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Abstract
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extract from a large data set comprising the U.S., the EU-27 area, and the respective
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“One of the greatest challenges ... at this time is to restore financial and economic

stability. ... The academic research community can make a significant contribution in

supporting policy-makers to meet these challenges. It can help to improve analytical

frameworks for the early identification and assessment of systemic risks.” Jean-Claude

Trichet, President of the ECB, Clare Distinguished Lecture in Economics and Public

Policy, University of Cambridge, December 2009.

1 Introduction

Macro-prudential oversight seeks to focus on safeguarding the financial system as a whole.

This has proven to be a major issue in the wake of the recent financial crisis. The debate

on macro-prudential policies and potential warning signals ignited by the crisis is currently

under full swing. Many of the models constructed before the crisis have fallen short in this

respect. For example, regulators have learned the hard way that cross-sectional correlations

between asset and credit exposures can have severe consequences, even though each of these

exposures might be qualified as safe when considered in isolation. Cross-sectional dependence

undermines the benefits of diversification and may lead to a ‘fallacy of composition’ at the

systemic level, see for example Brunnermeier, Crocket, Goodhart, Persaud, and Shin (2009).

In particular, traditional risk-based capital regulation at the individual institution level may

significantly underestimate systemic risk by neglecting the macro impact of a joint reaction

of financial intermediaries to a common shock.

There is widespread agreement that financial systemic risk is characterized by both cross-

sectional and time-related dimensions; see, for example, Hartmann, de Bandt, and Alcalde

(2009). The cross-sectional dimension concerns how risks are correlated across financial in-

stitutions at a given point in time due to, for example, direct and indirect linkages across

institutions and prevailing default conditions. The time series dimension concerns the evolu-

tion of systemic risk over time due to, for example, changes in the default cycle, changes in

financial market conditions, and the potential buildup of financial imbalances such as asset

and credit market bubbles.

In contrast to a broader consensus on the set of models, indicators, and analytical tools

for macroeconomic and monetary policy analysis, such agreement appears to be absent for

macro-prudential policy analysis. Therefore, the paper aims to make two contributions

on systemic risk assessment. First, we develop a unified econometric framework for the

measurement of global macro-financial and credit risk conditions. The framework is based

on the mixed-measurement dynamic factor model (MM-DFM) approach that is introduced

by Koopman, Lucas, and Schwaab (2010). Our model provides a diagnostic tool that tracks
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the evolution of macro-financial developments and point-in-time credit risk conditions, as well

as their joint impact on the likelihood of failure of a large number of financial intermediaries.

Such joint failures are akin to financial earthquakes or tsunamis - low probability events

during most times, but with an asymmetrically large and potentially devastating impact

on the real economy should the risk materialize. Second, we develop a set of coincident

and forward looking indicators for financial distress based on the empirical output of our

analysis. We distinguish ‘thermometers’ from ‘barometers’. Thermometers are coincident

risk indicators that, metaphorically, a policy maker can plug into the financial system to

read off its current ‘heat’. In contrast, a barometer measures current (air) pressure and

contains information about (weather) conditions at a later point in time. In a financial

stability context, early warning ‘barometers’ may signal whether risks to financial stability,

such as an asset price or lending bubble, are currently building up. We suggest that an early

warning indicator may be based on deviations of credit risk conditions over time from a set of

macro-financial fundamentals, and show that such deviations have preceded macro-financial

distress in the past.

We use our modeling framework to study systemic risk conditions across three broad

geographical regions, i.e., (i) the U.S., (ii) current EU-27 countries, and (iii) all remaining

countries. In this way, our perspective departs substantially from other studies that typically

focus on one region only, in particular the U.S. Several people have stressed the importance

of such an international perspective, see e.g. de Larosiere (2009), and Brunnermeier et al.

(2009). It requires one to look beyond domestic developments for detecting financial stability

risk. In the context of the recent crisis. For example, the saving behavior of Asian countries

has been cited as a contributing factor to low interest rates and easy credit access in the

U.S., see e.g. Brunnermeier (2009). Similarly, developments in the U.S. housing market have

triggered distress for European financial institutions. In the MM-DFM model, we allow for

the differential impact of world business cycle conditions on regional default rates, spillovers

of such macro effects across regions, unobserved regional risk factors, as well as world-wide

financial industry sector dynamics.

Our empirical study is based on worldwide credit data for more than 12.000 firms. We

differentiate between the impact of macro and financial market conditions on defaults versus

autonomous default dynamics, and industry effects. We refer to the autonomous default

dynamics as frailty effects, see also Duffie, Eckner, Horel, and Saita (2009). Our empir-

ical findings show that the magnitude of frailty effects can serve as a warning signal for

macro-prudential policy makers. Latent residual effects are highest when aggregate de-

fault conditions (the ‘default cycle’) diverge significantly from what is implied by aggregate

macroeconomic conditions (the ‘business cycle’), for example due to unobserved shifts in

2



credit supply and lending standards. Historically, frailty effects have been pronounced dur-

ing bad times, such as the savings and loan crisis in the U.S. leading up to the 1991 recession,

or exceptionally good times, such as the years 2005-07 leading up to the recent financial cri-

sis. In the latter years, default conditions are much too benign compared to observed macro

and financial data. In either case, a macro-prudential policy maker should be aware of a

possible decoupling of systematic default risk conditions from their macro-financial funda-

mentals. We demonstrate that the mixed measurement dynamic factor model framework

provides the means for a timely detection of this decoupling.

Our work is related to two different research directions in the literature. First, we relate

to the work on accurately measuring point-in-time credit risk conditions. In general, this

is a complicated task since not all processes that determine corporate default and financial

distress are easily observed. Recent research indicates that readily available macro-financial

variables and firm-level information may not be sufficient to capture the large degree of

default clustering present in corporate default data, see e.g. Das, Duffie, Kapadia, and Saita

(2007). In particular, there is substantial evidence for an additional dynamic unobserved

‘frailty’ risk factor as well as contagion dynamics, see McNeil and Wendin (2007), Koopman,

Lucas, and Monteiro (2008), Koopman and Lucas (2008), Lando and Nielsen (2009), and

Duffie et al. (2009), and Azizpour, Giesecke, and Schwenkler (2010). ‘Frailty’ and contagion

risk cause default dependence above and beyond what is implied by observed covariates

alone. Compared to these earlier papers, our current paper takes an explicit international

perspective. In addition, it allows for both macro, frailty, and industry effects. Finally,

it provides a unified framework to integrate systemic risk signals from different sources,

whether macroeconomic and financial market conditions, equity markets and balance sheet

information (via expected default frequencies, EDFs), or actual defaults.

Another research interest relates to our second contribution: the construction of systemic

risk measures. Segoviano and Goodhart (2009) adopt a copula perspective to link together

the failure of several financial institutions. Their approach is partly non-parametric, whereas

our framework is parametric. However, our parametric framework lends itself more easily to

extensions to high dimensions, i.e., a large number of individual financial institutions. This

is practically impossible in the Segoviano and Goodhart (2009) approach due to the non-

parametric characteristics. Extensions to higher dimensions is a relevant issue in our current

study, as we take a, literally, global perspective of the financial system. Another paper

related to ours is Giesecke and Kim (2011). These authors take a hazard rate approach

with contagion and observed macro-financial factors (no frailty). In contrast to their model,

our mixed-measurements framework allows us to model the macro developments and default

dynamics in a joint factor structure. Giesecke and Kim, by contrast, take the macro data
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as exogenous regressors in their analysis. Also, our study explicitly incorporates the global

dimension, distinguishes between global and regional factors, and looks beyond coincident

indicators of risk.

