Some simple Bitcoin Economics Bank of Finland CEPR conf: Money in the Digital Age

Linda Schilling¹ and Harald Uhlig²

¹École Polytechnique - CREST Department of Economics lin.schilling@gmail.com

²University of Chicago Department of Economics huhlig@uchicago.edu

June 12th, 2018

Outline

Introduction.

2 The Model

Analysis

5 Examples

Outline

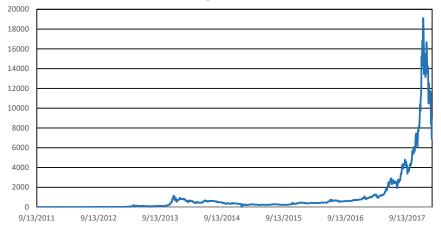
- 2 The Model
- 3 Analysis
- 4 Bitcoins and Monetary Policy
- 5 Examples
- 6 Conclusions

Questions

- Bitcoin, cybercurrencies: increasingly hard to ignore.
- Satoshi Nakamoto, "Bitcoin: A Peer-to-Peer Electronic Cash System," www.bitcoin.org.
- Increasing number of cybercurrencies. Regulatory concerns.
- Blockchain technology. (Not a topic today)
- Literature: growing. Increasingly: serious academics. See paper.
- Imagine a world, where Bitcoin (or cybercurrencies) are important.
- Key questions:
 - How do Bitcoin prices evolve?
 - What are the consequences for monetary policy?

Bitcoin Price, 2011-09-13 to 2018-02-07

Weighted Price



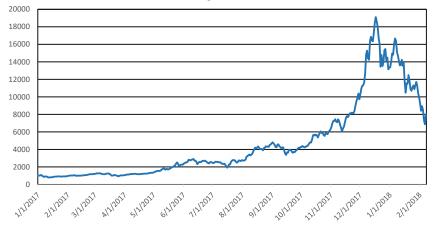
Data: quandl.com

Schilling-Uhlig	Some simple Bitcoin Economics	June 12th, 2018	5/40

Introduction.

Bitcoin Price, 2017-01-01 to 2018-02-07

Weighted Price



Data: quandl.com

Schilling-Uhlig

This paper

Approach: a simple model, with money as a medium of exchange.

- A novel, yet simple endowment economy: two types of agents keep trading.
- Two types of money: Bitcoins and Dollars.
- A central bank keeps real value of Dollars constant...
- ... while Bitcoin production is private and decentralized.

Results:

- "Fundamental condition": a version of Kareken-Wallace (1981)
- "Speculative condition".
- Under some conditions: no speculation.
- Under some conditions: Bitcoin price converges.
- Implications for monetary policy: two scenarios.
- Construction of equilibria.

Literature

Bitcoin Pricing

- Athey et al
- GARRATT AND WALLACE (2017)
- Huberman, Leshno, Moallemi (2017)

Currency Competition

• KAREKEN AND WALLACE (1981)

(Monetary) Theory

- Bewley (1977)
- Townsend (1980)
- Kyotaki and Wright (1989)
- Lagos and Wright (2005)

Outline

Introduction.

2 The Model

3 Analysis

4 Bitcoins and Monetary Policy

5 Examples

6 Conclusions

The model

- t = 0, 1, 2, ... Randomness: θ_t , at beg. of per.. History: θ^t .
- Two types of money: Bitcoins B_t and Dollars D_t (aggregates).
- Assume: Central Bank keeps Dollar price constant, $P_t \equiv 1$.
- Goods (= Dollar) price of Bitcoins: $Q_t = Q(\theta^t)$.
- Two types of infinitely lived agents: green and red.
- Green agent *j* in even periods *t*:
 - receives lump sum Dollar transfer ("tax", if < 0) from Central Bank.
 - purchases goods from red agents, with Bitcoins or Dollars.
 - enjoys consumption $c_{t,j}$, utility $\beta^t u(c_{t,j})$.
- Green agents in odd periods *t*:
 - mines new Bitcoins $A_{t,j} = f(e_{t,j}; B_t)$ at effort $e_{t,j} \ge 0$, disutil. $-\beta^t e_{t,j}$.
 - ► receives goods endowment *y*_{*t,j*}. Not storable.
 - can sell goods to red agents, against Bitcoins or Dollars.
- Red agents: flip even and odd periods.
- Assume: whoever consumes first has all the money.

