Interest Rates, Market Power, and Financial Stability

David Martinez-MieraRafael RepulloUC3MCEMFI

ESCB Research Workshop on Financial Stability Saariselkä, 24 November 2023

- Question: How do interest rates affect financial stability?
 - \rightarrow Focus on risk-taking by financial intermediaries (banks)
 - \rightarrow Using simple theoretical model
 - \rightarrow Based on "Search for Yield" (ECTA 2017)

- Question: How do interest rates affect financial stability?
 - \rightarrow Focus on risk-taking by financial intermediaries (banks)
 - \rightarrow Using simple theoretical model
 - \rightarrow Based on "Search for Yield" (ECTA 2017)
- In a competitive setting (like in "Search for Yield")
 - \rightarrow Conventional prediction obtains
 - \rightarrow Lower safe rates lead to higher risk-taking

- Question: How do interest rates affect financial stability?
 - \rightarrow Focus on risk-taking by financial intermediaries (banks)
 - \rightarrow Using simple theoretical model
 - \rightarrow Based on "Search for Yield" (ECTA 2017)
- In a competitive setting (like in "Search for Yield")
 - \rightarrow Conventional prediction obtains
 - \rightarrow Lower safe rates lead to higher risk-taking
 - \rightarrow Risk-taking channel of monetary policy: Borio (BIS 2008)

- Question: How do interest rates affect financial stability?
 - \rightarrow Focus on risk-taking by financial intermediaries (banks)
 - \rightarrow Using simple theoretical model
 - \rightarrow Based on "Search for Yield" (ECTA 2017)
- In a competitive setting (like in "Search for Yield")
 - \rightarrow Conventional prediction obtains
 - \rightarrow Lower safe rates lead to higher risk-taking
 - \rightarrow Risk-taking channel of monetary policy: Borio (BIS 2008)
 - \rightarrow What happens when we introduce market power?

- Why do safe rates affect banks' risk-taking?
 - \rightarrow Safe rates affect banks' funding costs
 - \rightarrow Impact on loan rates and intermediation margins

- Why do safe rates affect banks' risk-taking?
 - \rightarrow Safe rates affect banks' funding costs
 - \rightarrow Impact on loan rates and intermediation margins
- When monitoring incentives depend on intermediation margins
 - \rightarrow Impact on loans' probability of default

- Why do safe rates affect banks' risk-taking?
 - \rightarrow Safe rates affect banks' funding costs
 - \rightarrow Impact on loan rates and intermediation margins
- When monitoring incentives depend on intermediation margins
 - \rightarrow Impact on loans' probability of default
- Why is competition relevant?
 - \rightarrow It affects **pass-trough** of funding costs to loan rates
 - \rightarrow It affects margins and monitoring incentives

- Model is silent about what drives changes in safe rates
 - \rightarrow Real factors (savings glut)
 - \rightarrow Monetary policy

- Model is silent about what drives changes in safe rates
 - \rightarrow Real factors (savings glut)
 - \rightarrow Monetary policy
- Analyze effect of exogenous changes in (real) safe rates

• Banks raise funds from uninsured risk-neutral investors

 \rightarrow Investors require a given return R_0 (the safe rate)

• Banks raise funds from uninsured risk-neutral investors

 \rightarrow Investors require a given return R_0 (the safe rate)

• Banks compete à la Cournot in loan market – market power

• Banks raise funds from uninsured risk-neutral investors

 \rightarrow Investors require a given return R_0 (the safe rate)

• Banks compete à la Cournot in loan market – market power

 \rightarrow Competition measured by number of banks *n*

 \rightarrow May face competition by direct market finance

• Banks raise funds from uninsured risk-neutral investors

 \rightarrow Investors require a given return R_0 (the safe rate)

- Banks compete à la Cournot in loan market market power
 → Competition measured by number of banks n
 → May face competition by direct market finance
- Banks monitor borrowers moral hazard

• Banks raise funds from uninsured risk-neutral investors

 \rightarrow Investors require a given return R_0 (the safe rate)

- Banks compete à la Cournot in loan market market power
 → Competition measured by number of banks *n* → May face competition by direct market finance
- Banks monitor borrowers moral hazard