The remainder of this paper is set up as follows. In Section 2, we briefly discuss the desir-

able properties of a good systemic risk measure in the time dimension. Section 3 discusses our

econometric framework that is based on a mixed-measurement dynamic factor model. Some

details of parameter and factor estimation are given as well. Section 4 presents the data.

Sections 5 discusses the main empirical results and presents coincident and forward-looking

measures of financial distress. Section 6 concludes.

2 What is needed for measuring systemic risk?

In the literature, systemic risk is understood in two different but related ways. First, the

‘systemic risk contribution’ associated with a financial institution corresponds to a negative

externality that its failure would have on other firms and the economy at large. It is the

extent to which an individual firm ‘pollutes the public good’ of financial stability. Cross

sectional rankings of the risk contribution of financial firms can be obtained, see inter alia

Adrian and Brunnermeier (2009), Acharya, Pedersen, Philippon, and Richardson (2010),

Brownlees and Engle (2010), and Huang, Zhou, and Zhu (2010). Such firm specific risk

measures are usually subadditive. Therefore, cross-sectional aggregation may not result in

a meaningful measure of risk over time. In addition, such aggregated measures may not

perform well in risk assessment practise, see e.g. Moreno and Pena (2010). Conversely,

however, systemic risk is often understood as the risk of experiencing a systemic event. We

follow this second convention. This notion is analogous to directly assessing the total size of

the (risk) pie rather than its composition. In this paper, we define systemic risk operationally

as the time varying probability of experiencing a simultaneous failure of a large number of

currently active financial intermediaries. Such joint failures have in the past turned out to

be very costly in real terms, see for example Reinhart and Rogoff (2009, Chapter 10).

We now identify five core features for appropriate indicators of systemic risk in the time

dimension. We refer to these features in the next sections where we discuss our econometric

framework.

A broader definition of systemic risk: Current tools for financial risk measurement

rely on relatively narrow definitions of a systemic event. A more comprehensive framework

could be based on e.g. the theoretical work of Goodhart, Sunirand, and Tsomocos (2006)

who argue that systemic risk arises from (i) spillover dynamics at the financial industry level,

(ii) shocks to the macroeconomic and financial markets environment, and implicitly (iii) the
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potential unraveling of widespread financial imbalances. These sources of risk act on observed

data simultaneously, and should therefore all be part of a diagnostic framework. Otherwise,

incorrect risk attributions may arise. For example, allowing for interconnectedness through

business links but not for shared exposure to common risk factors may spuriously attribute

dependence to links that do not exist.

International or inter-regional focus: Several studies have stressed the importance

of an international perspective, see e.g. Brunnermeier et al. (2009), de Larosiere (2009) and

Volcker et al. (2009). As argued in the introduction, an exclusive focus on domestic con-

ditions is inefficient at best and most likely severely misleading. Consequently, a diagnostic

tool for systemic risk should incorporate information from various regions and industries.

Macroeconomic/financial conditions: The main source of risk in the banking book

is default clustering. Adverse changes in macroeconomic and financial conditions affect

the solvency of all, financial and non-financial, firms in the economy. Observed macro-

financial risk factors are therefore systematic and a source of cross-sectional dependence

between defaults. The resulting default clusters have a first-order impact on intermediaries’

profitability and solvency, and therefore on financial stability. As a result, proxies for time-

varying macro-financial and credit risk conditions should be at the core of a systemic risk

assessment exercise.

Expected default frequencies: Financial institutions rarely default. This is partic-

ularly the case in Europe, where we count 12 financial defaults in the period from 1984Q1

to 2010Q2. Data scarcity poses obvious problems for the modeling of shared financial dis-

tress and financial default dependence. As a consequence, models based on actual default

experience may only give a partial picture of current stress. Other measures of credit risk

can complement historical default information. Such information can be obtained from asset

markets (equities, bonds, credit default swaps) and possibly be augmented with accounting

data. One candidate that integrates information from accounting data (via debt levels) and

forward-looking equity markets (via prices and volatilities) are expected default frequencies

(EDF) which are based on structural models for credit risk. We include this measure in

our empirical analysis. Other information can be added in the form of credit default swaps

(CDS) spreads. However, the short length of time series of liquid CDS for individual firms

is typically a problem.

Unobserved factors: The time-varying probability of a systemic event is an inherently

unobserved processes. Its main drivers are also unobserved: contagion risk at the financial

sector level, changes in shared macro-financial conditions, and financial imbalances such as

unobserved large shifts in credit supply. Many of these unobserved conditions, however,

can be inferred (reverse-engineered) from different sets of observed data. The appropriate
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econometric tools for extracting unobserved factors from observed data are collectively known

as state space methods.

3 The diagnostic framework

3.1 Mixed-measurement dynamic factor models

We use the mixed-measurement dynamic factor model (MM-DFM) approach as introduced

in Koopman, Lucas, and Schwaab (2010). The approach is based on a state space framework

and incorporates all desired features as stated in Section 2. The main idea is to estimate

the composite factors of unobserved systemic risk using a panel of time series observations.

Once the unobserved (or latent) risk factors are estimated, we can construct an accurate

coincident and forward looking measures of systemic risk.

Credit risk is the main risk in the banking book and time-varying credit conditions are

therefore central to systemic risk assessment. Our data sources for assessing credit risk

consist of N macroeconomic and financial market variables xt, default counts yt obtained

from historical information across R regions, and expected default frequencies (EDFs) zt for

Sr financial firms in the rth region for r = 1, . . . , R and for time index t = 1, . . . , T . The

data is denoted by

xt = (x1t, . . . , xNt)
′ , (1)

yt = (y1,1t, . . . , y1,Jt, . . . , yR,1t, . . . , yR,Jt)
′ , (2)

zt = (z1,1t, . . . , z1,S1,t, . . . , zR,1t, . . . , zR,SR,t)
′ , (3)

for t = 1, . . . , T , where xnt represents the value of the nth macroeconomic variable at time

period t, yr,jt is the number of defaults for economic region r, cross-section j and time period

t, and zr,st is the EDF in economic region r of financial s in time period t, for n = 1, . . . , N ,

t = 1, . . . , T , r = 1, . . . , R, j = 1, . . . , J and s = 1, . . . , Sr. Cross-section j can represent

different categories of firms. For example, j can represent industry sector, rating category,

firm age cohort, or a combination of these. We assume that all variables xt, yt, and zt are

driven by a vector of common dynamic factors, that is ft. However, our panel data may be

unbalanced, such that all variables may not be observed at all time periods.

The model combines normally and non-normally distributed variables. We adopt a stan-

dard conditional independence assumption: conditional on latent factors ft, the measure-

ments (xt, yt, zt) are independent over time and within the cross-section. In our specific case

and conditional on ft, we assume that the elements of xt are normally distributed with their

means as functions of ft. The default counts yr,jt have a binomial distribution with kr,jt
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trials and with a probability πr,jt that is a function of ft. The number of trials kr,jt refers

to the number of firms and πr,jt is the probability of default for a specific cross-section j in

region r at time t. The EDFs zt are transformed to represent a frequency for a quarterly

horizon. The corresponding log-odds ratio is defined as z̄r,st = log (zr,st/(1− zr,st)). We

effectively model the log-odds as being a normal variable (conditional on ft). The factor

structure distinguishes macro, regional frailty, and industry-specific effects, denoted by fm
t ,

fd
t , f

i
t , respectively. We therefore have f ′

t = (fm ′
t , fd ′

t , f i ′
t ). The latent factors are the main

input for our systemic risk measures which we discuss below.

