LEARNING BY SHOPPING:

Consumers' Uncertainty and Monetary Shocks

Gaetano Gaballo

Luigi Paciello

HEC Paris and CEPR

HEC Paris, EIEF and CEPR

September 11, 2020

INTRODUCTION

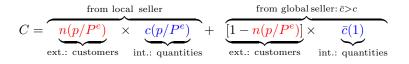
Broad consensus:

- ▶ Information frictions play central role in household expectations
- ▶ Household inflation expectations key to monetary policy transm.

Novel evidence:

Inflation expectations influenced by prices experienced in shopping
 Cavallo-Cruces-PerezTruglia (2017), D'Acunto-Malmendier-Ospina-Weber (2019)

This paper

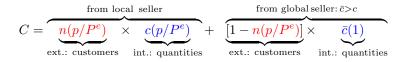

- ▶ transmission of monetary policy when consumers learn from prices
- ▶ value of targeting communication to consumers vs firms

THE FRAMEWORK IN A NUTSHELL

Consumers see local p but not aggregate P. Decide in sequence:

- 1. if switching to global seller $(p \text{ vs } P^e)$: extensive margin
- 2. consumption at expected income $W^e \propto P^e$: intensive margin

Aggregate demand:



THE FRAMEWORK IN A NUTSHELL

Consumers see local p but not aggregate P. Decide in sequence:

- 1. if switching to global seller $(p \text{ vs } P^e)$: extensive margin
- 2. consumption at expected income $W^e \propto P^e$: intensive margin

Aggregate demand:

Transmission of P to C:

P ↑ ⇒ p/P^e ↑ or p/P^e ↓? Consumer vs Firm uncertainty
 p/P^e ↑ ⇒ C ↑ or C ↓? Extensive vs Intensive margin

PREVIEW OF THE RESULTS

1. Output effects of P increase with firm-consumer information gap

2. Welfare: firm "signaling power" amplifies gains from stable P

3. Communication: to households is good, to firms is often bad

Roadmap

- 1. Literature review (not for today)
- 2. Backbone model with perfectly informed firms and 3 parameters
 - constant elasticity $\lambda > 0$ of extensive demand $n(p/P^e)$
 - constant elasticity $\gamma > 0$ of intensive demand $c(p/P^e)$
 - consumer learning from price:

$$\ln P^e = \omega \ln(p), \qquad \omega \in (0,1)$$

- 3. General info structure: ω endogenous
- 4. Micro-founded consumer problem, GE, calibration and experiments

THE SUPPLY

• Aggregate nominal shock to wage w; local shock to cost z

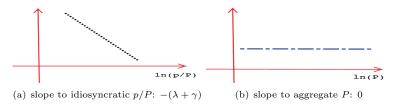
▶ Global competitive firm (e.g. discount superstore) posting price

$$P = w$$

► Local monopolistic firms (e.g. convenience stores) under <u>no commit.</u>:

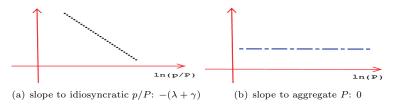
$$\max_{p} n(p/P^{e}) c(p/P^{e}) \left[p - w z\right]$$

Optimal pricing: $p = \mu \times w z$

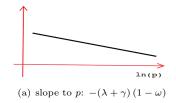

$$\mu = \frac{\overbrace{(\lambda + \gamma)}^{\text{elasticity to } p/P}}{\overbrace{(\lambda + \gamma)}^{(\lambda + \gamma)} \underbrace{(1 - \omega)}_{-1}}$$

signaling power

٠

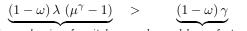

AN ILLUSTRATION OF LOCAL FIRM DEMAND

Perfectly informed consumers ($\omega = 0$):



AN ILLUSTRATION OF LOCAL FIRM DEMAND

Perfectly informed consumers ($\omega = 0$):



Uninformed consumers ($\omega > 0$):

▶ lower elasticity to idiosyncratic; higher elasticity to aggregate 6/14

Proposition An inflationary shock is expansionary on output iff

demand gain of switchers demand loss of stayers

Special case: $\gamma = 1$ (constant nominal expenditure)

- expansionary with signaling power, i.e. $\omega > 0$, for all $\lambda > 0$
- converges to neutrality as $\omega \to 0$

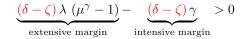
Uncertain Firms and Endogenous Learning

INFORMATION

- 1. $\ln z \sim N(0,\sigma_z^2)$ and $\ln P \sim N(0,\sigma_P^2)$ independent Gaussian
- 2. competitive firms have full information (normalization)
- 3. local firm info:

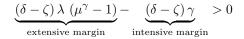
$$\Omega_j = \{x_j : \ln P + \eta_j, z_j\} \text{ with } \eta_j \sim N(0, \sigma_x)$$

4. consumer $i \in n_j$ info:


$$\Omega_i = \{ y_i : \ln P + \epsilon_j, \ p_j \} \text{ with } \epsilon_j \sim N(0, \sigma_y)$$

