The Bank of Finland

Future of Risk Management

September 22-23, 2011

Market Fragility and International Market Crashes

Dave Berger Oregon State University Kuntara Pukthuanthong San Diego State University

The Presentation at a Glance

- I. Research Objectives
- II. Contributions
- III. Pukthuanthong and Roll (2009)'s integration measure
- I. Fragility Index
- IV. Data

- v. Tests
- VI. Robustness Test
- VII. Conclusions and Implications

Paper Synopsis

Contributions

1. We present ex-ante measure that shows a strong and positive relation with

- prob (extreme market crashes)
- prob (crashes propagating across markets)
- Extend the contagion literature by identifying an important factor that relates to the likelihood of a shock in one market propagating internationally
- 3. Extend the systematic risk literature by presenting a generalizable and flexible measure
- 4. Provides implications to policy makers and portfolio managers

Pukthuanthong and Roll (2009)

R_{i.t}

•A measure of time-varying integration based on R-square of the following:

$$R_{j,t} = \sum_{i=1}^{10} \beta_{j,i} P C_{i,t} + e_{j,t}$$

 $R_{j,t}$ represents the US Dollar-denominated return for country or index j during day t,

- $PC_{i,t}$ represents the *i*th principal component during day *t* estimated based on Pukthuanthong and Roll (2009)
 - Based on the covariance matrix in the previous year computed with the returns from 17 major countries, the "pre-1974 cohort"
- The loadings across countries on the 1st PC or the world factor and others are <u>measurable</u>

Intuition

- Extend the Pukthuanthong and Roll (2009) measure of integration to provide an estimate of <u>systematic risk</u> within international equity markets
- PC 1 is a factor that drives the <u>greatest</u> proportion of world stock returns
 - Not restricted to equal the overall market portfolio
- A negative shock to the underlying world factor or <u>PC1</u> → severe market declines across multiple countries
 - If the shock occurs during a period in which average to this exposure is <u>high</u>

•Cross-sectionall average of time-varying loadings on the world market factor or <u>PC1</u> across countries at each point in time

- Fragility Index ("FI") indicate
 - periods in which international equity markets are much more susceptible to a negative shock to the world market factor PC1
- Measure is generalizable and flexible
 - Capture any economic variable that increases loadings on the world market factor
 - Allows inclusion of a large international sample of countries in a study

Why loading on PC1, not R-square?

- Integration may be a necessary but <u>not</u> a sufficient criteria to identify periods of high systematic risk
- Assume 2 world factors, Salt and Water
- •Country A relies mostly on Salt; country B relies mostly on Water

$$R_{A} = \beta_{salt,A} Salt + \beta_{water,A} Water + \varepsilon_{A} \quad (1)$$
$$R_{B} = \beta_{salt,B} Salt + \beta_{water,B} Water + \varepsilon_{A} \quad (2)$$
$$Adj - R_{(1)}^{2} = Adj - R_{(2)}^{2} \quad \text{but} \quad \beta_{salt,A} > \beta_{salt,B}$$

• Country A has **positive** exposure while country B has **negative** exposure on Salt $R_A = \beta_{salt,A} Salt + \beta_{water,A} Water + \varepsilon_A$

$$R_{B} = \Theta_{salt,B} Salt + \beta_{water,B} Water + \varepsilon_{A}$$

Negative shock in Salt will hurt A but benefit B

Why loading on PC1, not R-square?

- •When integration is <u>*high*</u>, but countries exhibit <u>varying</u> exposure to underlying factors, we would <u>*not*</u> expect a shock to an underlying factor to manifest across many markets
- Only when integration is <u>high</u>, and when many countries exhibit a <u>similar</u> exposure to <u>an underlying</u> <u>factor</u>, we would expect a shock to that underlying factor to impact many markets

Detail measure of FI

- For a given day *t*, we calculate the average of the loading on the first principal component, β_{j,1,t-1}, which is estimated across days <u>t-500</u> through day <u>t-1</u> as a 500-day rolling window across all relevant countries, and define this variable as μ_{PC1,t}, which we call the "Fragility Index."
- Given our measure of fragility, we define a day as fragile or not, based on whether FI calculated through the previous day exceeds a given threshold percentile (80th, 90th, 95th, and 98th percentiles, for example).
- Define fragility based on $\mu_{PC1,t} > Pk(\mu_{PC1})$ in which $Pk(\mu_{PC1,t})$ represents the *k*th percentile of μ_{PC1} .
- The later analyses that implement logistic regressions do <u>not</u> require knowledge of full-sample percentiles.