In the factor model structure we assume that the macroeconomic and financial variables

in xt are only determined by the macro factors while the other observed variables in yt and

z̄t are determined by all factors,

xnt|fm
t ∼ Gaussian

(
µnt, σ

2
n

)
, (4)

yr,jt|fm
t , fd

t , f
i
t ∼ Binomial (kr,jt, πr,jt) , (5)

z̄r,st|fm
t , fd

t , f
i
t ∼ Gaussian

(
µ̄st, σ̄

2
s

)
. (6)

where the means µnt and µ̄st, and probability πr,jt are functions of ft and where the variances

σ2
n and σ̄2

s are treated as unknown coefficients. The number of firms at risk kr,jt is known

since it is observed from the dataset. The factors in fm
t capture shared business cycle

dynamics in both macro and credit risk data, and are therefore common to xt, yt, and z̄t.

The frailty factors in fd
t are region-specific; they only load on the realized defaults, yr,t,

and the log-odds of EDFs, z̄s,t, from a given region. The frailty and industry factors are

independent of observed macroeconomic and financial data. They capture variation due

to default risk, above and beyond what is already implied by the macro factors fm
t . The

latent factors in f i
t affect firms in the same industry. Such factors may arise as a result

of default dependence through up- and downstream business links, and may capture the

industry-specific propagation of aggregate shocks. Both fd
t and f i

t help capture a deviation

of default activity from what is implied by macro-financial fundamentals as summarized by

fm
t .

The point-in-time default probabilities πr,jt in (5) vary over time due to the shared

exposure to the underlying risk factors in xt, as summarized by fm
t , to the frailty effects fd

t ,

and to the latent industry specific effects f i
t . We model πr,jt as the logistic transform of an

index function θr,jt,

πr,jt =
(
1 + e−θr,jt

)−1
, (7)

where θr,jt may be interpreted as the log-odds or logit transform of πr,jt. This transform

ensures that time-varying probabilities πr,jt are in the unit interval.
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The panel data dynamics in (1) to (3) are captured by time-varying parameters or un-

observed signals which are modeled as functions of the dynamic factors in ft. In particular,

we have

µnt = cn + β′
nf

m
t , (8)

θr,jt = λr,j + β′
r,jf

m
t + γ′

r,jf
d
t + δ′r,jf

i
t , (9)

µ̄r,st = c̄r,s + β̄′
r,sf

m
t + γ̄′

r,sf
d
t + δ̄′r,sf

i
t , (10)

where λr,j, cn, and c̄r,s are fixed effects, and risk factor sensitivities β, γ, and δ refer to the

loadings on macro factors, frailty factors, and industry-specific factors, respectively. Fixed

effects and factor loadings may differ across firms and regions. Since the cross-section is high-

dimensional, we follow Koopman and Lucas (2008) in reducing the number of parameters

by imposing the following additive structure,

χ̄r,j = χ0 + χ1,dj + χ2,sj + χ3,rj , for χ̄ = λ, β, γ, δ, β̄, γ̄, δ̄ (11)

where χ0 represents the baseline effect, χ1,d is the industry-specific deviation, χ2,s is the

deviation related to rating group, and χ3,r is the deviation related to regional effects. Since

we assume that the baseline effect χ0 is nonzero, some of the other coefficients need to be

subject to zero constraints to ensure identification. The specification in (11) is parsimonious

yet sufficiently flexible to accommodate heterogeneity across regions and industries.

The latent factors are stacked into the vector ft =
(
fm′
t , fd′

t , f
i′
t

)′
. We assume that the

elements of ft follow independent autoregressive dynamics. In our study, we have

ft = Φft−1 + ηt, ηt ∼ NID (0,Ση) , (12)

where the coefficient matrix Φ and covariance matrix Ση are assumed diagonal. Extensions to

more complex dynamic structures are straightforward exercises. The autoregressive structure

in (12), however, already allows sufficient stickiness in the components of ft. For example,

it allows the macroeconomic factors fm
t to evolve slowly over time and to capture business

cycle dynamics in macro and default data. Similarly, the credit climate and industry default

conditions are modeled as persistent processes for fd
t and f i

t , respectively. The m× 1 distur-

bance vector ηt is serially uncorrelated. To ensure the identification of the factor loadings,

we impose Ση = I − ΦΦ′. It implies that E[ft] = 0, Var[ft] = I, and Cov[ft, ft−h] = Φh, for

h = 1, 2, . . .. As a result, the loading coefficients βr,j, γr,j, and δr,j in (9) can be interpreted

as risk factor volatilities (standard deviations) for the firms in cross section (r, j). It also

leads us to the initial condition f1 ∼ N(0,Σ0) and completes the specification of the factor

process.
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3.2 Parameter and risk factor estimation

The mixed measurement dynamic factor model presented in the previous section is an ex-

tension of the non-Gaussian measurement state space models as discussed in Shephard and

Pitt (1997) and Durbin and Koopman (1997) to modeling observations from different fam-

ilies of parametric distributions. The model relies on a parameter vector that contains the

coefficients in Φ, λ, β, γ, δ, β̄, γ̄, and δ̄. This parameter vector is estimated by the method of

simulated maximum likelihood. Since our dynamic factor model partly relies on the binomial

density, the likelihood function is not available in a convenient analytical form. We therefore

need to evaluate the high-dimensional integral of the likelihood function directly. Numerical

integration is not computationally feasible for such high-dimensional cases and, therefore,

we rely on Monte Carlo simulation methods for evaluating the likelihood function. As the

same random numbers can be used for likelihood evaluations for different parameter vectors,

the likelihood is a smooth function of the parameter vector. Hence we can maximimize the

Monte Carlo likelihood function directly by means of a numerical optimization method. We

refer to the Appendix A1 for details on our simulation based estimation procedure for mixed

measurement data.

An advantage of using state space methods is the convenient treatment of missing values

in the dataset. Missing values can have a strong presence in the panels (1) to (3). For

example, some macroeconomic variables in xt may not be available at the beginning of the

sample. Also, default data yr,jt is not available (missing) if there are no corresponding firms

at risk, that is kr,jt = 0. We refer to the Appendix A2 for the treatment of the many missing

values in our setup. Clearly, state space methods provide a natural framework to account

for missing entries in the data without any adjustments to the model.

The cross-sectional dimension in the panels (1) to (3) can become very large. High-

dimensional measurements can lead to computational problems for any method of estima-

tion. Jungbacker and Koopman (2008) show that state space methods for dynamic factor

models with high-dimensional measurements and a low-dimensional state vector become

computationally feasible when we transform the panel dataset to a time series of observation

vectors that have the same dimension as the factors. The transformation results are only

justified for the linear Gaussian measurement model. However, many importance sampling

computations as detailed in Appendix A1 rely on an approximating linear Gaussian mea-

surement equation. Appendix A3 demonstrates that we can adapt the results of Jungbacker

and Koopman (2008) to nonlinear models for partly non-Gaussian data. These methods are

helpful regarding the feasibility of the analyses in our empirical study.
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3.3 Four thermometers and a barometer

Using the mixed measurement model set-up, we can construct indicators of financial distress

for a specific region or combination of regions. Being based on (8) to (10), such indicators

automatically integrate the effects of macro, frailty, and industry effects. We consider five

indicators, four coincident measures (‘thermometers’), and one forward-looking early warning

indicator (‘barometer’). Thermometers are designed to display the current ‘heat’ in the

financial system. Our early warning indicator captures credit market imbalances that are

currently building up and may pose a risk to the system at a later stage. Both thermometers

and early warning indicators are essential tools to monitor system risk in a forward looking

policy context.