 \rightarrow Monitoring reduces probability of default of loans

 \rightarrow Monitoring is costly and unobserved by investors

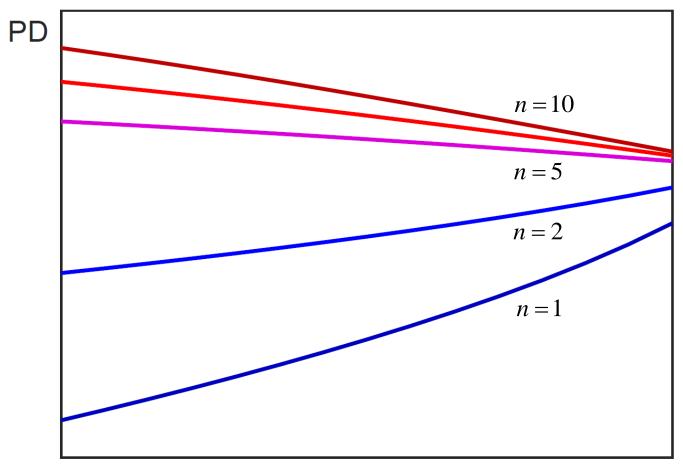
Main result

- Lower safe rates lead to
 - \rightarrow Higher risk-taking in competitive environments (high *n*)
 - \rightarrow Lower risk-taking in monopolistic environments (low *n*)

Main result

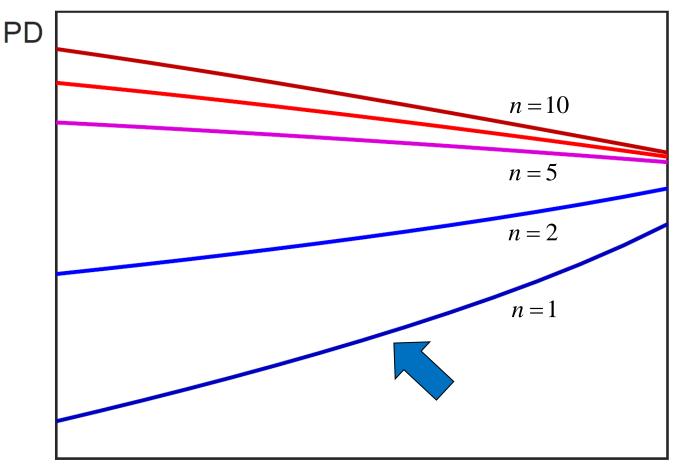
- Lower safe rates lead to
 - \rightarrow Higher risk-taking in competitive environments (high *n*)
 - \rightarrow Lower risk-taking in monopolistic environments (low *n*)
- Risk-taking channel of monetary policy reverses sign
 - \rightarrow When banks have significant market power

