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Summary and Introduction
I Random Menu Cost model:

Caballero-Engel (1993,1999,2007), Dotsey-King-Wollman (1999)

I Used recently, e.g. Berger-Vavra (2018), Petrella et all (2018),
Woodford (2008), Constain-Nakov (2011), others

I Caballero-Engel introduced Generalized Hazard Function (GHF)
⌘ Prob. change on prices depend on deviation of ideal price

I New results for continuous time version, w/inflation ⇡ 0:
I Distribution menu cost () GHF increasing,
I Distribution of price changes =) GHF & dist. price gaps f .
I Survival function S (duration) =) GHF .
I Fraction of price changes independent of state C
I Sufficient statistic CIR of monetary shock = Kurtosis

6 Frequency⇥ shock,
I Max CIR (kurtosis): Constant GHF (Calvo), Min: Golosov-Lucas.
I Flexibility Index 6= summary of IRF.
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Firm’s Problem
I Price gap: x deviation from ideal markup (no inflation)

follows driftless random walk: dx = �dW if price not changed

I Second order approximation to profit function B x2,

Bx2 cost of deviation x .

I Firm can always pay fixed cost  and adjust prices

I Each period w/prob.  dt firm draws cost  ⇠ G(·)
assume (WLOG) that G : [0, ] ! [0, 1].

I Firm minimized expected discounted (at rate r ) cost

I Optimal decision rule: sS bands x̄( ) increasing in  , and ±X .
(Caballero and Engel)

I Symmetry: optimal return pint to x = 0, and
bands x( ) = �x̄( ) and ±X



Firm’s Problem: Bellman equation

I v(x) value function of firm w/price gap (markup deviation) x :

rv(x) = min {Bx
2 +

�2

2
v
00(x) + 

Z  

0
min { + v(0)� v(x) , 0}dG( ) ,

r (v(0) + )}

I v(0) is the minimum, optimal markup adjustment x = 0

I Random cost  drawn w/prob.: dG( ) each period of length dt

I Firm adjust if   v(x)� v(0) = reduction in cost

I Firm can always pay (largest) cost  and adjust.



Firm’s Problem: Bellman equation (cont.)
I v(x) value function of firm w/price gap (markup deviation) x :

rv(x) = min {Bx
2 +

�2

2
v
00(x) + 

Z  

0
min { + v(0)� v(x) , 0}dG( ) ,

r (v(0) + )}

I Optimal decision rule X and x̄(·):

I If |x | reaches X ! adjust with certainty (mass point) .

I At each |x | ! adjust w/ prob ⇤(x) = G (v (x)� v (0)) per dt

I Generalized Hazard Function ⇤(x):
I adjustment probability increases with |x | (Caballero-Engel),
I at higher deviation |x | more cost are worthwhile to be paid.

I We allow G to have mass points, and also  = 1 =) X = 1.

I Calvo+: G has a mass point at  = 0, otherwise it is constant.



Inversion Result

I Caballero Engel: CDF G =) ⇤ increasing and symmetric GHF.

I New result: ⇤ is lincreasing and symmetric =) G GHF:

Fix volatility �2, curvature B, and discount rate r .

Consider an upper bd X & a symmetric, weakly increasing GHF ⇤.

Then there is a unique  and CDF G that rationalize X ,⇤.

I Importance: can use any weakly increasing symmetric GHF ⇤

to fit data or write models.

I Solving Bellman equation and policy is hard, non-linear o.d.e.
Solving for G given ⇤ easy and constructive: linear o.d.e.
(discrete G, linear eqns).



I Sketch of Proof (skip for time). Recall for 0 < x < X :

rv(x)= Bx
2 +

�2

2
v
00(x) + 

Z  

0
min { + v(0)� v(x) , 0}dG( )

= Bx
2 +

�2

2
v
00(x) + 

Z v(x)�v(0)

0
 dG( )

+ [v(0)� v(x)]G (v(x)� v(0))

I Differentiate value fcn: u(x) ⌘ v 0(x), use ⇤(x) ⌘ G(v(0)� v(x))

[r + ⇤(x)] u(x) = 2Bx +
�2

2
u
00(x) for x 2 [0,X ]

I Use symmetry at x = 0 and smooth pasting at x = X to motivate
boundaries for u in domain [0,X ]

I Solve for u given ⇤. Linear ode (use Sturm-Liouville, Direchlet)
Show u � 0 so u = v 0 > 0: () ⇤0(x) = G0(v(x)� v(0))u(x).