The first thermometer is the model-implied financial sector failure rate. The time-varying

default probability πr,jt in (7) can be interpreted as the fraction of financial intermediaries

that are expected to fail over the next three months. We estimate this quantity by aggre-

gating implied rates from the bottom up across banks and financial non-banks. Naturally,

high failure rates imply high levels of common financial distress, and thus a higher risk of

adverse real economy effects through financial failure.

A second thermometer is the time-varying probability of simultaneous failure of a large

number of financial intermediaries, as suggested in Giesecke and Kim (2011). Such inter-

mediaries may be depository institutions, but also insurers, re-insurers, and broker/dealers

that provide intermediation services. The latter three categories may be considered part

of the parallel banking system. Due to the conditional independence assumption, the joint

probability of failure can easily be constructed from the binomial cumulative distribution

function and the time-varying financial sector failure rates.

A third thermometer is based on the default signals θr,jt in (9). The signals θr,jt consist

of two terms, θr,jt = [λr,j] +
[
β′
r,jf

m
t + γ′

r,jf
d
t + δ′r,jf

i
t

]
, where the fixed effects λr,j pin down

the through-the-cycle log-odds of the default rate, and the systematic factors fm
t , fd

t , and

f i
t jointly determine the systematic point-in-time default conditions. The signals θr,jt are

Gaussian since all risk factors in ft are Gaussian. We can therefore standardize these signals

to unconditionally standard normally distributed values zθr,jt,

zθr,jt = (θr,jt − λr,j) /
√

Var(θr,jt),

where Var(θr,jt) = β′
r,jβr,j + γ′

r,jγr,j + δ′r,jδr,j ≥ 0 is the unconditional variance of θr,jt. Our

systematic credit risk indicator (SRI) for firms of type j in region r at time t is given by

SRIr,jt = Φ̄
(
zθr,jt
)
, (13)

where Φ̄(z) is the standard normal cumulative distribution function. Values of SRIr,jt lie

between 0 and 1 by construction with uniform (unconditional) probability. Values below
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0.5 indicate less-than-average common default stress, while values above this value suggest

above-average stress. Values below 20%, say, are exceptionally benign, and values above 80%

are indicative of substantial systematic stress. Other percentiles can similarly be considered.

Our measure of financial system risk is obtained when (13) is applied to model-implied failure

rates for financial firms in a given region.

A fourth indicator of financial system risk is the expected number of financial defaults

over the next year conditional of at least one financial default occurring,

BSIr,j = kr,jtπr,jt/ (1− Binomial (0; kr,jt, πr,jt)) . (14)

This Banking Stability Index has been proposed by Huang (1992), and subsequently used by

e.g. Hartmann et al. (2005) and Segoviano and Goodhart (2009). Naturally, a high expected

number of financial defaults indicates adverse financial conditions.

Finally, the indicator (13) can be modified to only capture frailty and industry effects.

This yields a signal whether local default experience in a particular industry and region is

unexpectedly different from what would be expected based on macro fundamentals fm
t . This

indicator is our ‘credit risk deviations’ early warning indicator,

CBIr,j = (γ′
r,jf

d
t + δ′r,jf

i
t )/
√

γ′
r,jγr,j + δ′r,jδr,j. (15)

Section 5 below reports and discusses the indicator values from this section. In particular,

we demonstrate that major deviations of credit risk conditions from what is implied by stan-

dard macro-financial fundamentals have in the past preceded financial and macroeconomic

distress.

4 Data

We use data from three main sources in the empirical study below. First, a panel of macroe-

conomic and financial time series data is taken from Datastream with the aim to capture

international business cycle and financial market conditions. Such macroeconomic and finan-

cial market data is usually stressed in a stress testing exercise, and considered for the U.S.

and Europe. Table 1 provides a listing. The macro variables enter the analysis as annual

growth rates from 1984Q1 to 2010Q4.

A second dataset is constructed from default data from Moody’s. The database contains

rating transition histories and default dates for all rated firms (worldwide) from 1984Q1

to 2010Q4. From this data, we construct quarterly values for yr,jt and kr,jt in (5). When

counting exposures kr,jt and corresponding defaults yr,jt, a previous rating withdrawal is

ignored if it is followed by a later default. If there are multiple defaults per firm, we consider
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Table 1: International macroeconomic time series data
We list the variables contained in the macroeconomic panel. The time series data enters the analysis as

yearly (yoy) growth rates. The sample is from 1984Q1 to 2010Q4.

Region Summary of time series in category Total no

(i) United States Real GDP
Industrial Production Index
Inflation (implicit GDP price deflator)
Dow Jones Industrials Share Price Index
Unemployment Rate, 16 years and older
U.S. Treasury Bond Yield, 20 years
U.S. T-Bill Yield, 3 months
ISM Purchasing Managers Index

8

(ii) E.U. countries Euro Area (EA16) Real GDP
Euro Area (EA16) Industrial Production Index
Euro Area (EA16) Inflation (Harmonized CPI)
Euro Share Price Index, Datastram
Euro Area (EA16) Unemployment Rate
Euro Area (EA16) Gov’t Bond Yield, 10 years
Euro Interbank Offered Rate (Euribor), 3 months
Euro Area (EA16) Industrial Confidence Indicator

8

16

12



Figure 1: Actual default experience
We present time series plots of (a) the total default counts

∑
j yr,jt aggregated to a univariate series, (b) the

total number of firms
∑

j kr,jt in the database, and (c) aggregate default fractions
∑

j yr,jt /
∑

j kr,jt over

time. We distinguish different economic regions: the U.S., the EU-27 area, and the respective rest of the

world.
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only the first event. In addition, defaults that are due to a parent-subsidiary relationship

are excluded. Such defaults typically share the same default date, resolution date, and

legal bankruptcy date in the database. Inspection of the default history (text) and parent

number confirms the exclusion of these cases. We use the industry specification to distinguish

between financial and non-financial firms.

Table 2 provides an overview of the international exposure and default count data. Cor-

porate data is most abundant for the U.S., with E.U. countries second. Most firms are either

from the industrial or financial sector. The bottom of Table 2 suggests that about 60% of

all worldwide ratings are investment grade. European and Asian firms are more likely to be

rated investment grade, with shares of 83% and 75%, respectively. Figure 1 plots aggregate

default counts, exposures, and observed fractions over time for each economic region.

Table 2 reveals that financial intermediaries rarely default, in particular in Europe. This is

an obvious problem for inference on time-varying risk conditions. For financials, we therefore
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Table 2: International default and exposure counts
The table consists of three panels. The top panel presents default counts disaggregated across industry

sectors and economic region. The middle panel presents the total number of firms counted in the database.

The bottom panel presents the cross section of firms at risk (‘exposures’) at point-in-time 2008Q1 according

to rating group and economic region.