FI through time

- m0 and q0 to represent the mean and the 75th percentile of the Fragility index $\beta_{j,i,t}$ plotted on the LHS.
- 'Return' represents the equal-weighted all country index return, and is plotted on the RHS.

Define bad return days

- •Identify a crash sub-sample as all days in which $R_{j,t} \leq Pk(R_j)$ for arbitrary return percentile threshold *k*.
- •Within this setting $R_{j,t}$ represents the return to index *j* during day *t* and $Pk(R_j)$ represents a specified threshold percentile of full-sample returns for index *j*.
- •Define *negative co-exceedances* as days in which multiple countries or cohorts each experience a return below the threshold in question.

Data

- •Global stock indexes from 82 countries from the Datastream
- •Classify countries into 3 cohorts based on countries appearance in the Datastream
 - •Before 1984 as Cohort 1 (developed markets)
 - •During 1984-1993 as Cohort 2 (developing markets)
 - •After 1993 as Cohort 3 (emerging markets)
- •Averaging countries into cohort index returns mitigates *non-synchronous trading* issues as component countries would be spread across the globe and thus these components would trade through out the day

Findings

- Increases in FI <u>leads</u> periods in which the probabilities of market crashes, and of joint co-exceedances across markets
- •Given the high levels of risk, prob(global crash across multiple countries) > prob (local crashes confined within a smaller number of countries)
- •Fragility is based on the coefficient, $\beta_{j,i,t}$ on the 1st principal component according to Pukthuanthong and Roll (2009) in which country stock returns are regressed on 10 principal components using daily observations from day *t*-500 through day *t*-1.

FI across cohorts and global crises

- m0, m1, m2, and m3 represent the mean of β_{j,i,t} at a given point in time for all cohorts, Cohorts 1, 2, 3, respectively.
- Cohorts 1, 2, and 3 include countries first appearing on DataStream since pre-1974 to 1983, 1984-1993, and post-1993, respectively

Crisis and 75th percentile

- q0, q1,q2, and q3 represent the 75th percentile of $\beta_{j,i,t}$ at a given point in time for all cohorts, Cohorts 1, 2, 3, respectively.
- Cohorts 1, 2, and 3 include countries first appearing on DataStream since pre-1974 to 1983, 1984-1993, and post-1993, respectively

Average returns across risk states

	<i>Cohort_{all}</i>		Cohort ₁		$Cohort_2$		Cohort ₃					
	Mean	Median	Std	Mean	Median	Std	Mean	Median	Std	Mean	Median	Std
				Panel	A: Full-sa	mple sumi	mary statis	tics				
	0.0254	0.0719	0.8046	0.0234	0.0875	1.1217	0.0210	0.0702	0.7731	0.0344	0.0569	1.1814
Panel B: Statistics across mean of $\beta_{i,i,t}$												
1 st decile	0.1075	0.1515	0.5164	0.0532	0.1343	0.9910	0.1208	0.1224	0.4605	0.0617	0.0591	0.5212
2 nd decile	0.0235	0.0538	0.5153	0.0520	0.0875	0.5651	0.0191	0.0060	0.3860	0.0978	0.0896	0.4669
3 rd decile	0.1052	0.1040	0.3931	0.0304	0.0686	0.6249	0.0286	0.0795	0.5357	0.2122	0.0689	2.2370
4 th decile	0.0991	0.0737	0.7785	0.0436	0.1199	0.7184	0.0625	0.0801	0.5019	0.0777	0.0703	0.4693
fifth decile	-0.0107	0.0404	0.4755	-0.0562	0.0235	0.9391	-0.0215	0.0012	0,6566	0.0669	0.0566	0.4900
6 th decile	-0.0006	0.0329	0.6113	0.0209	-0.0134	0.9605	0.0180	0.0288	0.6902	0.0749	0.0684	0.6476
7 th decile	0.0224	0.0725	0.6760	0.1093	0.1818	0.8595	0.0485	0.1441	0.8113	-0.0362	0.0541	0.6742
8 th decile	-0.0276	0.0578	0.9863	0.0752	0.1564	0.8160	0.0447	0.1314	0.8280	-0.1280	-0.0300	2.2038
9 th decile	-0.1170	0.0224	1.0872	-0.1291	-0.0442	1.7080	0.0992	-0.0042	0.9887	-0.0697	0.0189	0.9673
tenth	0.0524	0.1538	1.3939	0.0771	0.1779	2.0568	0.0247	0.1352	1 3536	-0.0138	0.0553	1.1322
decile									-			