Sufficient statistics for precision of information on aggregate state:

firms:
$$\delta \equiv \frac{\partial E[\log P | \Omega_j]}{\partial \log P}$$
, consumers: $\zeta \equiv \frac{\partial E[\log P | \Omega_i]}{\partial \log P}$


Firms better informed than consumers if $\delta > \zeta$

Proposition An inflationary shock is expansionary on output iff

- standard NK logic: $\lambda = 0$ and $\zeta > \delta$

Proposition An inflationary shock is expansionary on output iff

- standard NK logic: $\lambda = 0$ and $\zeta > \delta$
- this paper: $\lambda > 0$ requires $\zeta < \delta$, i.e. <u>need firms better informed</u>

Proposition An inflationary shock is expansionary on output iff

- standard NK logic: $\lambda=0$ and $\zeta>\delta$

- this paper: $\lambda > 0$ requires $\zeta < \delta$, i.e. <u>need firms better informed</u>

Proposition Pass-through to paid prices is incomplete if:

$$\frac{\partial \ln S(P)}{\partial \ln P} = \delta - (\delta - \zeta) \lambda \frac{\bar{n} (\mu - 1)}{\bar{n} (\mu - 1) + 1} < 1$$

▶ standard NK logic: $\lambda = 0 \& \zeta > \delta \implies$ paid=sticky posted prices

Proposition An inflationary shock is expansionary on output iff

- standard NK logic: $\lambda=0$ and $\zeta>\delta$

- this paper: $\lambda > 0$ requires $\zeta < \delta$, i.e. <u>need firms better informed</u>

Proposition Pass-through to paid prices is incomplete if:

$$\frac{\partial \ln S(P)}{\partial \ln P} = \delta - (\delta - \zeta) \lambda \frac{\bar{n} (\mu - 1)}{\bar{n} (\mu - 1) + 1} < 1$$

▶ standard NK logic: $\lambda = 0 \& \zeta > \delta \implies$ paid=sticky posted prices

▶ this paper: $\lambda > 0 \implies$ paid ≠ posted prices; paid stickier iff $\zeta < \delta$

MARKUPS, PROFITS AND COMMUNICATION

Targeting ω has first order effects on welfare through markups:

$$\mu = \frac{(\lambda + \gamma)(1 - \omega)}{(\lambda + \gamma)(1 - \omega) - 1}.$$

1. Targeting communication to consumers reduces markups:

$$\sigma_y - \sigma_y / \sigma_x \to 0 \implies \omega \to 0 \implies \mu \downarrow \text{ even if } \sigma_P >> 0$$

- Corollary: More info to firms $(\sigma_x \to 0)$ may be bad for welfare!

MARKUPS, PROFITS AND COMMUNICATION

Targeting ω has first order effects on welfare through markups:

$$\mu = \frac{(\lambda + \gamma)(1 - \omega)}{(\lambda + \gamma)(1 - \omega) - 1}.$$

1. Targeting communication to consumers reduces markups:

$$\sigma_y/\sigma_x \to 0 \implies \omega \to 0 \implies \mu \downarrow \text{ even if } \sigma_P >> 0$$

- Corollary: More info to firms $(\sigma_x \to 0)$ may be bad for welfare!

2. Nominal price stabilization reduces markup

$$-\sigma_P \to 0 \implies \omega \to 0 \implies \mu \downarrow$$

MARKUPS, PROFITS AND COMMUNICATION

Targeting ω has first order effects on welfare through markups:

$$\mu = \frac{(\lambda + \gamma)(1 - \omega)}{(\lambda + \gamma)(1 - \omega) - 1}.$$

1. Targeting communication to consumers reduces markups:

$$\sigma_y/\sigma_x \to 0 \implies \omega \to 0 \implies \mu \downarrow \text{ even if } \sigma_P >> 0$$

- Corollary: More info to firms $(\sigma_x \to 0)$ may be bad for welfare!

2. Nominal price stabilization reduces markup

$$-\sigma_P \to 0 \implies \omega \to 0 \implies \mu \downarrow$$

- 3. Targeting communication to consumers <u>increases</u> firm profits
 - Hint: pricing without commitment leads to too high μ

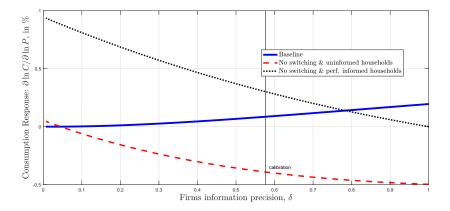
Micro-foundation of demand and Calibration