No Defaults U.S. Europe Other Sum
Bank 41 8 22 71
Fin non-Bank 84 4 14 102
Transport 90 17 8 115
Media 127 2 2 131
Leisure 97 9 15 121
Utilities 24 2 5 31
Energy 79 0 7 86
Industrial 435 16 53 504
Technology 177 38 24 239
Retail 94 1 4 99
Cons Goods 120 8 17 145
Misc 31 0 16 47
Sum 1399 105 187 1691

Firms U.S. Europe Other Sum
Bank 478 603 591 1672
Fin non-Bank 966 371 500 1837
Transport 336 70 72 478
Media 460 33 34 527
Leisure 434 73 59 566
Utilities 597 149 138 884
Energy 512 84 152 748
Industrial 1920 419 497 2836
Technology 941 204 220 1365
Retail 311 32 46 389
Cons Goods 591 110 112 813
Misc 250 151 258 659
Sum 7796 2299 2679 12774

Firms, 2008Q1 U.S. Europe Other Sum
Aaa 50 84 69 203
Aa 141 355 250 746
A 415 403 337 1155
Baa 575 229 291 1095
Ba 278 72 177 527
B 673 96 183 952
Ca-C 379 58 56 493
Sum 2511 1297 1363 5171
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Figure 2: Expected default frequencies of 60 global financials
The top panel reports the standardized log-odds from EDF data for the largest 60 global financial firms

(banks and financial non-banks). The sample consists of the largest 20 U.S., EU-27, and rest of the world

financial firms, respectively. The raw data sample is from 1990Q1 to 2010Q4, and contains missing values.

Missing values are inferred using the EM algorithm of Stock and Watson (2002). The bottom graph plots

the respective first principal components from the U.S. , EU-27, and the rest of the world sub-sample.
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add data from a third dataset. Data on expected default frequencies for the 20 largest (based

on 2008Q4 market cap) financial firms in the U.S. , EU-27, and respective rest of the world,

is taken from Moody’s KMV CreditEdge. These 3 × 20 = 60 expected default frequencies

are based on a firm value model that takes equity values and balance sheet information as

inputs. We use it to augment our relatively sparse data on actual defaults for financial firms.

Figure 2 plots the panel of EDF data, after transformation to a quarterly scale and log-odds

ratio. The principal components and reported eigenvalues in the bottom panel indicate

substantial common variation across institutions and regions that can be summarized in a

factor structure.

5 Empirical results on system risk

This section presents the main empirical findings. Section 5.1 comments briefly on the main

sources of financial default clustering. Sections 5.2 and 5.3 present our thermometers and

forward looking indicator for systemic risk assessment.

5.1 Why do financial defaults cluster?

Observed credit risk data reveals that aggregate financial sector failure rates are up to ten

times higher in bad times than in good times. This is striking. Why do financial failures

cluster so dramatically over time? Which sources of risk are important, and to what extent?

The answer to these questions is important for constructing effective coincident and forward

looking risk indicators.

Based on preliminary data analysis and testing, relying on results in Bai and Ng (2002)

and Alessi, Barigozzi, and Capasso (2010), we report estimation results for a favorite specifi-

cation with four macro factors fm
t , three region and default data specific factors fd

t , one for

each economic region, and one financial industry specific risk factor f i
t . The latter loads on

financial firms from all regions but possibly to different degrees. The four macro-financial

factors fm
t are common to all macro covariates, thus taking into account the positive corre-

lation between U.S. and E.U. conditions that may result from macroeconomic linkages.

Table 3 presents the parameter estimates for model specification (1) to (12). The fixed

effects and factor loadings in the signal equation (9) satisfy the additive structure (11).

Coefficients λ in the left column combine to the baseline failure rates. The middle and right-

hand columns present estimates for loadings β, γ, and δ that pertain to macro, frailty, and

industry factors, respectively.

The parameter estimates indicate that macro, frailty, and industry effects are all impor-

tant for international credit risk conditions. Defaults from all regions and industries load
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Table 3: Parameter estimates
We report the maximum likelihood estimates of selected coefficients in the specification of the log-odds ratio

(9) with parameterization (11) for λ and β. Coefficients λ combine to fixed effects, or baseline failure rates.

Factor loadings β, γ, and δ refer to four macro factors fmt , three region-specific frailty factors fdt , and a

financial industry specific risk factor f it , respectively. The macro factors are common to all macro and default

data across regions. As a result, U.S. macroeconomic conditions may affect the E.U. area and vice versa.

The frailty factors load on financial and non-financial firms’ defaults in a respective region. The estimation

sample is from 1984Q1 to 2010Q4.

Intercepts λj , Loadings fmt Loadings fdt , f
i
t

par val t-val
λ0 -5.30 11.56

λ1,fin -1.09 5.09
λ2,EU -1.64 4.06
λ2,RoW -1.06 4.02

par val t-val
β1,0 -0.18 2.92
β1,1,fin 0.20 2.15
β1,2,EU 0.03 0.46
β1,2,RoW -0.37 3.89

β2,0 0.12 2.04
β2,1,fin 0.10 1.13
β2,2,EU 0.06 1.00
β2,2,RoW -0.15 1.93

β3,0 0.10 1.80
β3,1,fin -0.12 1.71
β3,2,EU -0.06 1.00
β3,2,RoW 0.10 1.29

β4,0 0.58 7.64
β4,1,fin -0.23 2.16
β4,2,EU -0.07 0.83
β4,2,RoW 0.16 1.48

par val t-val
γUS,0 0.12 1.86
γUS,1,fin 0.14 1.72
γEU,0 -0.66 3.28
γEU,1,fin 0.88 4.06
γRoW,0 0.30 1.31
γRoW,1,fin 0.61 2.74

δUS 0.42 5.68
δEU 0.53 6.71
δRoW 0.78 6.78
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Table 4: Why do financial defaults cluster?
We report the results of a variance decomposition of transformed (Gaussian, log-odds) failure rates for

financial firms in three economic regions. The unconditional variance is attributed to three latent sources of

financial distress. Each source of distress is captured by a corresponding set of latent factors and associated

risk factor standard deviations. Specifically, smr,j = β′
r,jβr,j/Var(θr,jt), s

d
r,j = γ′r,jγr,j/Var(θr,jt), and s

i
r,j =

δ′r,jδr,j/Var(θr,jt), where Var(θr,jt) = β′
r,jβr,j + γ′r,jγr,j + δ′r,jδr,j ≥ 0, and j refers to financial firms. The

estimation sample is from 1984Q1 to 2010Q4.

Changes in observed
macro-financial conditions

smr,fin

Latent default-
specific dynamics

sdr,fin

Latent financial
sector dynamics

sir,fin
U.S. 44.7% 15.9% 42.4%
EU-27 33.2% 9.1% 57.7%
Rest of world 35.9% 9.0% 55.1%

significantly on common factors from global macro-financial data. This by itself already

implies a considerable degree of default clustering. In general, however, common variation

with macro data is not sufficient. Frailty effects are found to be important in all regions.

The financial industry-specific factor also loads significantly on data from all regions. The

shared risk dynamics for financial firms across regions are intuitive: The financial failure

dynamics are mainly determined by the EDF data for large and complex banking groups;

these groups in turn operate globally both in terms of their lending and funding activities.

Table 4 attributes the variation in the (Gaussian) log-odds of financial sector failure

rates to three primary risk drivers, i.e., changes in macro-financial conditions, excess default

clustering for all firms (financial and non-financial), and financial sector-specific dynamics.

These drivers are associated with the vectors of latent factors fm
t , fd

t , and f i
t , respectively.

The relative importance of each source of variation can be inferred from the estimated

risk factor loadings. Given that each risk factor is unconditional standard normal, the

factor loading is the estimated risk factor volatility (standard deviation) by construction.

