The Curious Incidence of Shocks along the Income Distribution

Conference on Monetary Policy Tools and Their Impact on the Macroeconomy

Tobias Broer, John Kramer, Kurt Mitman PSE, IIES 3 and IZA

September 12, 2020

Introduction: Micro \iff Macro

Broad Motivation

- What are the distributional consequences of aggregate shocks?
- Through what channels do aggregate shocks affect individuals?
- How does heterogeneity affect aggregate outcomes?

What we do:

- 1. Use a large German administrative dataset to measure heterogeneous co-movement of
 - Earnings
 - Separation rates
 - Job-finding rates

with aggregate income fluctuations

2. Measure responses to identified Monetary (and Fiscal) shocks

Theory and evidence so far

Heterogeneity and Monetary Policy

- Theory suggests that heterogeneity has the potential to impact the transmission of MP
- Scant empirical evidence (so far)

(Quantitative) Theory:

 Gornemann et al (2012), McKay et al (2016), Auclert (2019), Kaplan et al (2018), Werning (2015), Ravn & Sterk (2017), Broer et al (2019), Hagedorn et al (2019a,b), Bilbiie (2018)

Empirical evidence

• Coibion et al (2017), D'Acunto et al (2019a,b), Patterson (2018), De Giorgi & Gambetti (2017), Alves et al (2019), Almgren et al (2019)

- Workers at the bottom of the income distribution are more exposed to aggregate earnings risk, and to monetary policy shocks
- Holds for continuously employed workers, even more for those that alternate between employment and non-employment
- Effect comes mainly from booms, less so from recessions
- Effect of shocks on job-finding and separation rates are also strongly heterogeneous along the income distribution

- 1. Quick review of theory
- 2. Description of the data
- 3. Worker " β "s and decomposition
- 4. Responses to identified shocks
- 5. Conclusions

Theory: Heterogeneity and Aggregate Demand

Focus on two channels related to earnings:

• Earnings heterogeneity channel (Auclert 2019, Patterson 2020)

$$dC = \sum \left(MPC_i \frac{dY_i}{dY} \right) dY = \underbrace{\overline{MPC}dY}_{\text{Agg. Income}} + \underbrace{Cov \left(MPC_i, \frac{dY_i}{dY} \right) dY}_{\text{Earnings Heterogeneity}}$$

• Cyclicality of income risk (Werning 2015, Ravn & Sterk 2017)

Income Risk		Respose of ${\boldsymbol C}$ to ${\boldsymbol R}$
countercyclical	\rightarrow	higher sensitivity
acyclical	\rightarrow	'As if' representative agent'
procyclical	\rightarrow	lower sensitivity

Two percent sample of German Labor Market Histories 1974-2014

- 1.7 million individual histories
- Labor market spells split into Episodes (~ 12 months)
- \bullet ~ 300 million month-person observations
- Labor market status, compensation, benefits

Peculiarities

- Focus on Euro-sample (2000-2014) for Monetary shocks, otherwise 1980-2014
- "Daily Wage" is average earnings during an episode

Definitions

Labor market statuses

- Employed (E)
 - Subcategory 'Fully attached': Excluding interns, early retirees, etc
- Unemployed (U)
 - Recipients of unemployment benefits (ALG I)
- Not in the labor force (N)
 - Not in previous categories

Transitions: t and t + 12

- Job Stayer: same employer in t and t + 12, no interruptions
- Job Switcher: employed in t and t + 12, but not Stayers
- E2U: employed in t, unemployed in t + 12
- E2N: employed in t, not in labor force in t + 12
- N2E: not in labor force in t, employed in t + 12

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	mean	mean								
Female	0.77	0.73	0.59	0.50	0.43	0.36	0.32	0.30	0.24	0.13
Age	39.32	39.91	38.52	38.26	38.69	39.69	40.81	41.43	42.30	44.02
Edu	1.10	1.07	1.09	1.10	1.10	1.11	1.15	1.22	1.44	1.74
Skill	1.97	2.03	2.09	2.10	2.11	2.13	2.19	2.32	2.59	2.99
Part time	0.47	0.41	0.26	0.16	0.09	0.05	0.04	0.03	0.02	0.01
Wage	19.60	38.79	50.09	60.12	69.04	77.45	86.26	97.98	116.01	141.60
Empl t+1	0.80	0.88	0.91	0.93	0.95	0.95	0.96	0.96	0.95	0.95
Obs	48409	48752	51788	44532	51884	46602	49641	47108	46905	48001