• As FI increases from the 1st to 10th decile, mean returns decrease

- A plunge in returns is most drastic in Cohort 3
- Standard deviation increases as FI increases

Conditional market crash probabilities

• Ex - Expected number of crashes if FI and crashes are independent

• f- The actual number of occurrences

• f/n - The empirical probability of a crash conditional on FI exceeding the ith percentile

<u>Note</u>

 The actual number of occurrences (f) is higher than the expected number of crashes (Ex) when FI is greater than a ith percentile

Ex > f when FI<ith percentile but Ex <f When FI>ith percentile

2. f/n when FI>ith percentile is greater Than f/n when FI<ith percentile

	$R_{j,t} \leq P20\%$	$R_{j,t} \leq P10\%$	$R_{j,t} \leq P5\%$	$R_{j,t} \leq P2\%$
$Ex(X \mid \mu_{PC1,t} < P80\%(\mu_{PC1}))$	598.36	299.18	149.59	59.20
$f(X \mid \mu_{PC1,t} < 80\%(\mu_{PC1}))$	498	213	90	27
$f/n(X \mid \mu_{PC1,t} < P80\%(\mu_{PC1}))$	16.63	7.11	3.01	0.90
$Ex(X \mid \mu_{PC1,t} > P80\%(\mu_{PC1}))$	149.64	74.82	37.41	14.80
$f(X \mid \mu_{PC1,t} > P80\%(\mu_{PC1}))$	250	161	97	47
$f/n(X \mid \mu_{PC1,t} > P80\%(\mu_{PC1}))$	33.38	21.50	12.95	6.28
$H_0: d = 0$	9.042	9.145	7.857	5.952
	(0.000)	(0.000)	(0.000)	(0.000)
$Ex(X \mid \mu_{PC1,t} < P90\%(\mu_{PC1}))$	673.28	336.64	168.32	66.61
$f(X \mid \mu_{PC1,t} < 90\%(\mu_{PC1}))$	627	288	128	47
$f/n(X \mid \mu_{PC1,t} < P90\%(\mu_{PC1}))$	18.61	8.55	3.80	1.39
$Ex(X \mid \mu_{PC1,t} > P90\%(\mu_{PC1}))$	74.72	37.36	18.68	7.39
$f(X \mid \mu_{PC1,t} > P90\%(\mu_{PC1}))$	121	86	59	27
$f/n(X \mid \mu_{PC1,t} > P90\%(\mu_{PC1}))$	32.35	22.99	15.78	7.22
$H_0: d = 0$	5.477	6.483	6.260	4.304
	(0.000)	(0.000)	(0.000)	(0.000)
$Ex(X \mid \mu_{PC1,t} < P95\%(\mu_{PC1}))$	710.64	355.32	177.66	70.30
$f(X \mid \mu_{PC1,t} < 95\%(\mu_{PC1}))$	673	319	147	56
$f/n(X \mid \mu_{PC1,t} < P95\%(\mu_{PC1}))$	18.92	8.97	4.13	1.57
$Ex(X \mid \mu_{PC1,t} > P95\%(\mu_{PC1}))$	37.36	18.68	9.34	3.70
$f(X \mid \mu_{PC1,t} > P95\%(\mu_{PC1}))$	75	55	40	18
$f/n(X \mid \mu_{PC1,t} > P95\%(\mu_{PC1}))$	40.11	29.41	21.39	9.63
$H_0: d = 0$	5.815	6.073	5.720	3.716
-	(0.000)	(0.000)	(0.000)	(0.000)