Main result

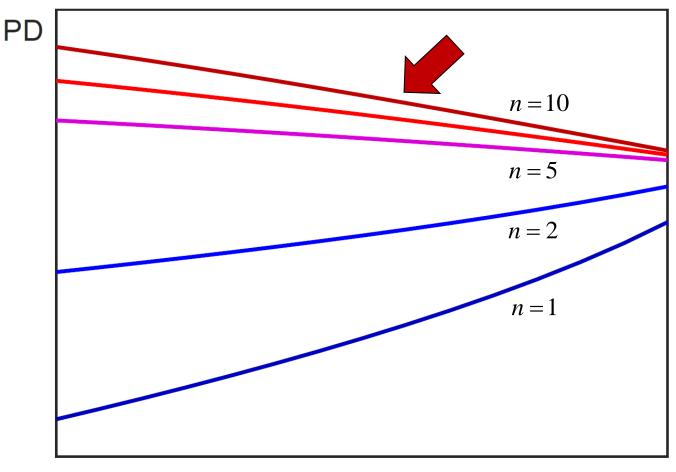


 R_0

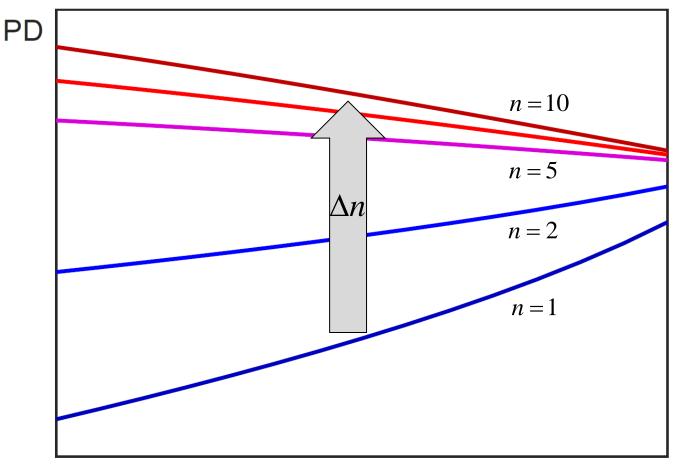
Positive slope in monopolistic environments



Negative slope in competitive environments



Higher risk in competitive environments



- Sensitivity of loan rates and intermediation margins to
 - \rightarrow Changes in Fed funds rate
 - \rightarrow For different deciles of banks' market power

- Sensitivity of loan rates and intermediation margins to
 - \rightarrow Changes in Fed funds rate
 - \rightarrow For different deciles of banks' market power
- Following Drechsler, Savov, and Schnabl (QJE 2017)
 - \rightarrow Divide banks into 10 bins from lowest to highest HHI

- Sensitivity of loan rates and intermediation margins to
 - \rightarrow Changes in Fed funds rate
 - \rightarrow For different deciles of banks' market power
- Following Drechsler, Savov, and Schnabl (QJE 2017)
 - \rightarrow Divide banks into 10 bins from lowest to highest HHI
 - \rightarrow Estimate with quarterly data for banks in each bin *i*

$$\Delta y_{bt} = \alpha_b + \beta_i \Delta F F_t + \varepsilon_{bt}$$

- Sensitivity of loan rates and intermediation margins to
 - \rightarrow Changes in Fed funds rate
 - \rightarrow For different deciles of banks' market power
- Following Drechsler, Savov, and Schnabl (QJE 2017)
 - \rightarrow Divide banks into 10 bins from lowest to highest HHI
 - \rightarrow Estimate with quarterly data for banks in each bin *i*