The Model

Optimization problem of green agents: (drop "j")

Maximize
$$U = E\left[\sum_{t=0}^{\infty} \beta^t \left(\xi_{t,g} u(c_t) - e_t\right)\right]$$

where $\xi_{t,g} = 1$ in even periods, $\xi_{t,g} = 0$ in odd periods, s.t.

А_t Уt

0

in even periods t:
$$0 \le b_t \le Q_t B_{t,g}$$
 (1)
 $0 \le P_t d_t \le D_{t,g}$ (2)

$$0 \leq c_t \qquad = b_t + d_t \tag{3}$$

$$0 \leq B_{t+1,g} = B_{t,g} - b_t/Q_t \tag{4}$$

$$0 \leq D_{t+1,g} = D_{t,g} - P_t d_t$$
 (5)

in odd periods *t*:

$$= f(e_t; B_t), \text{ with } e_t \ge 0$$
 (6)

$$=$$
 $x_t + z_t$, with $x_t \ge 0$, $z_t \ge 0$ (7)

$$\mathsf{D} \leq B_{t+1,g} = \mathsf{A}_t + \mathsf{B}_{t,g} + \mathsf{x}_t / \mathsf{Q}_t$$
 (8)

$$0 \leq D_{t+1,g} = D_{t,g} + P_t Z_t + \tau_{t+1}$$
 (9)

Monetary Policy and Market clearing

- The **Central Bank** achieves $P_t \equiv 1$, per suitable transfers τ_t .
- Markets clear:

Bitcoin market: $B_t = B_{t,r} + B_{t,g}$ (10) Dollar market: $D_t = D_{t,r} + D_{t,g}$ (11) Bitcoin denom. cons. market: $b_t = x_t$ (12) Dollar denom. cons. market: $d_t = z_t$ (13)

Equilibrium

An equilibrium is a stochastic sequence

- $(A_t, [B_t, B_{t,g}, B_{t,r}], [D_t, D_{t,g}, D_{t,r}], \tau_t, (P_t, z_t, d_t), (Q_t, x_t, b_t), e_t)_{t \ge 0}$
 - Given prices, choices maximize utility for green and red agents.
 Budget constraints
 Evolution money stock

• Markets clear (for goods, Bitcoin, Dollars):

►
$$y_t = \int_0^2 c_{t,j} dj$$

► $\int_0^2 z_{t,j} dj = \int_0^2 d_{t,j} dj$
► $\int_0^2 x_{t,j} dj = \int_0^2 b_{t,j} dj$
► $D_t = D_{t,g} + D_{t,r}$
► $B_t = B_{t,g} + B_{t,r}$

• Dollar monetary policy: $P_t = 1$

Outline

2 The Model

, analy ele

4 Bitcoins and Monetary Policy

5 Examples

6 Conclusions

Consolidate:

$$B_{t+1} = B_t + f(e_t; B_t)$$
$$D_t = D_{t-1} + \tau_t$$
$$c_t = y_t$$

Avoid speculation with Dollars

Assumption A.

Assume throughout: for all t,

$$u'(y_t) - \beta^2 \mathbb{E}_t[u'(y_{t+2})] > 0$$
(14)

Proposition

(All Dollars are spent:) Agents will always spend all Dollars. Thus, $D_t = D_{t,g}$ and $D_{t,r} = 0$ in even periods and $D_t = D_{t,r}$ and $D_{t,g} = 0$ in odd periods.