Table 1: Descriptive Statistics by Decile – January 2000

Aggregate earnings "betas"

- Also include year-month fixed effects
- Group individuals into percentiles by past earnings (5 years).
- Then estimate

$$\Delta y_{j,t}^{p} = \alpha + \beta_{earn}^{p} \Delta Y_{t} + \varepsilon_{j,h}$$

for $\Delta x_t = \log(x_{t+12}) - \log(x_t)$

- Also include year-month fixed effects
- The sample starts in 1980 and excludes former East Germany.
- First: only include individuals fully attached in \boldsymbol{t}

Aggregate earnings betas

$$\Delta y_{j,t}^p = \alpha + \beta_{earn}^p \Delta Y_t + \varepsilon_{j,h}$$

Aggregate earnings betas - GDP

$$\Delta y_{j,t}^p = \alpha + \beta_{GDP}^p \Delta GDP_t + \varepsilon_{j,h}$$

Aggregate earnings betas – split by aggregate growth rates

$$\Delta y_{j,t}^{d} = \alpha + \gamma_{\Delta Y \lessgtr \overline{\Delta Y}} \beta_{earn}^{p} \Delta Y_{t} + \varepsilon_{j,h}$$

Aggregate earnings betas – split by aggregate growth rates

$$\Delta y_{j,t}^{d} = \alpha + \gamma_{\Delta Y \lessgtr \overline{\Delta Y}} \beta_{earn}^{p} \Delta Y_{t} + \varepsilon_{j,h}$$

Aggregate earnings betas - different income distributions

Split individuals by residual earnings and fixed effects.

Aggregate earnings betas - different income distributions

Split individuals by residual earnings and fixed effects.

Controls used in Mincer regression: AGE, AGE², GENDER, SCHOOLING, OCCUPATION.

Aggregate earnings betas - different sample

Split individuals by past earnings (5 years), only including

(a) Fully attached

(b) Stayers

• Heterogeneous co-movement not just driven by transitions between jobs/ LM status

• But: Change in magnitude points to importance of changes in job/ labor market status, particularly at bottom of distribution

Heterogeneity in 12m labor market transitions

Share of labor market transitions in total

Heterogeneity in 12m labor market transitions

Share of labor market transitions in total

Aggregate earnings betas – Entire sample

Include entire sample and use hyperbolic sine transform (to deal with 0s)

Aggregate earnings betas – Entire sample

Include entire sample and use hyperbolic sine transform (to deal with 0s)

Aggregate earnings betas – Entire sample

Include entire sample and use hyperbolic sine transform (to deal with 0s)

$$\Delta y_{i,t}^p = \left[\beta_{stay}^p I_{stay} + \beta_{sw}^p I_{sw} + \beta_{E2N}^p I_{E2N} + \beta_{N2E}^p \mathcal{I}_{N2E}\right] \Delta Y_t$$

 $\bullet\,$ Collapse N and U to "N"

Aggregate earnings betas – by labor market groups

 β^p_{earn} for different labor market groups

19

Aggregate earnings betas – Decomposition

$$\Delta y_{i,t}^p = \left[\beta_{stay}^p I_{stay} + \beta_{sw}^p I_{sw} + \beta_{E2N}^p I_{E2N} + \beta_{N2E}^p \mathcal{I}_{N2E}\right] \Delta Y_t$$

Aggregate earnings betas – Decomposition

20

- So far: contribution of different labor market transitions to y Y comovement
- Now: Comovement of transitions with \boldsymbol{Y}
- Again, collapse N and U to "N", and estimate

$$TR^p_{j,s_1,s_2|s_1} = \beta \Delta Y_t + \varepsilon_{j,t} \text{ for } s_1, s_2 = E, N$$

Labor market transitions and aggregate earnings

$$TR^p_{j,s_1,s_2|s_1} = \beta \Delta Y_t + \varepsilon_{j,t} \text{ for } s_1, s_2 = E, N$$