$$\Delta y_{bt} = \alpha_b + \beta_i \Delta F F_t + \mathcal{E}_{bt}$$

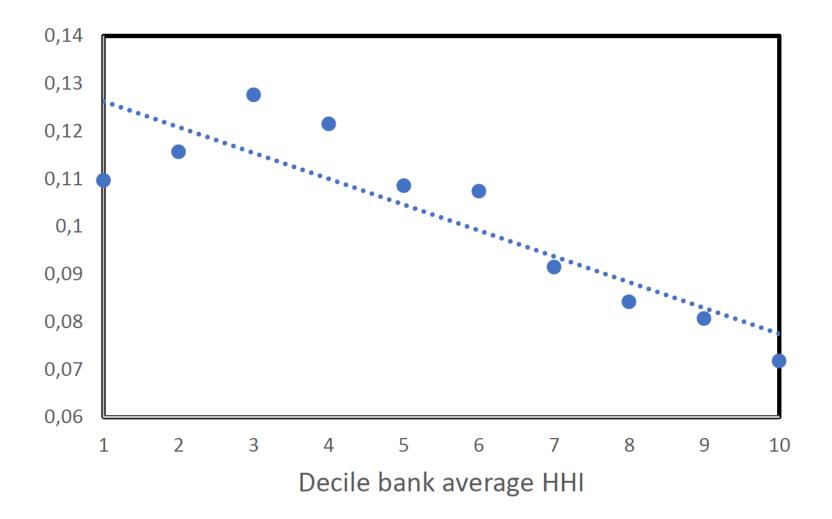
 \rightarrow Parameter of interest β_i

• Data on loan rates an intermediation margins

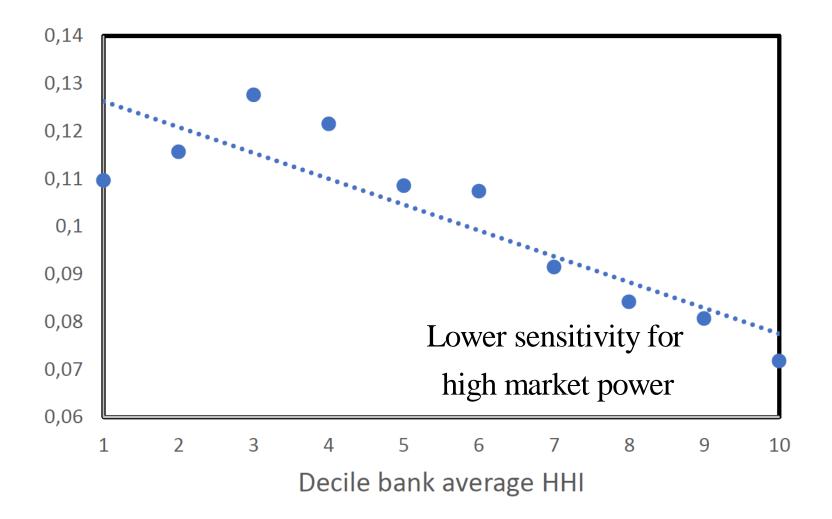
 \rightarrow Call Reports for 1994-2019

- Data on loan rates an intermediation margins
 - \rightarrow Call Reports for 1994-2019
- Data on banks' market power
 - \rightarrow New mortgages originated by banks in each county
 - \rightarrow County level HHI for each year
 - \rightarrow Weighted average of county HHIs for each bank
 - \rightarrow Simple average for each bank in all years of the sample