This is a consequence of assumption 14 and $P_t \equiv 1$.

Proposition

(Dollar Injections:) In equilibrium,

$$D_t = z_t$$
 and $\tau_t = z_t - z_{t-1}$

Bitcoin Production

Proposition

(Bitcoin Production Condition:) Suppose that Dollar sales are nonzero, $z_t > 0$ in period t. Then

$$1 \ge \beta \mathbb{E}_t \left[u'(c_{t+1}) \frac{\partial f(e_t; B_t)}{\partial e_t} Q_{t+1} \right]$$
(15)

This inequality is an equality, if there is positive production $A_t > 0$ of Bitcoins and associated positive effort $e_t > 0$ at time t as well as positive spending of Bitcoins $b_{t+1} > 0$ in t + 1.

The Fundamental Condition

The following is a version of Kareken-Wallace (1981).

Proposition

(Fundamental Condition:)

Suppose that sales happen both in the Bitcoin-denom. cons. market as well as the Dollar-denom. cons. market at time t as well as at time t + 1, i.e. suppose that $x_t > 0$, $z_t > 0$, $x_{t+1} > 0$ and $z_{t+1} > 0$. Then

$$\mathbb{E}_t\left[u'(c_{t+1})\right] = \mathbb{E}_t\left[u'(c_{t+1})\frac{Q_{t+1}}{Q_t}\right]$$
(16)

In particular, if consumption and production is constant at t+1 , $c_{t+1}=y_{t+1}\equiv \bar{y},$ then

$$Q_t = \mathbb{E}_t \left[Q_{t+1} \right] \tag{17}$$

i.e., the price of a Bitcoin in Dollar is a martingale.

The Speculative Condition

Proposition

(Speculative Condition:)

Suppose that $B_t > 0$, $Q_t > 0$, $z_t > 0$ and that $b_t < Q_t B_t$. Then,

$$u'(c_t) \leq \beta^2 \mathbb{E}_t \left[u'(c_{t+2}) \frac{Q_{t+2}}{Q_t} \right]$$
(18)

where this equation furthermore holds with equality, if $x_t > 0$ and $x_{t+2} > 0$.

Seller Participation Condition

Proposition

(Seller Participation Condition:)

Suppose that $B_t > 0$, $Q_t > 0$, $z_t > 0$. Then

$$\mathbb{E}_t\left[u'(c_{t+1})\right] \ge \mathbb{E}_t\left[u'(c_{t+1})\frac{Q_{t+1}}{Q_t}\right]$$
(19)

The Sharpened No-Speculation Assumption

Assumption A.

For all t,

$$u'(y_t) - \beta \mathbb{E}_t[u'(y_{t+1})] > 0$$

This is a slightly sharper version of assumption 1, which only required

$$u'(y_t) - \beta^2 \mathbb{E}_t[u'(y_{t+2})] > 0$$

(20)

The No-Bitcoin-Speculation Theorem

Theorem

(No-Bitcoin-Speculation Theorem.) Suppose that $B_t > 0$ and $Q_t > 0$ for all *t*. Impose assumption 2. Then in every period, all Bitcoins are spent.

Proof.

$$\begin{split} \beta^{2} \mathbb{E}_{t}[u'(c_{t+2})Q_{t+2}] &= \beta^{2} \mathbb{E}_{t}[\mathbb{E}_{t+1}[u'(c_{t+2})Q_{t+2}]] & \text{(law of iter. expect.)} \\ &\leq \beta^{2} \mathbb{E}_{t}[\mathbb{E}_{t+1}[u'(c_{t+2})] \cdot Q_{t+1}] & \text{(equ. (19) at } t+1) \\ &< \beta \mathbb{E}_{t}[u'(c_{t+1})Q_{t+1}] & \text{(ass. 2 at } t+1) \\ &\leq \beta \mathbb{E}_{t}[u'(c_{t+1})]Q_{t} & \text{(equ. (19) at } t) \\ &< u'(c_{t})Q_{t} & \text{(ass. 2 at } t) \end{split}$$

Thus, the specul. cond. (18) cannot hold in *t*. Hence $b_t = Q_t B_t$.