I Then v(x) = u0(0)�
2

2r
+
R x

0 u(z)dz for x 2 [0,X ].



Optimal Adjustment Intensity Model

I Alternative model that also produces generalized hazard rate⇤

I Firms chose the intensity of adjustment ` at a cost c(`).

I Also can pay   1 if they want to adjust w/certainty

rv(x) = min

⇢
Bx

2 +
�2

2
v
00(x) + min

`�0
` (v(0)� v(x)) + c(`)

, r ( + v(0))
o

I Similar to Rational Inattention: Woodford (2007) and others.

I Solution: GHF ⇤(x) = `⇤(x), symmetric, increasing.

I Also: any increasing ⇤(·) is rationalized by a cost c(·).

I Technical No restriction on tail of ⇤.



Steady State Statistics: Invariant Dist. & Frequency
I Intermediate step: f (x) invariant distribution of price gaps

Solves the KFE for all x 2 [�X ,X ], x 6= 0:

f (x)⇤(x) =
�2

2
f
00(x) and f continuous at all x

with f (�X ) = f (X ) = 0 and
R X

�X
f (x)dx = 1.

II Na Number of price changes per unit of time:

Na = 2|{z}
symmetry

h Z X

0
f (x)⇤(x)dx

| {z }
#w/x⇥Pr�p

��
2

2
f
0(X )

| {z }
Pr�pat±X

i

uses symmetry of f around x = 0.

I Interpretation of ⇤(x)f (x) and �2

2 |f 0(X )|.



Figure: Density function for the Invariant distribution of gaps: f (x)

Power hazard function: ⇤(x) = 
�

x

X

�⌫ , X = 1 < 1



Steady State Statistics: Dist. of price changes �p

I Price changes have mass point(s) at ±X if X < 1

I Symmetric density of price changes q for all x 2 (�X ,X )

�p =

(
�x w/ density q(x) = ⇤(x) f (x)

Na
provided that |x | < X ,

�X w/ probability mass
�2
2 |f 0(X)|

Na

I CDF Q : [�X ,X ] ! [0, 1] so that Q0 = q in the interior.

I k� moment of price changes (e.g. variance, kurtosis):

E(�p
k ) =

2
hR X

0 xk⇤(x)f (x)dx � X k �2

2 f 0(X )
i

Na
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2
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2 f 0(X )
i

Na



Examples: Power Generalized Hazard Function ⇤

I A common case used it the literature is ⇤(x) / x2.

I Solution for f are Bessel functions.

I We consider a generalization ⇤(x) = 
�

x

X

�⌫ for ⌫ > 0.

I Note ⌫ = 0 is Calvo and ⌫ ! 1 Golosov-Lucas.

I Kurt(�p) depends on shape, controlled by ⌫ and �2

2/X 2.

I Kurt(�p) of quadratic case (⌫ = 2) is low, about 1.75.

More so if X is finite.



Example of density price changes: q(�p)
Quadratic Hazard ⇤(x) = x2, X = 1, different ⌘ ⌘

� 2
�2

� 1
4



Figure: Kurtosis of power hazard function as power ⌫ varies (skip)

Hazard function ⇤(x) =  x⌫ and X = 1



Figure: Kurtosis behavior with a power hazard function as (skip)

s: fraction of price changes away from boundary X varies

Hazard function ⇤(x) = 
�

x

X

�⌫ and X < 1



Recovering f , ⇤ and G (or c) from �p dist. q

I Price changes have density �p ⇠ q(·) for x 2 (�X ,X ).

I Assume q is symmetric., let Q be its CDF of q, so q = Q0.

I Using equations above: q =) f =) ⇤:

Invariant distribution f fo price gaps:

f (x) =
2

Var(�p)

Z 1

x

(1 � Q(z)) dz

�
for all x � 0

and Generalized Hazard Function ⇤:

⇤(x) =
Na Var(�p)

2
q(x)R1

x
(1 � Q(z)) dz

for all x > 0

I Given ⇤ & previous recovery results, we get:

q =) f =) ⇤ =) G (distribution of menu cost) or

q =) f =) ⇤ =) c (cost function)



Recovering f , ⇤ and G from q: trivial proof (skip)

I Model gives us:

⇤(x)f (x)

Na

= q(�x) all x � 0

�2

2
f
00(x) = ⇤(x)f (x) all x � 0

�2 = Var(�p)Na

I Replace KFE into eqn for q:

�2

2
f 00(x)

Na

= q(�x) all x � 0

I Integrate w.r.t x twice, used expression for �2 gives f (x).