HOUSEHOLDS

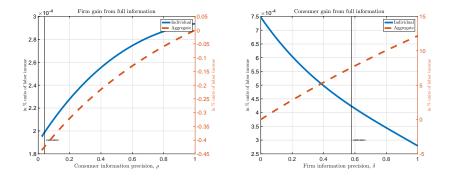
Household $i \in n_j$ chooses $s_{it} \in \{0, 1\}$, $c_{it} \in \mathbb{R}^+$ and $\ell_{it} \in \mathbb{R}^+$ to max

$$\sum_{\tau=t}^{\infty} \beta^{\tau-t} \left[\ln c_{i\tau} - \varphi \,\ell_{it} + \kappa \,\ln\left(\frac{\mathrm{m}_{i\tau+1}}{p_{i\tau}}\right) - \left(\bar{\psi} + \psi_{i\tau}\right) s_{i\tau} \right],$$

subject to: $p_{it} c_{it} + \frac{b_{it+1}}{R_t} + m_{it+1} \le w_t \ell_{it} + b_{it} + m_{it} + \Pi_t - T_t$


$$p_{i\tau} = \begin{cases} p_{j\tau} & \text{if } s_{i\tau} = 0 \quad (\text{local price}) \\ P_{\tau} & \text{if } s_{i\tau} = 1 \quad (\text{competitive price}) \end{cases}$$

▶ $\ln R_t$ Gaussian nominal shock i.i.d. over time


• $\psi_{i\tau} \sim \exp(\lambda^{-1})$ i.i.d. across agents and time

Model		Data	
Parameter	Value	Target Moment	Value
σ_P	0.0035	Volatility of CPI inflation	0.0035
$ar{\psi}$	0.1264	Mkt share of e-commerce	0.25
λ	7	From Paciello et al. (2019)	7
Firm uncertainty from Cavallo (2018): $\sigma_x = 0.0030$ short/long run FX pass-through to p			0.57
Consumer uncertainty from D'Acunto et al. (2018):			
σ_z	0.0053	slope of regression of Π^e on $p, \pmb{\omega}$	0.19
σ_y	0.0163	\mathbb{R}^2 of regression of Π^e on p	0.775

The propagation of Money Shocks

THE VALUE OF COMMUNICATION

CONCLUSIONS

New theory of money non-neutrality that:

- does not rely on posted price stickiness
- ▶ is centered around consumers' uncertainty
- ▶ speaks to recent observable statistics on consumer behavior

We emphasize four points:

- consumers' uncertainty gives more market power to firms
- this increases markups, hurting welfare but also firms' profits
- nominal stabilization is desirable (different reasons than NK)
- releasing info is socially inefficient when mainly firms absorb it

Related Literature

- Consumers' search in GE: Coibion, Gorodnichenko, and Hong (AER, 2015); Kaplan and Menzio (JPE,2016),...
 - ▶ They have a real shock, switching linked to unemployment
- Extensive margins: Phelps and Winter (1970), Rotemberg and Woodford (1999), Paciello, Pozzi, and Trachter (IER, 2019),...
 - Switching occurs under no nominal uncertainty
- Learning from Prices: Lucas (AER, 1972), Amador and Weill (JPE, 2010), Gaballo (REStud, 2018), Chahrour and Gaballo (2020)
 - No signaling power
- Consumers' expectations and shopping: D'Acunto, Malmendier, Ospina, and Weber (2019), Menzio and Kaplan (IER, 2015) ...
 - ▶ No model

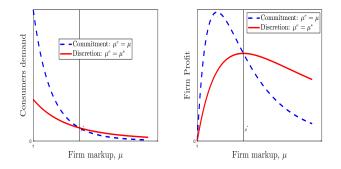
CONSUMERS' DECISIONS

1. Extensive margin: switch if $\psi_{it} \leq \hat{\psi}(p_{jt}, P_{jt}^e)$ with

$$\hat{\psi}(p_{jt}, P_{jt}^e) = \ln \frac{P_{jt}^e}{p_{jt}} + V(F_{m_j}) - \bar{\psi}$$

2. Intensive margin:

$$c(p_{it}, P_{it}^e) = \frac{1}{\varphi} \frac{P_{it}^e}{p_{it}} e^{-\frac{1}{2}V(F_i)}$$

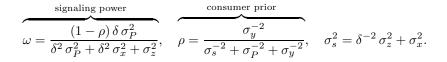

with $P_{it}^{e} = E\left[P_{t} \mid p_{it}, \Omega_{m_{jt}}\right]$ and $F_{i} \equiv \ln P_{t} - E\left[\ln(P_{t}) \mid p_{it}, \Omega_{m_{jt}}\right]$

3. Saving/labor

$$w_t = \beta R_t \bar{w} \implies \ln P_t = \ln w_t \quad \sim N(0, \sigma_P^2)$$

RESULT I: FIRM PROFIT WITH SIGNALING

Proposition As the signaling power increases, $\omega \uparrow$, firm's markup increases, $\mu \uparrow$, but profits fall for each realization of z and P.



UNCERTAINTY: FIRMS VS CONSUMERS

Sufficient statistics:

firms:
$$\delta \equiv \frac{\partial E[\log P | \Omega_j]}{\partial \log P} = \frac{\sigma_P^2}{\sigma_P^2 + \sigma_x^2}$$
consumers:
$$\zeta \equiv \frac{\partial E[\log P | \Omega_i]}{\partial \log P} = \omega \,\delta + \rho$$

with