Conditional probabilities of joint crashes

Based on cohort indexes, this is a number of cohort crashing

- Ex Expected number of crashes if FI and crashes are independent
- f- The actual number of occurrences
- f/n The empirical probability of a crash conditional on FI exceeding the ith percentile

<u>Note</u>

1. The actual number of occurrences (f) is higher than the expected number of crashes (Ex) when FI is greater than a ith percentile

Ex > f when FI<ith percentile but Ex<f when FI>ith percentile

2. f/n when FI>ith percentile is greater than f/n when FI<ith percentile

	Panel A: Crash defined as $R_{j,t} \le P20\%$						
	Risk state	Statistic	X = 0	X = 1	X = 2	\rightarrow (X = 3)	
	$\mu_{PC1,t} \leq P80\%$	f(X)	2038	531	270	156	
		f/n(X)	68.05	17.73	9.02	5.21	
	$\mu_{PC1,t} \ge P80\%$	f(X)	436	79	76	158	
		Ex(X)	494.93	122.03	<u>69.2</u> 2	62.82	
		f/n(X)	58.21	10.55	10.15	21.09	
		χ^2	7.02	15.78	0.66	144.23	
			(0.071)	(0.001)	(0.883)	(0.000)	
	$\mu_{PC1,t} \leq P90\%$	f(X)	2253	576	309	232	
		f/n(X)	66.85	17.09	9.17	6.88	
	$\mu_{PC1,t} \ge P90\%$	f(X)	221	34	37	82	
		Ex(X)	247.14	60.94	34.56	31.37	
		f/n(X)	59.09	9.09	9.89	21.93	
		χ^2	2.76	11.91	0.17	81.74	
			(0.430)	(0.008)	(0.982)	(0.000)	
	$\mu_{PC1,t} \leq P95\%$	f(X)	2378	593	374	767	
•		f/n(X)	66.85	16.67	9.11	1.31 ♥	
	$\mu_{PC1,t} \ge P95\%$	f(X)	96	17	22	52	
		$E_X(X)$	123.57	30.4	11.76		
		f/n(X)	51.34	9.09	11.76	27.81	
		χ-	(0.105)	5.95 (0.114)	(0,732)	84.10 (0.000)	
	··· < D0.80%	$f(\mathbf{V})$	2442	600	330	289	
	$\mu_{PC1,t} \leq r 9090$	$\int (\Lambda) f(X)$	2442 66 54	16.35	0.24	7.87	
	$\mu > D0.00$	f(X)	32	10.33	9.24	<i>1.01</i> ♥	
	$\mu_{PC1,t} \geq r 9090$	$\int (\Lambda) E_{X}(Y)$	32 48 00	10	681	2J	
		f/n(X)	48.90	13.51	9.46	33 78	
		y^2		035	0.00	56 91	
		λ	(0.120)	(0.950)	(1.000)	(0.000)	
-			(((

