Capital Regulation and Tail Risk

Enrico Perotti (U Ams and DNB) Lev Ratnovski (IMF) Razvan Vlahu (DNB)

Bank of Finland, CEPR, JFI and SUERF Conference "The Future of Risk Management" $22^{nd} - 23^{rd}$ September, 2011

The views expressed in this paper are those of the authors and do not necessarily represent those of DNB or IMF.

Lessons from the Crisis: Bank Capital

- Calls for more bank capital in response to crisis
 - Basel III
 - doubles the minimal capital ratio
 - conservation and countercyclical buffers

Arguments in favor of higher capital

- Ex-post: capital as a buffer
 - (absorbs losses and reduces the risk of insolvency)
- Ex-ante: more capital reduces risk-shifting incentives ("skin in the game" effect)

Capital and Tail Risk

- Higher bank capital: Necessary...but not sufficient
 - Compensating the cost of capital (Hellmann et al., 2000)
 - Correlation risks (Acharya, 2009)
 - Funding risks (Perotti and Suarez, 2010)
- Tail risk: negatively skewed gambles
 - Carry trades reliant on ST wholesale funding (Gorton, 2010)
 - Contingent liabilities on systemic risk (Acharya and Richardson, 2009)
 - Undiversified housing exposure (Shin, 2009)
- Tail risk was low in traditional loan-oriented banking
 - "Skin in the game" effect dominated, hence higher capital \rightarrow lower risk-taking

This Paper

 Reviews the effectiveness of capital regulation, and in particular of excess capital buffers, in dealing with tail risk events

Under tail risk

- Buffer and incentives effects of capital diminish
 - Higher capital does not absorb extreme tail losses
 - Losses go deep in debt value

Capital may enable risk-taking

Excess buffers \rightarrow

A bank can afford to lose *some* capital (low cost of losing capital) \rightarrow Putting capital to risk

The Model

Main ingredients

- Bank is managed by an owner-manager (the banker) with limited liability
- Prudential framework based on minimal capital ratio
 - Rising capital is costly (asymmetric information, agency problem)
- Bank has access to a tail risk project
- There are 3 dates (0, ½, 1), no discounting, and everyone is riskneutral

Projects

- A bank, capital and deposits, C + D = 1
- **Projects**, investment at 0, returns at 1
 - **Safe**: $R_{s} > 1$
 - Risky:
 - $R_H > R_S$ w.p. p • $0 < R_L < 1$ w.p. $1-p-\mu$ • $R_0 = 0$ w.p. μ ; captures tail risk
- **Risk-shifting**
 - **Safe** has higher NPV:
 - $R_{S} > pR_{H} + (1 p \mu)R_{I}$ • A bank with low capital prefers **Risky**: $R_{s} - 1 < p(R_{H} - 1)$

Capital Regulation

- At date 0: initial capital $c > c_{min}$ (by assumption)
- At date $\frac{1}{2}$
 - Final outcome of the project becomes known
 - Bank's capital ratio: $c_i = (R_i D)/R_i$, with $i = \{S, H, L, 0\}$
- If $c_i < c_{min}$ (undercapitalized bank) \rightarrow Corrective action
 - Raise new equity (cost *T*), or
 - Close down (lose positive capital, if any)
- Safe: $c_S > c_{min}$
- Risky: $c_H > c_{min}$

 $c_0 < 0 < c_{\min}$

 c_L , depending on R_L and c (negative, positive but insufficient, sufficient)

 $c_L: ? < 0 < ? < c_{min} < ?$

Intuition

Capital and Risk-taking: Traditional

No tail risk, no capital adjustment cost ($\mu = 0$, T = 0)

Safe project Risky project

Capital ratio: (assets-debt)/assets

- Banks do not internalize losses when **negative** capital
- Too much risk-taking

Capital and Risk-taking: Traditional (cont'd)

No tail risk, no capital adjustment cost ($\mu = 0$, T = 0)

<u>Less</u> incentives for risk-taking (less chance of $c_L < 0$)

More capital \rightarrow Lower risk

"Skin in the game" and Tail Risk

Tail risk, no capital adjustment cost ($\mu > 0$, T=0)

Capital ratio

Safe project Risky project

"Skin in the game" and Tail Risk (cont'd)

Tail risk, no capital adjustment cost ($\mu > 0$, T=0)

"Skin in the game" and Tail Risk (cont'd)

• Higher $\mu \rightarrow$ more initial capital is required to maintain incentives to select the safe project

• Tail risk limits the effectiveness of required capital for controlling bank risk-taking

Capital and Risk-taking: Enabling effect

No tail risk, capital adjustment cost ($\mu = 0, c_{min} > 0$)

Safe project Risky project

c_{min}: Minimal capital requirement

Capital and Risk-taking: Enabling effect (cont'd)

No tail risk, capital adjustment cost ($\mu = 0, c_{min} > 0$)

The two opposite effects of higher capital

Capital adjustment cost effect

Putting together: Tail risk

When is risk bad ?

• in the presence of left tail projects: $\mu > 0$

Higher capital \rightarrow Higher excess risk

Solving the model

Recapitalization Decision

 $c^{Sufficient} = 1 - (1 - c_{\min})R_L.$

With $c^{Recapitalize} < c^{Sufficient}$ for $T < c_{\min}R_L$.

Project Choice

There are parameter values such that:

Minimal capital

Capital req'ts not effective for tail risk

Exercise: Capital necessary to prevent risk-shifting

- $R_s = 1.03$
- $\mathbf{R}_{\mathbf{H}} = 1.14; \, \mathbf{R}_{\mathbf{L}} = 0.92; \, \mathbf{R}_{\mathbf{0}} = 0; \, \mathbf{p} = .5; \, \mu = .01 \, // \, \mathbf{E}(\mathbf{R}) = 1.021$
- $c^{**} = 8^{0}/_{0}$
- Increase µ
 holding E(R)
 fixed
- Impact on c**

Capital req'ts not effective for tail risk

Policy

Focus on Excess capital

Deal with skewed returns directly

- How to deal with skewed returns ?
 - Not by capital ratios alone (similar with liquidity, exposure, correlations)
 - Prohibit extreme bets or increase their ex-ante cost (Acharya et al., 2010; Perotti and Suarez, 2009)
 - Enhanced supervision to capture tail risk (particularly for well-capitalized banks)

Conclusions

- Capital is useful
 - ... but it is ineffective in dealing with tail risk
 - ... impossible to control all risk-taking using a single instrument
- Capital may enable risk-taking
- Need a distinct approach (direct + regulatory focus)