A (very high) bound for Bitcoin Prices

Corollary

(Bitcoin price bound) Suppose that $B_t > 0$ and $Q_t > 0$ for all t. The Bitcoin price is bounded by

$$0 \leq \mathsf{Q}_t \leq \bar{\mathsf{Q}}$$

where

$$ar{\mathsf{Q}} = rac{ar{y}}{B_0}$$

(21)

Bitcoin Correlation-Pricing

Rewrite (16) as

$$Q_t = \frac{\text{cov}_t(u'(c_{t+1}), Q_{t+1})}{\mathbb{E}_t[u'(c_{t+1})]} + \mathbb{E}_t[Q_{t+1}]$$
(22)

Corollary

(Bitcoin Correlation Pricing Formula:)

Suppose that $B_t > 0$ and $Q_t > 0$ for all t. Impose assumption 2. In equilibrium,

$$Q_t = \kappa_t \cdot \operatorname{corr}_t(u'(c_{t+1}), Q_{t+1}) + \mathbb{E}_t[Q_{t+1}]$$
(23)

where

$$\kappa_t = \frac{\sigma_{u'(c)|t} \sigma_{Q_{t+1}|t}}{\mathbb{E}_t[u'(c_{t+1})]} > 0$$
(24)

where $\sigma_{u'(c)|t}$ is the standard deviation of marginal utility of consumption, conditional on date-t information, etc..

Schilling-Uhlig

Martingale Properties

Corollary

(Martingale Properties of Equilibrium Bitcoin Prices:) Suppose $B_t > 0$ and $Q_t > 0$ for all t. Impose ass. 2. If and only if for all t, marg. util. of cons. and Bitcoin price are positively correlated at t + 1, given t info, the Bitcoin price is a supermartingale and strictly falls in expectation,

$$\mathsf{Q}_t > \mathbb{E}_t[\mathsf{Q}_{t+1}] \tag{25}$$

If and only if marginal utility and the Bitcoin price are always neg. corr.,

$$\mathsf{Q}_t < \mathbb{E}_t[\mathsf{Q}_{t+1}] \tag{26}$$

If and only if marginal utility and the Bitcoin price are always uncorr., the Bitcoin price is a martingale,

$$\mathsf{Q}_t = \mathbb{E}_t[\mathsf{Q}_{t+1}] \tag{27}$$

Bitcoin Price Convergence

Theorem

(Bitcoin Price Convergence Theorem.) Suppose that $B_t > 0$ and $Q_t > 0$ for all t. Impose assumption 2. For all t and conditional on information at date t, suppose that marginal utility $u'(c_{t+1})$ and the Bitcoin price Q_{t+1} are either always nonnegatively correlated or always non-positively correlated. Then the Bitcoin price Q_t converges almost surely pointwise as well as in L¹ norm to a (random) limit Q_{∞} ,

$$\mathsf{Q}_t \to \mathsf{Q}_\infty \text{ a.s. and } \mathbb{E}\left[\mid \mathsf{Q}_t - \mathsf{Q}_\infty \mid\right] \to 0$$
 (28)

Proof.

 Q_t or $-Q_t$ is a bounded supermartingale. Apply Doob's martingale convergence theorem.