Conditional probabilities of joint crashes

	Panel B: Crash defined as $R_{i,t} \leq P10\%$					
	Risk state	Statistic	X = 0	X = 1	X = 2	<i>X</i> = 3
	$\mu_{PC1,t} \leq P80\%$	f(X)	2540	296	107	52
	,	f/n(X)	84.81	9.88	3.57	1.74
	$\mu_{PC1,t} \ge P80\%$	f(X)	538	66	45	100
		Ex(X)	615.76	72.42	30.41	30.41
• Ex - Expected number of crashes if El		f/n(X)	71.83	8.81	6.01	13.35
		χ^2	9.82	0.57	7.00	159.27
and crashes are independent			(0.020)	(0.903)	(0.072)	(0.000)
 f- The actual number of occurrences 	$\mu_{PC1,t} \leq P90\%$	f(X)	2816	328	127	⁹⁹
 f/n - The empirical probability of a 		f/n(X)	83.56	9.73	3.77	2.94 ↓
crash conditional on El exceeding the	$\mu_{PC1,t} \ge P90\%$	f(X)	262	34	25	53
		Ex(X)	307.47	36.16	15.18	15.18
ith percentile		f/n(X)	70.05	9.09	6.68	14.17
		χ^2	6.72	0.13	6.35	94.18
			(0.081)	(0.988)	(0.096)	(0.000)
Noto	$\mu_{PC1,t} \leq P95\%$	f(X)	2961	342	138	
		f/n(X)	83.24	9.61	3.88	3.26 ₩
1. The actual number of occurrences (f)	$\mu_{PC1,t} \ge P95\%$	f(X)	117	20	14	36
is higher than the expected number of		Ex(X)	153.74	18.08	7.59	7.59
crashes (Ex) when El is greater than		f/n(X)	62.57	10.70	7.49	19.25
a ith paraantila		χ^2	8.78	0.20	5.41	106.30
a im percentile		<i>((W</i>)	(0.032)	(0.978)	(0.144)	(0.000)
	$\mu_{PC1,t} \leq P98\%$	f(X)	3039	354	145	132
Ex > f when FI <ith <f<="" but="" ex="" percentile="" th=""><th></th><th>f/n(X)</th><th>82.81</th><th>9.65</th><th>3.95</th><th>3.60 ♥</th></ith>		f/n(X)	82.81	9.65	3.95	3.60 ♥
when Fl>ith percentile	$\mu_{pC1,t} \ge P98\%$	f(X)	39	8	7	20
		Ex(X)	60.84	7.15	3.00	3.00
		f/n(X)	52.70	10.81	9.46	27.03
2. f/n when FI>ith percentile is greater		χ^2	7.84	0.10	5.31	96.15
than f/n when FI <ith percentile<="" th=""><th></th><th></th><th>(0.049)</th><th>(0.992)</th><th>(0.150)</th><th>(0.000)</th></ith>			(0.049)	(0.992)	(0.150)	(0.000)

	Cohort _{all}	$Cohort_1$	Cohort ₂	Cohort ₃
		$R_{j,t} \leq P20\%$		
Coefunci	4.450	2.376	5.240	4.192
¹⁷ PU 1	(0.000)	(0.000)	(0.000)	(0.000)
		$R_{j,t} \leq P10\%$		
Coefunci	6.378	3.741	7.520	6.063
' PUI	(0.000)	(0.000)	(0.000)	(0.000)
		$R_{j,t} \leq P5\%$		
Coefunci	8.125	4.938	8.416	8.736
	(0.000)	(0.000)	(0.000)	(0.000)
		$R_{j,t} \leq P2\%$		
Coefunci	9.808	6.829	8.568	0.58
1 PU 1	(0.000)	(0.000)	(0.000)	(0.000)

Predictive power of FI beyond volatility and R-square

Pane	el A: GARCH forecas	ted volatilty	Panel C: W	orld index st
	$Coef_{\mu_{PC1}}$	Coef _o		$Coef_{\mu}$
$Y_t = I_{\sum X_i > 1}$	5.933	10.056	$Y_t = I_{\sum X_i \ge 1}$	2.95
□ { -	(0.000)	(0.000)	_ <i>i</i> -	(0.00)
$Y_t = I_{\sum X_i > 2}$	7.759	10.445	$Y_t = I_{\sum X_i \ge 2}$	3.46
	(0.000)	(0.000)	- <i>t</i> -	(0.02
$Y_t = I_{\Sigma X_t=3}$	9.428	12.428	$Y_t = I_{\sum X_i = 3}$	8.02
	(0.000)	(0.000)	— 1	(0.00)
$Y_t = \sum X_i$	6.107	11.286	$Y_t = \sum X_i$	3.14
· _ ·	(0.000)	(0.000)		(0.00
Panel B: Cross-	sectional average star	ndard deviation	Panel D: Cross-se	ectional aver
	Coef _{µ PC1}	$Coef_{\sigma}$		$Coef_{\mu}$
$Y_t = I_{\Sigma X > 1}$	4.188	1.427	$Y_t = I_{\sum X_i \ge 1}$	5.44
	(0.000)	(0.000)	- <i>i</i> -	(0.00
$Y_t = I_{\nabla X_t > 2}$	5.688	1.599	$Y_t = I_{\sum X_i \ge 2}$	5.97
	(0.000)	(0.001)	– <i>i</i>	(0.00
$Y_t = I_{\Sigma X_{t-2}}$	9.778	0.305	$Y_t = I_{\sum X_i=3}$	9.30
$L \Delta \Lambda_l = J$	(0.000)	(0.674)	— í	(0.00
$Y_t = \sum X_i$	4.402	1.409	$Y_t = \sum X_i$	5.70
ι — ι	(0.000)	(0.000)		(0.00