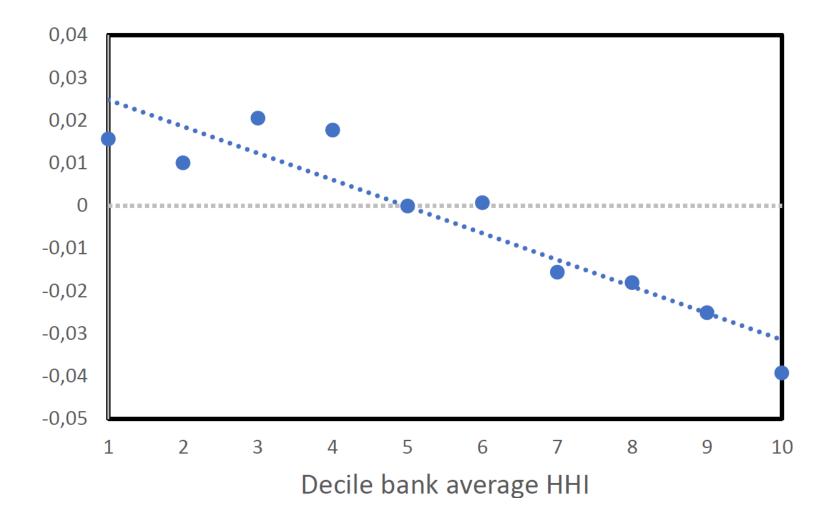
Sensitivity of loan rates to FF rate



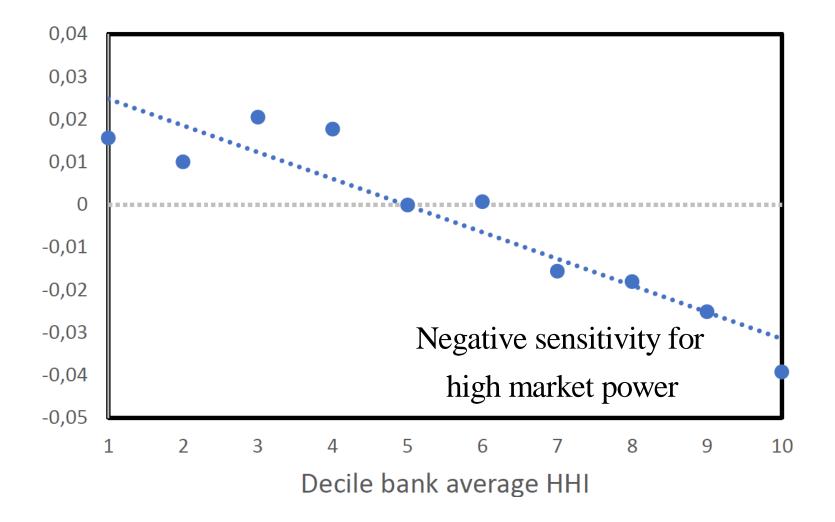
Sensitivity of loan rates to FF rate



Sensitivity of margins to FF rate



Sensitivity of margins to FF rate



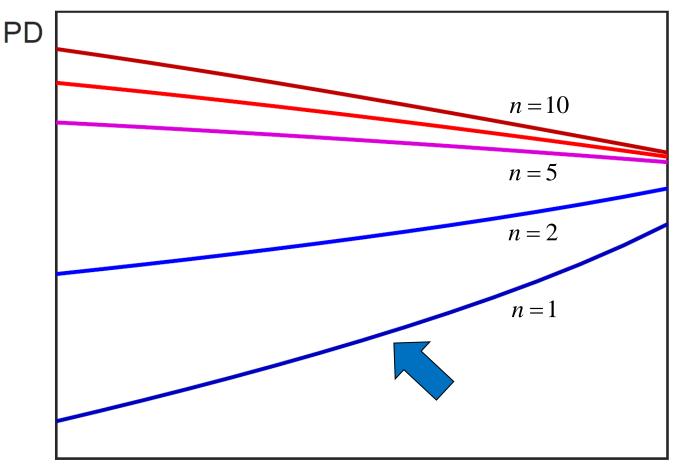
- Higher Fed fund rates implies
 - \rightarrow Higher loan rates
 - \rightarrow Lower sensitivity for high market power

- Higher Fed fund rates implies
 - \rightarrow Higher loan rates
 - \rightarrow Lower sensitivity for high market power
- Higher fed funds rate implies
 - \rightarrow Higher margins for banks in competitive environments
 - \rightarrow Lower margins for banks in monopolistic environments

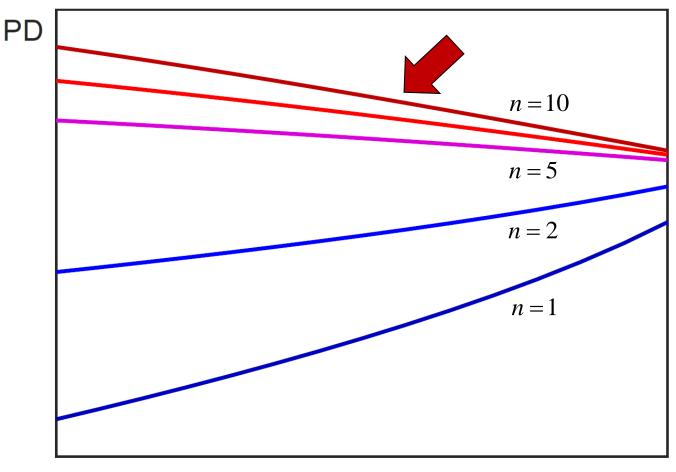
- Higher Fed fund rates implies
 - \rightarrow Higher loan rates
 - \rightarrow Lower sensitivity for high market power
- Higher fed funds rate implies
 - \rightarrow Higher margins for banks in competitive environments
 - \rightarrow Lower margins for banks in monopolistic environments
- Since risk-taking is driven by intermediation margins

\rightarrow Evidence is consistent with our key result

Positive slope in monopolistic environments



Negative slope in competitive environments



• Large literature on risk-taking channel of monetary policy

→ Jimenez, Ongena, Peydro, and Saurina (ECTA 2014)

- Large literature on risk-taking channel of monetary policy \rightarrow Jimenez, Ongena, Peydro, and Saurina (ECTA 2014)
- Larger literature on bank competition and risk-taking \rightarrow Hellmann, Murdock, and Stiglitz (AER 2000)

- Large literature on risk-taking channel of monetary policy \rightarrow Jimenez, Ongena, Peydro, and Saurina (ECTA 2014)
- Larger literature on bank competition and risk-taking
 →Hellmann, Murdock, and Stiglitz (AER 2000)
- Not many papers on intersection of the two

→ Dell'Ariccia, Laeven, and Marquez (JET 2014)

- Large literature on risk-taking channel of monetary policy \rightarrow Jimenez, Ongena, Peydro, and Saurina (ECTA 2014)
- Larger literature on bank competition and risk-taking \rightarrow Hellmann, Murdock, and Stiglitz (AER 2000)
- Not many papers on intersection of the two