Labor market transitions and aggregate earnings

- Significant heterogeneity in incidence of aggregate earnings movements:
 - Aggregate changes load more on lower part of income distribution
 - Due mostly to changing earnings in booms
 - Below the median changes driven by switchers and job-finding/losing
 - Above the median changes driven by earnings of stayers
- Potential for significant amplification of shocks if low income households have higher MPCs that high
- Next: Identified shocks and risk channel

ECB monetary policy likely endogenous - follow Almgren et al (2019) to identify shocks

- Instrument interest rate changes following Gertler & Karadi (2015)
- High frequency changes in Overnight Index Swap (OIS) rates

Overnight Index Swap contract

- "Risk free" \implies can be used during crisis
- Good measure of interest rate expectations
- Intra-day trading \implies narrow 45min measurement window

Impact of Monetary Policy

ECB monetary policy likely endogenous - follow Almgren et al (2019) to identify shocks

- Instrument interest rate changes following Gertler & Karadi (2015)
- High frequency changes in Overnight Index Swap (OIS) rates
- Short time window around announcement (Press release + Press Conference)

Impact of Monetary Policy

• Estimate:

$$\Delta y_j^d = \alpha + \beta_h^d \Delta i_t + \varepsilon_{j,h}$$

for
$$\Delta y_j^d = y_{j,t+h}^d - y_{j,t-1}^d$$

• Impulse responses to a 100 bp surprise increase in i_t .

Effects of Monetary Policy – (Monthly) Earnings

$$\Delta y_j^d = \alpha + \beta_h^d \Delta i_t + \varepsilon_{j,h}$$

Effects of Monetary Policy – (Monthly) Earnings

$$\Delta y_j^d = \alpha + \beta_h^d \Delta i_t + \varepsilon_{j,h}$$

$$TR^p_{j,s_1,s_2|s_1} = \alpha + \beta^d \Delta i_t + \varepsilon_{j,h} \text{ for } s_1, s_2 = E, N$$

Effects of Monetary policy – prob of remaining employed

Effects of Monetary policy – Job finding

Effects of Monetary policy – Adding steady state probabilities

Full impulse responses – Currently employed

Full impulse responses - Currently non-employed

How do aggregate shocks affect individuals?

$$emp_{j,t+h}^{d} = \alpha + \beta_{earn}^{d} \Delta Y_t + \varepsilon_{j,h} \quad |emp_{j,t-1}^{d} = 1$$

- Instrument using high frequency movements in OIS rates
- Includes dummies for calendar months

Monetary transmission through Aggregate – Wages

Monetary transmission through Aggregate – Employment

Transmission of aggregate shocks to individual incomes

- Earnings heterogeneity channel: Unequal incidence, lower deciles more exposed to aggregate shocks
- Cyclical risk channel: countercyclical risk, and unequal incidence of it

Going forward

- Greater focus on impact on unemployed
- More identified shocks, e.g. TFP shocks
- Tying back to theory how heterogeneous are the MPCs?
- Use as an input into HANK model to quantify

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	mean	mean	mean							
Female	0.77	0.71	0.61	0.51	0.44	0.41	0.37	0.33	0.28	0.16
Age	42.05	41.57	40.76	40.43	40.90	41.90	42.91	43.30	44.18	45.50
Education	1.15	1.10	1.13	1.15	1.15	1.18	1.21	1.31	1.56	1.93
Skill level	2.01	2.07	2.13	2.18	2.17	2.20	2.24	2.38	2.65	3.01
Part time	0.55	0.43	0.33	0.24	0.17	0.12	0.08	0.06	0.04	0.02
Daily wage	21.49	41.35	53.02	64.46	76.07	86.88	98.76	114.33	139.78	175.88
Empl next year	0.76	0.86	0.89	0.90	0.92	0.93	0.94	0.95	0.96	0.95
Observations	49366	46212	45457	49721	47040	46003	44837	46433	46897	46417

Table 2: Descriptive Statistics by Decile – January 2000

Fiscal transmission through Aggregate – Employment

41

Fiscal transmission through Aggregate – Wages*

42