Table 4 indicates that shocks to macroeconomic and financial conditions are an important

source of financial distress. Historically, financial sector stress and business cycle downturns

have tended to occur at roughly the same time. This is intuitive, since financial stress

may have negative real consequences, and vice versa, possibly with significant feedback and

amplification effects. Timing effects are only captured indirectly in this decomposition, as

current estimates of fm
t capture a rotated version of current and lagged structural driving

forces, see Stock and Watson (2002) for a discussion and intuition from the linear Gaussian

context. Table 4 further suggests that financial industry specific dynamics are an important
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additional source of joint financial failure. As a result, financial sector risk dynamics can

differ substantially from what is implied by shared exposure to observed macro-financial

covariates. We conclude that, in general, all three sources of risk should all be accounted

for. Also, deviations of credit risk conditions from macro-financial conditions are potentially

large and important for financial sector risk in each region.

5.2 Thermometers: coincident indicators of financial distress

This section presents the coincident risk indicators that are constructed from the estimated

risk factors and loading parameters. Figure 3 plots a model-implied failure rate for a large

cross section of E.U. and U.S. financial firms. The failure rate is the share of overall inter-

mediaries that can be expected to fail over the next three months. The aggregate rates are

obtained by aggregating from the bottom up across approximately 450 U.S. and 400 E.U.

area financial firms, respectively. As a result, the reported failure rates take into account

a significant part of the parallel banking system, i.e., insurers, real estate firms, and other

rated non-bank financial firms that play a role in the intermediation process. Figure 3 also

compares the aggregate failure rates (solid lines) with the mean expected default probability

(from Moody’s KMV) from the largest twenty financial firms (according to 2008Q4 market

cap; dashed lines) in the U.S. (left panel) and E.U. area (right panel), respectively. The

financial distress in the U.S. during the recession years of 1991, 2001, and 2007-10 are visible

from the left panel. However, a recession is not necessary for such stress. An example is the

period in the late 1980s in the U.S., when common stress is pronounced while the economy

is not in recession. Finally, the financial sector failure rate is different and almost always

higher than what is suggested by an analysis of the average EDFs for the twenty largest -

and highly rated - large and complex banking groups in each region.

Both the mean EDF and the model-implied rate suggest high levels of common stress

for U.S. and E.U. financial firms at the end of the sample. For U.S. financials, the quarterly

failure rate ranges from slightly above zero in good times to approximately 1% at the peak of

the 2008 crisis. As of 2010Q4, U.S. rates are such that approximately 3% of active financial

intermediaries of average size can be expected to fail if this level of stress prevailed during

2011. Model-implied stress for European intermediaries is lower than for U.S. financials.

This is partly due to sample composition: rated European financials that tap the financial

markets tend to have a high credit rating on average, see Table 2, and the observed historical

default frequencies are very low.

Systemic risk is necessarily a multivariate concept, involving a system of banks and

financial non-banks. Systemic risk is understood as the risk of experiencing a simultaneous

failure of a large number of financial institutions. Simultaneous bank failures are analogous
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Figure 3: Implied financial sector failure rate
We plot the model-implied default failure rate for financial sector firms. The sector failure rate is obtained

by aggregating across banks and financial non-banks from the bottom up. The estimation sample is 1984Q1

to 2010Q4.
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Figure 4: Probability of simultaneous financial failures
We report the probability of a systemic event, defined as the simultaneous failure of k% or more financial

firms over a one year period. The horizontal axis measures time from 1984Q1 to 2010Q4. The vertical axis

measures the time-varying probability as a decreasing function of k. The left and right panel refers to the

U.S. and the E.U. area, respectively.
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Figure 5: Banking stability index
We plot indicator (14), i.e., the expected number of financial defaults over a one year horizon conditional

on at least one default occurring. Firms at risk are held fixed at 100. Financial firms comprise banks and

financial non-banks.
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to natural disasters such as earthquakes and tsunamis - unlikely events during most times,

but with an asymmetrically large and potentially devastating impact if the risk materializes.

The top panels in Figure 4 plot the probability of at least k% of financial firms failing

over a one year horizon (vertical axis), as a decreasing function of k, over time from 1984Q1

to 2010Q4 (horizontal axis). The left and right panels refer to the U.S. and E.U., respec-

tively. The bottom panels cut the three-dimensional plots into various slices along the time

dimension, at 0.1%, 0.5%, 1%, and 2% of overall financial sector firms. The figure reveals

that, for example, in the E.U. area in 2010Q4, the probability of failure of at least 1% of

financial sector firms (e.g., at least four firms of average size out of four hundred firms), at

coincident levels of stress, is around 30%. This is a substantial risk of simultaneous failings.

Figure 5 plots the expected number of financial defaults over a one year horizon condi-

tional on at least one firm failing over that time period, see (14). The number of firms is

fixed at 100. During the peak of the financial crisis, about three from one hundred U.S.

financials are expected to fail over a one year horizon conditional on one firm going down.

No data on financial sector counterparty exposures is used for this estimate.1

Finally, Figure 6 plots financial distress based on the indicator (13). The probability

integral transformation in (13) maps common financial distress into a uniform random vari-

able, such that its percentiles can be read off the transformed y-axis. We refer to the best

and worst 20% of times as relative ‘exuberance’ and ‘crisis’, respectively, but note that other

1The newly founded U.S. Office of Financial Research (OFR) is mandated to make an important step
in obtaining such data, and has a strong backing through the Dodd Frank act. The OFR may set data
standards and has legal subpoena power to obtain information from financial institutions. As of now and
the near future, however, interbank counterparty exposures are simply not observed.
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Figure 6: Scaled financial distress
The figure plots the risk indicator (13) based on the model-implied financial sector failure rates. A percentile-

to-percentile transformation implies that relative levels of implied distress can be read off the y-axis. The

best and worst 20% of times are referred to as times of exuberance and crisis, respectively.
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thresholds can also be used. Financial distress is virtually absent during the late-1990s and

mid-2000s. The late 1990s are associated with the Clinton-Greenspan policy mix of low in-

terest rates and low budget deficits, and corresponding favorable macroeconomic conditions.

The mid-2000s are characterized by exceptionally low interest rates and easy credit access

for U.S. firms. We note that bubbles may have started to build up at each of these times

(the dot.com and a lending bubble, respectively). The role of a macro-prudential policy

maker may then be to communicate such developments, and to consider taking away the

punch bowl from exuberant market participants if a mandate and a careful consideration of

the involved tradeoffs allow to do so. Conversely, support measures may be justified during

times of crisis. The indicator (13) helps in assessing the relative severity of stress to this

purpose.

5.3 An early warning barometer

Past experiences of financial fragility, financial booms and financial crises, suggests that

problems rarely appear at the same place in the financial system twice in a row. The main

commonality between the different events that turned into a fully fledged financial crisis

is that they were not widely expected by market participants and regulators. Goodhart

and Persaud (2008), for example, point out that if market prices for assets or credit were

good at predicting crashes, crises would not happen. Similarly, Abreu and Brunnermeier

(2003) explain how asset market bubbles can build up over time despite the presence of

rational arbitrageurs. Mispricing can persist in particular during late stages of an asset or
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lending bubble. These findings suggest that (i) building early warning signals solely based

on market prices has obvious drawbacks, and that (ii) it may be useful to look for structure

in the ‘unexpected’, or leftover variation.