Outline

2 The Model

5 Examples

6 Conclusions

Assume that Bitcoin prices move independently of central bank policies. Impose assumption 2. Then

Proposition

(Conventional Monetary Policy:) The equilibrium Dollar quantity is given as

$$D_t = y_t - Q_t B_t \tag{29}$$

The central bank's transfers are

$$\tau_t = \mathbf{y}_t - \mathbf{Q}_t \, \mathbf{B}_t - \mathbf{z}_{t-1} \tag{30}$$

Proposition

(Dollar Stock Evolution:)

Tomorrow's expected Dollar quantity equals today's Dollar quantity corrected for deviation from expected production, purchasing power of newly produced Bitcoin and correlation

$$\mathbb{E}_{t}[D_{t+1}] = D_{t} - (y_{t} - \mathbb{E}_{t}[y_{t+1}]) - A_{t}Q_{t} + \kappa_{t} B_{t+1} \cdot corr_{t}(u'(c_{t+1}), Q_{t+1})$$

Likewise, the central bank's expected transfers satisfy

$$\mathbb{E}_t[\tau_{t+1}] = -(y_t - \mathbb{E}_t[y_{t+1}]) - A_t Q_t + \kappa_t B_{t+1} \cdot \textit{corr}_t(u'(c_{t+1}), Q_{t+1})$$

If the Bitcoin price is a martingale, then

$$\mathbb{E}_t[D_{t+1}] = D_t - (y_t - \mathbb{E}_t[y_{t+1}]) - A_t Q_t \\ \mathbb{E}_t[\tau_{t+1}] = -(y_t - \mathbb{E}_t[y_{t+1}]) - A_t Q_t$$

- Unconventional view, but compatible with equilibrium: the Central Bank can maintain the price level $P_t \equiv 1$ independently of the transfers she sets.
- Further, assume that she sets transfers independently of production.
- Note that

$$Q_t = \frac{y_t - D_t}{B_t}$$
(31)

- Intuitively, the causality is in reverse compared to scenario 1: now central bank policy drives Bitcoin prices.
- However, the process for the Dollar stock cannot be arbitrary.
 - ► To see this, suppose that $y_t \equiv \bar{y}$ is constant. We already know that Q_t must then be a martingale. Suppose B_t is constant as well. Equation (31) now implies that D_t must be a martingale too.

Proposition

(Submartingale Implication:)

If the Dollar quantity is set independently of production, the Bitcoin price process is a submartingale, $\mathbb{E}_t[Q_{t+1}] \ge Q_t$.

Suppose that production y_t is iid. Let *F* denote the distribution of y_t , $y_t \sim F$. The distribution G_t of the Bitcoin price is then given by

$$G_t(s) = \mathbb{P}(Q_t \le s) = F(B_t s + D_t).$$
(32)

Proposition

(Bitcoin Price Distribution:)

In "scenario 2", if Bitcoin quantity or Dollar quantity is higher, high Bitcoin price realizations are less likely in the sense of first order stochastic dominance.

Compare two economies with $y_t \sim F_1$ vs $y_t \sim F_2$, iid.

Definition

- Economy 2 is more productive than economy 1, if F₂ first order stochastically dominates F₁.
- Economy 2 has more predictable production than economy 1, if *F*₂ second order stochastically dominates *F*₁.

Proposition

(Bitcoins and Productivity)

Assume "scenario 2". In more productive economies or economies with higher predictability of production, the Bitcoin price is higher in expectation.

Outline

2 The Model

- 3 Analysis
- 4 Bitcoins and Monetary Policy

5 Examples

6 Conclusions

Constructing an equilibrium: an example.

- Suppose $\theta_t \in \{L, H\}$, each with probability 1/2.
- Let m_t be iid, $m_t = m(\theta_t)$, with $m(L) \le m(H)$ and $\mathbb{E}[m_t] = (m_L + m_H)/2 = 1$. Pick $0 < \beta < 1$ such that $m(L) > \beta$.

• At date t and for $\epsilon(\theta^t) = \epsilon_t(\theta_t)$, consider two cases **Case A:** $\epsilon_t(H) = 2^{-t}$, $\epsilon_t(L) = -2^{-t}$ **Case B:** $\epsilon_t(H) = -2^{-t}$, $\epsilon_t(L) = 2^{-t}$.

