole Polytechnique CREST

May 24, 2018

Summary

Aim: Analyze adverse selection in the P2P market when lenders have an outside option (deposit financing)

- Risk-averse households save intertemporally by investing in deposits or P2P lending
- Heterogenous borrowers finance risky project via banks or P2P
- Bank: finances risky projects (can screen perfectly) and makes deposits, bank is risky
- P2P: Public, imperfect signals on borrower quality, cannot screen as well as bank

How do

- information externalities
- average borrower default risk
- liquidity risk in the banking sector

impact loan spreads in P2P market?

Summary - Households

How many?

$$\max_{C_t, X_t, W_t, \alpha_t} \mathbb{E}_0 \sum_{i=0}^{\infty} \beta^t u(C_t)$$
(1)

subject to

$$C_t + r_t X_t + D_t \le Y_t + X_{t-1} + \bar{\theta}_{t-1} R_{t-1}^d D_{t-1}$$
(2)

average haircut on deposits

$$\bar{\theta}_t = \theta \zeta + (1 - \zeta_t) \tag{3}$$

Via FOC: No arbitrage condition

$$r_t = \bar{\theta}_t R_t^d \tag{4}$$

Summary - Borrowers

 $i \in [0,1]$

- Need to raise cash I_t to invest
- Asymmetric information: price information on project success quality

$$p_t^i \sim U[\overline{p} - \frac{\varepsilon}{2}, \overline{p} + \frac{\varepsilon}{2}], \quad \forall t$$
 (5)

Public signal on borrower quality

$$\sigma_{i} = \begin{cases} p^{i}, & p = \lambda \\ s^{i} \sim U[\overline{p} - \frac{\varepsilon}{2}, \overline{p} + \frac{\varepsilon}{2}] & p = 1 - \lambda \end{cases}$$
(6)

Updated belief on project quality

$$\mathbb{E}[p^{i}|\sigma_{i}=s^{i}]=\lambda s_{i}+(1-\lambda)\overline{p} \tag{7}$$

 Public signal in P2P market or its preciscion cannot be influenced by the borrower

Summary - When do Households fund P2P?

From no arbitrage condition: $r_t = \bar{\theta}_t R_t^d$ Households fund all projects with signal σ_i where

$$\underbrace{\mathbb{E}[p^{i}|\sigma_{i}]R_{t}^{\prime}}_{r_{t}} \geq \bar{\theta}_{t}R_{t}^{d}$$
(8)

How deep are households pockets, how many households are there? That is if

$$(\lambda s_i + (1 - \lambda)\overline{p}) R_t^I \ge \overline{\theta}_t R_t^d$$
(9)

► LHS increases in signal s_i: ⇒ Cut-off signal ŝ exists: project in P2P financed if signal above ŝ.

$$\hat{s} = \frac{\overline{\theta}_t R_t^d - (1 - \lambda) \overline{\rho} R_t^{\prime}}{\lambda R_t^{\prime}}, \qquad (10)$$

Need assumption on the range of parameters since you want \hat{s} to be interior in $U[\overline{p} - \frac{\varepsilon}{2}, \overline{p} + \frac{\varepsilon}{2}]$ for doing comparative statics in \hat{s}

Summary - Characterizing adverse selection

Define $\bar{\omega} = \mathbb{E}[p^i | \sigma_i = \hat{s}^i]$

$$\underbrace{(\lambda \hat{s}_{i} + (1 - \lambda)\overline{p})}_{\bar{\omega}} = \frac{\overline{\theta}_{t} R_{t}^{d}}{R_{t}^{l}}$$
(11)

Likelihood of not being funded: $F_{\sigma}(\hat{s}) = \mathbb{P}(\sigma_i < \hat{s})$

Lemma: If $\bar{\omega} > \bar{p}$

- ▶ ŝ declines in p̄,
- \hat{s} declines in λ

Define metric for value of information

$$\Theta = F_{\sigma}(\hat{s}) - \lim_{\lambda \to 1} F_{\sigma}(\hat{s}) > 0$$
 (12)

Measure of borrowers who had obtained funding under full information but do not obtain funding under information dispersion

Lemma

The information premium Θ declines in \bar{p} and λ for $\bar{\omega} > \bar{p}$.

Summary - When does Bank fund project?

- Bank is fully deposit financed
- Bank observes p_i perfectly
- screening cost μ
- The bank is in perfect competition and breaks even in expectation

$$\bar{p}R_t^I - R_t^d - \mu \le 0 \tag{13}$$

The bank is in perfect competition but all project returns go to the bank.

The average project quality the bank admits may be different from \bar{p} (selection effect)!

Suggestion: The bank observes p^i :

lend to $i \Leftrightarrow p^i \overline{\theta} R^I - \mu - R^d \ge I_t$

Discussion

1 (major): The paper talks about adverse selection but potentially the lemons market is missing

By ass: Borrowers make zero profit independently of whether they borrow from bank or P2P lender

 \Rightarrow Borrowers indifferent between funding opportunities.

 \Rightarrow What guarantees that high signal- low quality types actually borrow via P2P?

 \Rightarrow Is this individually rational from the perspective of the bank which only finances low signal projects? (her average quality pool is not \bar{p} but $\mathbb{E}[p_i | \sigma_i < \hat{s}]$)

Idea:

- Bank perfectly screens, may pay small return to high quality types
- A low type gets rejected by bank
- low type with high signal prefers P2P where he pays low interest due to his favourably high signal (pooling within P2P)

2 (major): Given the lemons market exists, how prevent it from crashing/preserve pooling equilibrium?

High types with medium high signals (and access to P2P) may have an incentive to opt for a bank loan since the bank can perfectly screen the high type and is maybe cheaper than P2P (classic lemons market problem)

- **3 (major):** Paper focuses on case $\bar{\omega} > \bar{p}$.
 - Q3a: When does $\bar{\omega} > \bar{p}$ hold?
 - Q3b: What happens for $\bar{\omega} < \bar{p}$?

Q3a: When does $\bar{\omega} > \bar{p}$ hold?

$$(\lambda \hat{s} + (1 - \lambda)\overline{p}) R_t' = \overline{\theta}_t R_t^d$$
(14)

It holds

$$\{\bar{\omega} > \bar{p}\} \Leftrightarrow \{\hat{s} > \bar{p}\} \Leftrightarrow \{\bar{\theta}R^d > \bar{p}R^l\}$$
(15)

Discussion

Q3b: What happens for $\bar{\omega} < \bar{p}$?

$$\{\bar{\omega} < \bar{p}\} \Leftrightarrow \{\hat{s} < \bar{p}\} \Leftrightarrow \{\bar{\theta}R^d < \bar{p}R^l\}$$
(16)

- $\hat{s}(\lambda)$ increasing in λ (not decreasing)
- *F_σ*(ŝ) increases (signal precision now lowers willingness to fund)
- Redefine metric for value of information

$$\tilde{\Theta} = -\left(F_{\sigma}(\hat{s}) - \lim_{\lambda \to 1} F_{\sigma}(\hat{s})\right) > 0$$
(17)

Then, $\tilde{\Theta}$ is measure of borrowers who had obtained funding under dispersed information but do not obtain funding under full information

► Always: ŝ(p̄) decreasing, likelihood of funding goes up in average project quality p̄