I Use f and definition of q again to get ⇤.



Estimating distribution Q

I Cavallo’s scraped data {�pit}: no time agg. + low meas. error.

I Mixture of distribution w/same Kurtosis has higher Kurtosis

I Unobserved heterogeneity bi across products i within category

�pit = bi �p̃t for i 2 I and t 2 T (i)

�p̃t⇠ Q and bi ?�p̃t

I Theory: price changes iid across t for a given product.

I Non-parametrically identify common distribution Q for a category
variation on Kotlarski’s lemma (non-parametric random effects).

I Estimate Kurtosis, Kurt(�p) of dist. Q, small due to:
- correlation of price changes for a given product (induced by bi ),
- no time aggregation and very low measurement error.



Figure: Distribution of pooled price changes in a narrow category

Histogram for �p Symmetrized histogram
with a fitted density

Pooling all products “Non-durable household goods"



Estimated Q(·) and q(·), recovered f (·) and ⇤(·)



Recovered CDF G and density g of menu costs



Estimating Kurtosis of underlying distribution

I Recall:

�pit = bi �p̃t for i 2 I and t 2 T (i)

�p̃t ⇠ Q and bi ?�p̃t

I Then

Kurt(�p̃t) =
Kurt(�pit)

1 + corr(�p2
it
,�p2

is
)CV (�p2

it
)CV (�p2

is
)

I Autocorrelated square changes of product i inconsistent w/model

I Autocorrelated square changes indicate heterogeneity.



Kurtosis Estimates for categories w/1000+ products

Number Number Ê(�pit) �̂(�pit) Kurtosis Kurtosis
Products P. changes Pooled w/Unobs.

Heterog.
3437 74464 0.002 0.342 3.367 1.640

(0.160) (0.065)
3225 56527 0.002 0.329 3.807 1.950

(0.094) (0.047)
2551 30343 -0.001 0.246 3.520 2.049

(0.263) (0.155)
1401 27321 0.002 0.344 2.923 1.671

(0.087) (0.051)
1388 30111 0.003 0.309 3.579 2.035

(0.236) (0.116)
1154 20995 0.007 0.309 3.467 1.983

(0.139) (0.049)
1032 17724 0.002 0.261 3.314 1.773

(0.216) (0.128)

Table: Bootstrapped standard errors in parenthesis
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GHF ⇤ and (duration) Survival Function S

I Let S(t) be survival function of duration of spell:

S(t) = E
h
e
�

R
t

0 ⇤(x(s))ds | x(0) = 0
i

assuming, to simplify, that X = 1.

I Hazard h(t) = � S
0(t)

S(t) pr. �p as function of duration t

I Hazard h(·), as function of duration is observable.

I Identification: Given S(t) ( or h(t) ) =) ⇤(x)

I For instance, using hazard rates h(t):

h(0) = ⇤(0) � 0 ,
@h(t)

@t
|t=0 =

�2

2
@2⇤(x)

@x2 |x=0

@2h(t)

@t2 |t=0 =

✓
�2

2

◆2
@4⇤(x)

@x4 |x=0 ,

@3h(t)

@t3 |t=0=

✓
�2

2

◆3
@6⇤(x)

@x6 |x=0 � 4
✓
�2

2
@2⇤(x)

@x2 |x=0

◆2
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GHF ⇤ and (duration) Survival Function S (skip)

I Let S(t) be survival function of duration of spell:

S(t) = E
h
e
�

R
t

0 ⇤(x(s))ds | x(0) = 0
i

assuming, to simplify, that X = 1.

I All the derivatives S(t) at t = 0 identify the level and all the even
derivatives of ⇤(x) at x = 0.
Thus, if ⇤ is analytical, then it is identified by S.

I Using hazard rates:

h(0) = ⇤(0) � 0 ,
@h(t)

@t
|t=0 =

�2

2
@2⇤(x)

@x2 |x=0

@2h(t)

@t2 |t=0 =

✓
�2

2

◆2
@4⇤(x)

@x4 |x=0 ,

@3h(t)

@t3 |t=0=

✓
�2

2

◆3
@6⇤(x)

@x6 |x=0 � 4
✓
�2

2
@2⇤(x)

@x2 |x=0

◆2



Measure of Price Changes independent of state

I Define Calvo-ness index C ⌘ ⇤(0)
Na

:
fraction of price changes independent of the price gap x

(state).

C = q(0)
Var(�pit)

2E[|�pit |]

for t 6= s.