• Pick
$$Q_0 > \xi + (m(H) - m(L))/2$$
. Set

$$\mathsf{Q}_{t+1} = \mathsf{Q}_t + \epsilon_{t+1} - \frac{\mathsf{cov}_t(m_{t+1}, \epsilon_{t+1})}{E_t[m_{t+1}]}$$

- Fix some strictly concave $u(\cdot)$. Let $y_t = (u')^{-1}(m_t)$.
- Start with some initial B₀. With B_t and Q_t, equation (15) delivers new Bitcoin mining A_t and thus B_{t+1}.
- The No-Bitcoin-Speculation Theorem now implies the purchases $x_t = b_t = Q_t/B_t$ and $z_t = d_t = y_t b_t$.
- Be careful with B_0 , so that $b_t \le y_t$ for all t. Or: fix "ex post".

Super-, sub-, non-martingale examples

Consider three constructions,

Always A: Always impose case A, i.e. $\epsilon_t(H) = 2^{-t}$, $\epsilon_t(L) = -2^{-t}$. "Always A" results in supermartingale $Q_t > E_t[Q_{t+1}]$.

- **Always B:** Always impose case B, i.e. $\epsilon_t(H) = -2^{-t}$, $\epsilon_t(L) = 2^{-t}$. "Always B" results in submartingale $Q_t < E_t[Q_{t+1}]$.
- Alternate: In even periods, impose case A, i.e.

$$\epsilon_t(H) = 2^{-t}, \ \epsilon_t(L) = -2^{-t}.$$

• In odd periods, impose case B, i.e.

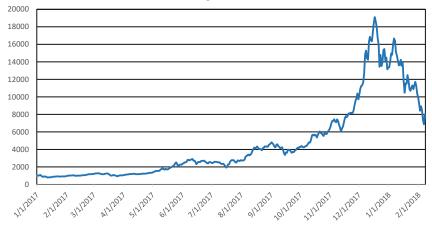
$$\epsilon_t(H) = -2^{-t}, \ \epsilon_t(L) = 2^{-t}.$$

This results in a price process that is neither a supermartingale nor a submartingale, but which one still can show to converge almost surely and in L_1 norm.

Examples

Bitcoin Price, 2017-01-01 to 2018-02-07

Weighted Price



Data: quandl.com

Schilling-Uhlig

"Bubble and bust" examples

- $\theta_t \in \{L, H\}$, but now $\mathbb{P}(\theta_t = L) = p < 0.5$.
- Suppose that m(L) = m(H) = 1.
- Pick some $\underline{Q} > 0$ as well as some $Q^* > \underline{Q}$.
- Pick some $Q_0 \in [\underline{Q}, Q^*]$. If $Q_t < Q^*$, let

$$Q_{t+1} = \begin{cases} \frac{Q_t - pQ}{1 - p} & \text{if } \theta_t = H\\ \underline{Q} & \text{if } \theta_t = L \end{cases}$$

If $Q_t \ge Q^*$, let $Q_{t+1} = Q_t$.

- Therefore Q_t will be a martingale and satisfies (22).
- If Q₀ is sufficiently far above Q
 and if p is reasonably small, then typical sample paths will feature a reasonably quickly rising Bitcoin price Q_t, which crashes eventually to <u>Q</u> and stays there, unless it reaches the upper bound Q^{*} first.

Outline

2 The Model

- 3 Analysis
- 4 Bitcoins and Monetary Policy

5 Examples

Recap and Conclusions.

Approach: a simple model, with money as a medium of exchange.

- A novel, yet simple endowment economy: two types of agents keep trading.
- Two types of money: Bitcoins and Dollars.
- A central bank keeps real value of Dollars constant...
- ... while Bitcoin production is private and decentralized.

Results:

- "Fundamental condition": a version of Kareken-Wallace (1981)
- "Speculative condition".
- Under some conditions: no speculation.
- Under some conditions: Bitcoin price converges.
- Implications for monetary policy: two scenarios.
- Construction of equilibria.