→ Dell'Ariccia, Laeven, and Marquez (JET 2014)

• Main reference

→ Martinez-Miera and Repullo (ECTA 2017)

• Cournot model of bank competition and risk-taking

- Cournot model of bank competition and risk-taking
- Model with a competitive bond market

- Cournot model of bank competition and risk-taking
- Model with a competitive bond market
- Dynamic model with bank capital

- Cournot model of bank competition and risk-taking
- Model with a competitive bond market
- Dynamic model with bank capital
- Three extensions
 - → Heterogeneous monitoring costs
 - \rightarrow Insured deposits
 - \rightarrow Endogenous deposit rates

- Cournot model of bank competition and risk-taking
- Model with a competitive bond market
- Dynamic model with bank capital
- Three extensions
 - → Heterogeneous monitoring costs
 - \rightarrow Insured deposits
 - \rightarrow Endogenous deposit rates
- Concluding remarks

Part 1

Cournot model of bank competition

Model setup

- Two dates (t = 0, 1)
- Three types of risk-neutral agents
 - \rightarrow **Entrepreneurs** have projects that require bank finance
 - \rightarrow **Banks** have to raise funds from (uninsured) investors
 - \rightarrow **Investors** require expected return R_0 (the safe rate)

• Continuum of penniless entrepreneurs have risky projects

Unit investment
$$\rightarrow$$
 Return = $\begin{cases} R, \text{ with prob. } 1 - p + m \\ 0, \text{ with prob. } p - m \end{cases}$

• Continuum of penniless entrepreneurs have risky projects

Unit investment
$$\rightarrow$$
 Return = $\begin{cases} R, \text{ with prob. } 1 - p + m \\ 0, \text{ with prob. } p - m \end{cases}$

→ *p* is probability of failure without monitoring → $m \in [0, p]$ is monitoring intensity of lending bank

• Continuum of penniless entrepreneurs have risky projects

Unit investment
$$\rightarrow$$
 Return = $\begin{cases} R, \text{ with prob. } 1 - p + m \\ 0, \text{ with prob. } p - m \end{cases}$

→ *p* is probability of failure without monitoring → $m \in [0, p]$ is monitoring intensity of lending bank

\rightarrow Monitoring reduces probability of failure

• Assumption 1: Decreasing returns to aggregate investment L

R(L) = a - bL

• Assumption 1: Decreasing returns to aggregate investment L

$$R(L) = a - bL$$

• Assumption 2: Single aggregate risk factor

 \rightarrow Perfectly correlated project returns (for any given *m*)

• Assumption 1: Decreasing returns to aggregate investment L

R(L) = a - bL

• Assumption 2: Single aggregate risk factor

 \rightarrow Perfectly correlated project returns (for any given *m*)

• Assumption 3: Free entry of entrepreneurs

 \rightarrow Enter the loan market until R(L) = R (return = loan rate)

• Assumption 1: Decreasing returns to aggregate investment L

R(L) = a - bL

• Assumption 2: Single aggregate risk factor

 \rightarrow Perfectly correlated project returns (for any given *m*)

• Assumption 3: Free entry of entrepreneurs

 \rightarrow Enter the loan market until R(L) = R (return = loan rate)

 $\rightarrow R(L)$ is the inverse loan demand function

Banks (i)

• There are *n* identical banks that compete à la Cournot

 \rightarrow Strategic variable of bank *j* is its lending l_i to entrepreneurs

Banks (i)

- There are *n* identical banks that compete à la Cournot
 - \rightarrow Strategic variable of bank *j* is its lending l_i to entrepreneurs
 - \rightarrow Total amount of lending is

$$L = \sum_{j=1}^{n} l_{j}$$

Banks (ii)

• Assumption 1: Banks have no (inside) capital

 \rightarrow Entirely funded with uninsured deposits (outside capital)

Banks (ii)

• Assumption 1: Banks have no (inside) capital

 \rightarrow Entirely funded with uninsured deposits (outside capital)

• Assumption 2: Bank monitoring is costly

 \rightarrow Cost of monitoring

$$c(m_j) = \frac{\gamma}{2} m_j^2$$

Banks (ii)

• Assumption 1: Banks have no (inside) capital

 \rightarrow Entirely funded with uninsured deposits (outside capital)