Panel C: World index standard deviation					
	$Coef_{\mu_{PC1}}$	$Coef_{\sigma}$			
$Y_t = I_{\sum X_i \ge 1}$	2.950	1.753			
_ <i>t</i> -	(0.007)	(0.000)			
$Y_t = I_{\sum X_i \ge 2}$	3.467	2.397			
_ t=	(0.024)	(0.000)			
$Y_t = I_{\sum X_i = 3}$	8.027	1.066			
— t	(0.002)	(0.344)			
$Y_t = \sum X_i$	3.149	1.749			
	(0.004)	(0.000)			
Panel D: Cross-sect	ional average adju	sted R-square			
	$Coef_{\mu_{PC1}}$	Coef _{AR}			
$Y_t = I_{\sum X_i \ge 1}$	5.445	0.015			
— 1	(0.000)	(0.363)			
$Y_t = I_{\sum X_i \ge 2}$	5.972	0.033			
– <i>t</i> –	(0.003)	(0.184)			
$Y_t = I_{\sum X_i = 3}$	9.307	0.014			
	(0.003)	(0.721)			
$Y_t = \sum X_i$	5.701	0.014			
	(0.000)	(0.384)			

Logistic regressions for robustness

Alteration	$Coef_{\mu_{PC1}}$
Benchmark Case: Table 5, Panel D, crashes defined based on fifth percentile of returns	6.828
	(0.000)
Sample period: 12/29/1994-12/31/2007	15.284
	(0.000)
Sample period: 12/01/2000 – 11/30/2010	7.635
	(0.000)
FI estimation: 60 day rolling-window	6.302
	(0.000)
FI specification: FI estimated from 60 day rolling-window subtract FI estimated from 500 day	3.773
rolling window	(0.000)
FI estimation: 60 day rolling-window. Results analyzed only in months April through December	3.958
	(0.000)
FI specification: 75 th percentile of Beta	4.096
	(0.000)
FI specification: Standard deviation of Beta	6.382
	(0.000)
Crash definition: Absolute return below -5%	13.201
	(0.000)
Only observations not preceded by a crash within any cohort in the previous 10 trading days	5.854
	(0.000)
Only observations not preceded by a crash within any cohort in the previous 20 trading days	6.823
	(0.001)
Only observations not preceded by a crash within any cohort in the previous 50 trading days	10.974
	(0.017)

Contributions

1. We present ex-ante measure that shows a strong and positive relation with

- prob (extreme market crashes)
- prob (crashes propagating across markets)
- Extend the contagion literature by identifying an important factor that relates to the likelihood of a shock in one market propagating internationally
- 3. Extend the systematic risk literature by presenting a generalizable measure
- 4. Provides implications to policy makers and portfolio managers

Conclusions

- The probability of financial *interdependence* is <u>highest</u> during periods in which many countries share a high exposure to the *world market factor or <u>PC1</u>*
- Based on Pukthuanthong and Roll (2009) integration analysis, we develop FI as the <u>cross-sectional</u> average loading on the world factor across countries
- •Our FI is a strong predictor of market crashes.
 - •FI \rightarrow Prob (a crash in all 3 cohorts) \uparrow
 - → Prob (<u>all</u> cohorts crashing) > Prob (only 1 or 2 cohorts crashing)

Thank you for your attention