Our warning signals build on Duffie, Eckner, Horel, and Saita (2009), Azizpour, Giesecke,

and Schwenkler (2010), and Koopman, Lucas, and Schwaab (2011) who find substantial

evidence for a dynamic unobserved risk factor driving default for U.S. firms above and beyond

what is implied by observed macro-financial covariates and other information. We interpret

the frailty factor as largely capturing unobserved variation in credit supply, or changes in

the ease of credit access. We rely on two pieces of evidence for interpretation, as reported in

Koopman, Lucas, and Schwaab (2011). First, frailty tends to load more heavily on financially

weaker - and thus more credit constrained - firms. This appears to hold in general, and in

particular during the years leading up to the financial crisis. Second, our frailty estimates are

highly correlated with ex post reported lending standards, such as the ones obtained from

the Senior Loan Officer Survey (SLO) and reported in Maddaloni and Peydro (2011). These

findings suggest that frailty, among other effects, captures outward shifts in (unobserved)

credit supply. Changes in the ease of credit access affect credit risk conditions: it is hard

to default if one is drowning in credit. Conversely, even healthy firms may come under

stress if credit is rationed at the economy wide level. As a result, systematic default risk

(‘the default cycle’) can decouple from what is implied by macro-financial conditions (‘the

business cycle’).

Tracking credit risk conditions and deviations from fundamentals is related to the notion

of tracking credit aggregates over time. The usefulness of the private credit to GDP-ratio

as an early warning indicator for costly asset price busts and banking crisis is a recurring

finding in the respective literature, see Borio and Lowe (2002), Misina and Tkacz (2009),

Alessi and Detken (2011), Borio and Drehmann (2009), and Barrell, Davis, Karim, and

Liadze (2010). The main difference is that we suggest to track credit risk instead of credit

quantities relative to macro-financial conditions.

The left panel of Figure 7 presents the estimated frailty factors for the U.S., EU-27, and

the rest of the world. For the U.S., frailty effects have been pronounced during bad times,

such as the savings and loan crisis in the U.S. in the late 1980s, leading up to the 1991

recession. They have also been pronounced in exceptionally good times, such as the years

2005-07 leading up to the recent financial crisis. In these years, default conditions are much

more benign than would be expected from observed macro and financial data. At these

times, frailty effects are large in absolute value, and significantly different from zero. On top

of these developments, the financial industry-specific factor estimate indicates a particularly

benign risk environment for financial firms during the years leading up to the crisis, and
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Figure 7: Latent factor estimates
The left panel reports the conditional mean estimates of three region-specific frailty factors. The right panel

plots the financial sector industry factor that is common to financial firms in all regions. The approximate

standard error bands in the right panel are at a 95% confidence level.
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indicates additional stress during and after the 2007-09 crisis.

The top and bottom panels of Figure 8 plot our “credit risk deviations” early warning

indicator (15) for financial and non-financial firms, respectively. The indicator combines

estimated frailty and industry effects into a warning signal. The indicator captures the

extent to which local stress in a given industry sector differs from that which macro-financial

fundamentals would suggest. The figure compares estimated deviations in U.S., E.U. area,

and respective rest of the world. Light and dark shaded areas correspond to NBER recession

periods for the U.S. and times of banking crises as identified in Laeven and Valencia (2010),

respectively. The graph is based on filtered risk factor estimates, i.e., risk factor estimation

takes into account only information available at that time. Factor loadings are fixed at end

of sample values.

The indicator (15) is a standard normal covariate by construction. There are three

banking crises in the sample, two in the U.S. (1988 and 2007-10) and one in the E.U. area

(2008-10). Figure 8 draws signal thresholds at 1.64 which correspond to a 90% confidence

level for a standard normal covariate. Figure 8 reveals that a particularly large and per-

sistent decoupling of risk conditions from fundamentals for both financial and non-financial

firms has preceded the financial crisis and recession of 2007-2009. Here, risk conditions were

significantly and persistently below what was suggested by fundamentals. Such a develop-

ment may indicate a lending bubble, in particular if credit quantity growth is unusually high

as well and bank lending standards are generous (which has been the case). Conversely,

the indicator may also signal risk conditions that are considerably worse than suggested by

fundamentals. Cases in point are U.S. conditions during the years 1988-90 leading up to the
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Figure 8: ‘Credit risk deviations’ early warning indicator
We plot deviations of credit risk conditions (here for financial firms) from macro-financial fundamentals as

captured by the indicator (15). Light and dark grey areas correspond to NBER U.S. recession periods and

times of banking crises as identified in Laeven and Valencia (2010), respectively. The indicator is a standard

normal variable by construction; the horizontal lines are drawn at one standard deviation.

filtered deviations of credit risk conditions from fundamentals, US non−financial corporates 
EU 
rest of world 

1985 1990 1995 2000 2005 2010

−3

−2

−1

0

1

2

3
filtered deviations of credit risk conditions from fundamentals, US non−financial corporates 
EU 
rest of world 

filtered deviations of financial firm risk conditions from fundamentals, US  
EU−27 
rest of world 

1985 1990 1995 2000 2005 2010

−3

−2

−1

0

1

2

3

NBER US recession periods

banking crisis, Laeven and Valencia (2010)

filtered deviations of financial firm risk conditions from fundamentals, US  
EU−27 
rest of world 

25



1991 recession, and conditions during 2010Q3-Q4 in all regions. High financial sector stress

may raise the risk of a credit crunch through the bank lending channel, see for example

Altunbas, Gambacorta, and Marques-Ibanez (2010). For financials firms, the end of sample

developments may reflect in part that the macro fundamentals do not take into account Euro

Area sovereign default risk conditions. Such stress is then captured by a latent (industry)

factor, see Figure 7.

While a full comparison of alternative indicators for different policy preferences and sets

of countries is clearly outside the scope of this paper, we find that our deviations of E.U.

filtered risk conditions from fundamentals in excess of their 90th percentile in absolute value

do well in identifying the costly asset-price booms in the E.U. area as determined in Alessi

and Detken (2011). These asset price booms are costly because they precede macroeconomic

and financial distress, and usually coincide with sizable expansions in credit. For Alessi and

Detken’s data on boom and busts in 11 E.U. countries from 1985Q1 to 2008Q4, and our

corresponding EU-27 indicator as graphed in Figure 8, we find a noise to signal ratio of 0.23,

an average lead time of 3.89 quarters preceding the bust, and a 70% conditional probability

of being in a costly boom if a signal occurs. These are encouraging results. We also confirm

the 90% optimal threshold for a broad set of policy preferences.

Finally, the pronounced deviations of risk conditions from fundamentals are relatively

robust to variations in the set of explanatory right-hand-side variables. For example, Duffie,

Eckner, Horel, and Saita (2009) report that pre-crisis U.S. frailty effects cannot easily be

attributed to omitted standard covariates such as real GDP growth. Koopman, Lucas, and

Schwaab (2011) include more than 100 macro-financial covariates in their empirical study

of U.S. data, and still find important frailty effects. As a result, default and business cycle

activity appear to be related but inherently different processes. The extent to which they

have decoupled is indicated by our early warning barometer.

6 Conclusion

We proposed a novel diagnostic framework for financial systemic risk assessment based on

a mixed-measurement dynamic factor model. We combined the risk factor and parameter

estimates into new and straightforward coincident and forward looking indicators of financial

system risk. Conceptually, our factor structure allows us to address the computational chal-

lenges associated with a large cross-sectional dimension of firms more easily than alternative

frameworks for financial stability assessments. The new method easily allows one to combine

different sets of panel data in a single integrated framework. In our empirical analysis, we

found that a decoupling of credit risk from macro-financial fundamentals may serve as an
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early warning signal for a macro-prudential policy maker.