• Assumption 2: Bank monitoring is costly

 \rightarrow Cost of monitoring

$$c(m_j) = \frac{\gamma}{2} m_j^2$$

• Assumption 3: Bank monitoring is not contractible

 \rightarrow Moral hazard problem between banks and investors

• Three stages

1. Each bank *j* sets supply of loans l_j

• Three stages

1. Each bank *j* sets supply of loans l_j

 \rightarrow This determines total supply of loans $L = \sum_{i=1}^{n} l_i$

 \rightarrow and the loan rate R = R(L)

- Three stages
 - 1. Each bank *j* sets supply of loans l_j \rightarrow This determines total supply of loans $L = \sum_{j=1}^{n} l_j$ \rightarrow and the loan rate R = R(L)
 - 2. Bank *j* offers interest rate B_j to investors

- Three stages
 - 1. Each bank *j* sets supply of loans l_j \rightarrow This determines total supply of loans $L = \sum_{j=1}^{n} l_j$ \rightarrow and the loan rate R = R(L)
 - 2. Bank *j* offers interest rate B_j to investors
 - 3. Bank *j* (privately) chooses monitoring intensity m_i

• Game solved backwards

 \rightarrow Stages 2 and 3 first, and then stage 1

• Game solved backwards

 \rightarrow Stages 2 and 3 first, and then stage 1

 \rightarrow No strategic interaction in stages 2 and 3, only in stage 1

• Game solved backwards

 \rightarrow Stages 2 and 3 first, and then stage 1

 \rightarrow No strategic interaction in stages 2 and 3, only in stage 1

• Problem in stages 2 and 3 is the same for all banks

 \rightarrow Depends on lending *L* in stage 1

• Game solved backwards

 \rightarrow Stages 2 and 3 first, and then stage 1

 \rightarrow No strategic interaction in stages 2 and 3, only in stage 1

• Problem in stages 2 and 3 is the same for all banks

 \rightarrow Depends on lending *L* in stage 1

 \rightarrow Write $B_j = B(L)$ and $m_j = m(L)$

Characterization of equilibrium (i)

• Banks' choice of monitoring (given borrowing rate B(L))

 $m(L) = \arg \max_{m} \left[(1 - p + m) [R(L) - B(L)] - c(m) \right]$

Characterization of equilibrium (i)

• Banks' choice of monitoring (given borrowing rate B(L))

$$m(L) = \arg\max_{m} \left[(1 - p + m) [R(L) - B(L)] - c(m) \right]$$

• Investors' participation constraint (satisfied with equality)

$$[1-p+m(L)]B(L) = R_0$$

Characterization of equilibrium (i)

• Banks' choice of monitoring (given borrowing rate B(L))

$$m(L) = \arg\max_{m} \left[(1 - p + m) [R(L) - B(L)] - c(m) \right]$$

• Investors' participation constraint (satisfied with equality)

$$[1 - p + m(L)]B(L) = R_0$$

• Two equations with two unknowns

 \rightarrow Solution gives B(L) and m(L)

Proposition 1

• Banks' choice of monitoring

$$m(L) = \frac{1}{2\gamma} \left[R(L) - \gamma(1-p) + \sqrt{[R(L) + \gamma(1-p)]^2 - 4\gamma R_0} \right]$$

Proposition 1

• Banks' choice of monitoring

$$m(L) = \frac{1}{2\gamma} \left[\frac{R(L)}{\gamma(1-p)} + \sqrt{R(L)} + \gamma(1-p) \right]^2 - 4\gamma R_0 \right]$$

 \rightarrow Increasing in loan rate R(L)

Proposition 1

• Banks' choice of monitoring

$$m(L) = \frac{1}{2\gamma} \left[R(L) - \gamma(1-p) + \sqrt{R(L) + \gamma(1-p)} \right]^2 - 4\gamma R_0$$

- \rightarrow Increasing in loan rate R(L)
- \rightarrow Decreasing in lending *L*

Proposition 1

• Banks' choice of monitoring

$$m(L) = \frac{1}{2\gamma} \left[R(L) - \gamma(1-p) + \sqrt{\left[R(L) + \gamma(1-p) \right]^2 - 4\gamma R_0} \right]$$