I Density close to zero q(0) > 0 only if state not important.

I Can be adapted (see paper) w/unobserved heterogeneity.

I For Cavallo’s data we estimate C ⇡ 6%.
Small values because small density of small price changes q(0).



Measure of Price Changes independent of state (skip)

I Define Calvo-ness index C ⌘ ⇤(0)
Na

, in words:
fraction of price changes independent of the price gap (state).

I Proposition:

C = Cpooled

 
1 +

Cov(b�1
i

, b2
i
)

E[b�1
i

]E[b2
i
]

!
< Cpooled

where the two components are given by

Cpooled =
q(0)Var(�pit)

2E[|�pit |]
and 1 +

Cov(b�1
i

, b2
i
)

E[b�1
i

]E[b2
i
]
=

E[|�pit |�1|�pis|2]
E[|�pit |�1]E[|�pit |2]

for t 6= s.

I For Cavallo’s data we estimate C ⇡ 6%.
Small values because small density of small price changes q(0).



Cumulative Response to Aggregate Shock

I Once and for all monetary (cost) shock of size �

I Effect of aggregate price level P(t ; �) at horizon t

I Effect on output Y (t ; �) = (1/✏) [� � P(t , �)] at horizon t .

I Cumulative IRF (CIRF) M(�) =
R1

0 Y (t , �)dt

I Small shock M(�) ⇡ M0(0)� since by definition M(0) = 0.

I For models with no first order strategic complementarity.

Keep same decision rules

I Show that M(�) = Kurt(�p)
6Na

� + o(�2)



Once and for all monetary shock at t = 0.
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Impulse response of Price Level
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Impulse response of output
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Area under impulse response of output
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Definition of CIR, cumulative response function (skip)

I Symmetry: suffices to consider effect until first �p after shock �.

I At t , a firm that has not adjusted contributes �x to output Y (t)

I m(x) : contribution to CIR of firm starting w/gap x after shock �.

I Let ⌧ stopping time until |x | = X

m(x) = �E
Z ⌧

0
e
�

R
t

0 ⇤(x(s))ds
x(t)dt | x(0) = x

�

I Just before the shock, firms gap x are distributed as f (·).

I Since shock moves each x to x � �, CIR is given by

M(�) =

Z X

�X

m(x)f (x + �)dx = �

Z X

�X

m(x)f 0(x)dx + o(�2)



Sufficient Statistic for CIR, first result

I Let ⇤ be ANY Generalized Hazard Function.

Then the cumulative impulse response (CIR) for a small
monetary shock:

M(�) = M0(0)� + o(�2) =
Kurt(�p)

6 Na

� + o(�2)

The approximation is accurate, since M00(0) = 0.

I Kurt(�p) depends on shape of ⇤(·), not its level
– multiplying ⇤(·) & �2 by constant =) same dist. q & Kurt(�p).
– multiplying ⇤(·) and �2 by constant scales Na by same constant.



Sufficient Statistic for CIR, bounds, second result

I Recall

M(�) =
Kurt(�p)

6Na

� + o(�2)

I Only weakly increasing ⇤ can be rationalized as random menu
cost or optimal adjustment intensity model.

I Among the weakly increasing ⇤ the inverted-L hazard ⇤ (i.e.
Golosov and Lucas) has the smallest Kurt(�p) = 1.

I Among the weakly increasing ⇤ the constant hazard ⇤ (i.e.
Calvo) has the largest Kurt(�p) = 6.

I Decreasing ⇤ have Kurt(�p) > 6, and can be arbitrarily large.

I These results imply that Kurt(�p) measure positive selection for
price increases after a positive aggregate shock.



Scope & limitations of Kurt(�p)/(6 Na) skip if short in time
as a Cumulative Impulse Response (CIR) sufficient statistic

I Also hold on:

I Calvo+ + Multiproduct n � 1 products,
(Alvarez-Lebihan-Lippi AER 16), common case Calvo+ w/n = 1.

I General Rational inattentiveness model (Reis 06),
(Alvarez-Lippi-Paciello, RES 15) common case: pure Calvo.

I Insensitive, up to first order, to add:
I steady state inflation
I asymmetry in objective function

I Does NOT hold:

I Large inflation (Sheshinsky-Weiss, Blanco-Bailey)

I Firm do not close gap
(Alvarez-Lippi AEJ 19) Temporary price changes.

I Stochastic volatility.

I Strategic Interactions (?).



Beyond CIR: Impulse Response Y (t ; �) = � � P(t , �)

I Use Eigenvalue-Eigenfunction to solve for Y (t ; �) and P(t , �).