Appendix A1: estimation via importance sampling

The observation density function of y = (x′1, y
′
1, z

′
1 . . . , x

′
T , y

′
T , z

′
T )

′
can be expressed by the joint density of

y and f = (f ′1, . . . , f
′
T )

′
where f is integrated out, that is

p(y;ψ) =

∫
p(y, f ;ψ)df =

∫
p(y|f ;ψ)p(f ;ψ)df, (A.16)

where p(y|f ;ψ) is the density of y conditional on f and p(f ;ψ) is the density of f . Importance sampling

refers to the Monte Carlo estimation of p(y;ψ) by sampling f from a Gaussian importance density g(f |y;ψ).
We can express the observation density function p(y;ψ) by

p(y;ψ) =

∫
p(y, f ;ψ)

g(f |y;ψ)
g(f |y;ψ)df = g(y;ψ)

∫
p(y|f ;ψ)
g(y|f ;ψ)

g(f |y;ψ)df. (A.17)

Since f is from a Gaussian density, we have g(f ;ψ) = p(f ;ψ) and g(y;ψ) = g(y, f ;ψ) / g(f |y;ψ). In case

g(f |y;ψ) is close to p(f |y;ψ) and in case simulation from g(f |y;ψ) is feasible, the Monte Carlo estimator

p̃(y;ψ) = g(y;ψ)M−1
M∑
k=1

p(y|f (k);ψ)
g(y|f (k);ψ)

, f (k) ∼ g(f |y;ψ), (A.18)

is numerically efficient, see Kloek and van Dijk (1978), Geweke (1989) and Durbin and Koopman (2001).

For a practical implementation, the importance density g(f |y;ψ) can be based on the linear Gaussian

approximating model

yjt = µjt + θjt + εjt, εjt ∼ N(0, σ2
jt), (A.19)

where mean correction µjt and variance σ2
jt are determined in such a way that g(f |y;ψ) is sufficiently close

to p(f |y;ψ). It is argued by Shephard and Pitt (1997) and Durbin and Koopman (1997) that µjt and σjt

can be uniquely chosen such that the modes of p(f |y;ψ) and g(f |y;ψ) with respect to f are equal, for a

given value of ψ.

To simulate values from the importance density g(f |y;ψ), the simulation smoothing method of Durbin

and Koopman (2002) can be applied to the approximating model (A.19). For a set of M draws of g(f |y;ψ),
the evaluation of (A.18) relies on the computation of p(y|f ;ψ), g(y|f ;ψ) and g(y;ψ). Density p(y|f ;ψ) is

based on (5) and (4), density g(y|f ;ψ) is based on the Gaussian density for yjt − µjt − θjt ∼ N(0, σ2
jt), that

is (A.19), and g(y;ψ) can be computed by the Kalman filter applied to (A.19), see Durbin and Koopman

(2001).

The likelihood function can be evaluated for any value of ψ. By keeping the random numbers fixed, we

maximize the likelihood estimator (A.18) with respect to ψ by a numerical optimization method. Further-

more, we can estimate the latent factors ft via importance sampling. It can be shown that

E(f |y;ψ) =
∫
f · p(f |y;ψ)df =

∫
f · w(y, f ;ψ)g(f |y;ψ)df∫
w(y, f ;ψ)g(f |y;ψ)df

,

where w(y, f ;ψ) = p(y|f ;ψ)/g(y|f ;ψ). The estimation of f̃t = E(f |y;ψ) and its standard error st via

importance sampling can be achieved by

f̃ =

M∑
k=1

wk · f (k)
/

M∑
k=1

wk, s2t =

(
M∑
k=1

wk · (f (k)t )2

/
M∑
k=1

wk

)
− f̃2t ,

with wk = p(y|f (k);ψ)/g(y|f (k);ψ), f (k) ∼ g(f |y;ψ), and f̃t is the tth element of f̃ .
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Appendix A2: treatment of missing values

When missing values are present in the data vector y = (y′1, . . . , y
′
T )

′, some care must be taken when

computing the importance sample weights wk = p(y|f (k);ψ)/g(y|f (k);ψ), f (k) ∼ g(f |y;ψ). The mode

estimates of the corresponding signals θ = (θ′1, . . . , θ
′
T )

′ and factors f = (f ′1, . . . , f
′
T )

′ are available even when

we have missings. Some bookkeeping is required to evaluate p(y|f ;ψ) and g(ỹ|f ;ψ) at the corresponding

values of f , or θ. Forecasts f̃T+h, for h = 1, 2, . . . , H, can be obtained by treating future observations

yT+1, . . . , yt+H as missing, and by applying the estimation and signal extraction techniques of Section 6 to

data (y0, . . . , yT+H).

Appendix A3: collapsing observations

Jungbacker and Koopman (2008) show that an [N ×1] vector of (Gaussian) observations yt can be collapsed

into an [m × 1] vector of transformed observations ylt with m < N usually much smaller than N . The

transformation does not lead to loss of information for the estimation of the factors ft via the Kalman filter

and smoother (KFS). We show how this argument can be used in a nonlinear mixed-measurement setting.

We focus on collapsing the artificial Gaussian data ỹt with associated covariance matrices H̃t, see (A.19)

and (12).

Consider a linear approximating model for transformed data ỹ∗t = Atỹt, for a sequence of invertible

matrices At, for t = 1, . . . , T . The transformed observations are given by

ỹ∗t =

(
ỹlt

ỹht

)
, with ỹlt = Al

tỹt and ỹ
h
t = Ah

t ỹt,

where time-varying projection matrices are partitioned as At =
[
Al′

t : Ah′
t

]′
. We require (i) matrices At to be

of full rank to prevent the loss of information in each rotation, (ii) Ah
t H̃tA

l′
t = 0 to ensure that observations

ỹlt and ỹ
h
t are independent, and (iii) Ah

t Zt = 0 to ensure that yht does not depend on f . Several such matrices

Al
t that fulfill these conditions can be found. A convenient choice is presented below. Matrices Ah

t can be

constructed from Al
t, but are not necessary for computing smoothed signal and factor estimates.

Given matrices At, a convenient model for transformed observations ỹ∗t is of the form

ỹlt = Al
tθt + elt,

ỹht = eht
,

(
elt

eht

)
∼ NIID

(
0,

[
H̃ l

t 0

0 H̃h
t

])
,

where H̃ l
t = Al

tH̃tA
l′
t , H̃

h
t = Ah

t H̃tA
h′
t , θt = Zft, and Z contains the factor loadings. Clearly, the [N −m]

dimensional vector ỹht contains no information about ft. We can speed up computations involving the KFS

recursions as follows.

Algorithm : Consider (approximating) Gaussian data ỹt with time-varying covariance matrices H̃t, and

N > m. To compute smoothed factors ft and signals θt,

1. construct, at each time t = 1, . . . , T , a matrix Al
t = CtZ

′H̃−1
t , with Ct such that C ′

tCt =
(
Z ′H̃−1

t Z
)−1

and Ct upper triangular. Collapse observations as ỹlt = Al
tỹt.

2. apply the Kalman Filter and Smoother to the [m × 1] low-dimensional vector ỹlt with time-varying

factor loadings C−1′
t and H̃ l

t = Im.
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This approach gives the same factor and signal estimates as when the KFS recursions are applied to the

[N × 1] dimensional system for ỹt with factor loadings Z and covariances H̃t.

We refer to Jungbacker and Koopman (2008, Illustration 4) for further details.
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