I Caballero-Engel meet Schrodinger-Dirac:

– Quadratic ⇤ has the same eigenfunctions-eigenvalues as famous
“Quantum-Oscillator".

– In general, Schrodinger Eqn for positive symmetric potential.

I Use this result to compare with other proposed sufficient statistic:
Flexibility Index.

I Flexibility Index F ⌘ limt!0,�!0
@
@t

Y (t , �)

– initial slope of the IRF with respect to time, at a small shock.

I Flexibility Index F does not give same ordering as M CIR.

– Construct examples with same F & are very different CIR M.

– Even effect for Y (t ; �) for small t can be quite different.



skip

I IRF of price level, recall Y (t ; �) = � � P(t , �):

P(t , �) = ⌦(�) +

Z t

0
!(s, �) ds

I !(t , �) = @
@t
P(t , �) flow at t , and ⌦(�) initial jump at t = 0:

!(t , �) = �
Z X

�X

x⇤(x)f (x , t)dx + X�2 [f 0(�X , t)� f
0(X , t)]

⌦(�) =

Z �X+�

�X

(�x + �) f (x , 0) dx

I f (x , t) solves KFE with initial condition f (x , 0) = f (x + �)

does not have to be steady state.

I Flexibility Index F ⌘ @
@�!(0, �)|�=0,

I If X < 1 =) Flexibility Index F = 1



skip

I Simplify arguments by using X = 1,
( Flexibility index is always infinite with barriers )

I IRF of price level, recall Y (t ; �) = � � P(t , �):

P(t , �) =

Z t

0
!(s, �) ds

I !(t , �) = @
@t
P(t , �) flow at t ,

!(t , �) = �
Z X

�X

x⇤(x)f (x , t)dx

I f (x , t) solves KFE with initial condition f (x , 0) = f (x + �)

I Flexibility Index F ⌘ @
@�!(0, �)|�=0,

I F is easy to compute, only requires f (x , 0) and gives:

F = Na

✓
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skip, if short of time

I Flexibility Index F ⌘ @
@�!(0, �)|�=0,

I Advantages of F : is easy to compute, only requires f (x , 0):

F = Na

✓
1 +

Z 1

�1

x⇤0(x)

⇤(x)
q(x)dx

◆

I Disadvantages of Flexibility Index:
By design, it only measures effect at very short term.

I Example: ⇤(x) = ⇤(0) + x⌫ so that:
I Same frequency of adjustment Na = 1
I Same Flexibility Index F = 3
I Different Cumulative Impulse Response M, i.e. different Kurtosis.

I Literature “misinterpret" idea of sufficient statistic.



Figure: Values of Kurt(�p) or CIR relative to quadratic ⇤(x)
Each case (a dot), different parameters ⌫ for ⇤(x) = ⇤(0) + x

⌫

All cases have values ⇤(0), so that they have the same F = 3 and Na = 1



Figure: Impulse Responses for two cases of power plus ⇤(x) = ⇤(0) + x
⌫

Both cases with same F and Na.
Same slope at zero Y

0(0), but IRF Y (t) different even in short run,
since expected time to adjustment Na = 1



Compute Entire Impulse Response function (skip)

I Consider operator �2

2
d

2

dx2 � ⇤(x) on functions g on [�X ,X ],
Direchlet boundary g(�X ) = g(X ) = 0.

I If X = 1 assume ⇤(x) ! 1, so operator is compact.

I Impulse response on shift � to invariant f for functiong is

Y (t) = �
1X

j=1

e
�j t h'j , gi h'j , , f

0(x)i

I 'j eigenfunctions, �j eigenvalues.

I A lot is known about eigenfunctions and eigenvalues.



Conclusions
I Analyze popular model in the literature,

Caballero and Engel, Dotsey-King-Wollman, Woodford, ....

I Models: random-menu cost G or optimal adjustment intensity c

I Any weakly increasing ⇤ can be rationalized

I Sufficient statistic for CIR of monetary shock Kurt(�p)
6Na

I Span from GL (smallest effect) to Calvo (largest effect)

I Characterization: G ( or c) () ⇤ () f () q

I Characterization: S () ⇤, where S survival function (duration).

I Quadratic ⇤, used in literature: small effects, ⇡ Cavallo’s data

I Define & estimate small % of price changes independent of state.

I Eigenvalues-Eigenfunctions used to computing entire IRF

I Examples: Flexibility index is constant, but CIR changes a lot.
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