- \rightarrow Increasing in loan rate R(L)
- \rightarrow Decreasing in lending *L*
- \rightarrow Decreasing in safe rate R_0

Characterization of equilibrium (ii)

• Banks' choice of monitoring requires solving

$$\max_{m} \left[(1-p+m) [R(L) - B(L)] - c(m) \right]$$

Characterization of equilibrium (ii)

• Banks' choice of monitoring requires solving

$$\max_{m} \left[(1-p+m)[R(L)-B(L)] - c(m) \right]$$

 \rightarrow First-order condition

$$R(L) - B(L) = c'(m) = \gamma m$$

Intermediation margin

Characterization of equilibrium (ii)

• Banks' choice of monitoring requires solving

$$\max_{m} \left[(1-p+m)[R(L)-B(L)] - c(m) \right]$$

 \rightarrow First-order condition

$$\underbrace{R(L) - B(L)}_{\text{Intermediation margin}} = c'(m) = \gamma m$$

 \rightarrow Monitoring intensity is proportional to margin

Characterization of equilibrium (iii)

• Banks' profits per unit of loans

 $\pi(L) = [1 - p + m(L)][R(L) - B(L)] - c(m(L))$

Characterization of equilibrium (iii)

• Banks' profits per unit of loans

$$\pi(L) = [1 - p + m(L)][R(L) - B(L)] - c(m(L))$$

• Symmetric Cournot equilibrium condition

$$l^* = \arg \max_{l_j} \left[\pi (l_j + (n-1)l^*) l_j \right]$$

Characterization of equilibrium (iii)

• Banks' profits per unit of loans

$$\pi(L) = [1 - p + m(L)][R(L) - B(L)] - c(m(L))$$

• Symmetric Cournot equilibrium condition

$$l^* = \arg \max_{l_j} \left[\pi (l_j + (n-1)l^*) l_j \right]$$

 \rightarrow Equilibrium total lending $L^* = nl^*$

Proposition 2

• A decrease in safe rate R_0 leads to an increase in total lending L^*

 \rightarrow Lower rates are always expansionary

$$\frac{dm^*}{dR_0} = \frac{\partial m^*}{\partial L^*} \frac{\partial L^*}{\partial R_0} + \frac{\partial m^*}{\partial R_0}$$

$$\frac{dm^*}{dR_0} = \frac{\partial m^*}{\partial L^*} \frac{\partial L^*}{\partial R_0} + \frac{\partial m^*}{\partial R_0}$$

$$\frac{dm^*}{dR_0} = \frac{\partial m^*}{\partial L^*} \frac{\partial L^*}{\partial R_0} + \frac{\partial m^*}{\partial R_0}$$

$$\frac{dm^*}{dR_0} = \frac{\partial m^*}{\partial L^*} \frac{\partial L^*}{\partial R_0} + \frac{\partial m^*}{\partial R_0} \frac{\partial R_0}{\partial R_0}$$

$$\frac{dm^*}{dR_0} = \frac{\partial m^*}{\partial L^*} \frac{\partial L^*}{\partial R_0} + \frac{\partial m^*}{\partial R_0}$$

- First term: *lending rate effect*
 - \rightarrow Higher safe rates reduce lending
 - \rightarrow Increase loan rates and intermediation margin

• Effect of changes in safe rate R_0 on equilibrium monitoring m^*

$$\frac{dm^*}{dR_0} = \frac{\partial m^*}{\partial L^*} \frac{\partial L^*}{\partial R_0} + \frac{\partial m^*}{\partial R_0}$$

- First term: *lending rate effect*
 - \rightarrow Higher safe rates reduce lending
 - \rightarrow Increase loan rates and intermediation margin
- Second term: *funding rate effect*

 \rightarrow Higher safe rates increase borrowing costs

 \rightarrow Decrease intermediation margin

• The sign of the effect depends on the number of banks n

- The sign of the effect depends on the number of banks n
- Under monopoly (n = 1) a decrease in safe rate R_0 leads to

 \rightarrow an increase in monitoring m^*

 \rightarrow a decrease in the probability of loan default $PD = p - m^*$

- The sign of the effect depends on the number of banks n
- Under monopoly (n = 1) a decrease in safe rate R_0 leads to \rightarrow an increase in monitoring m^*

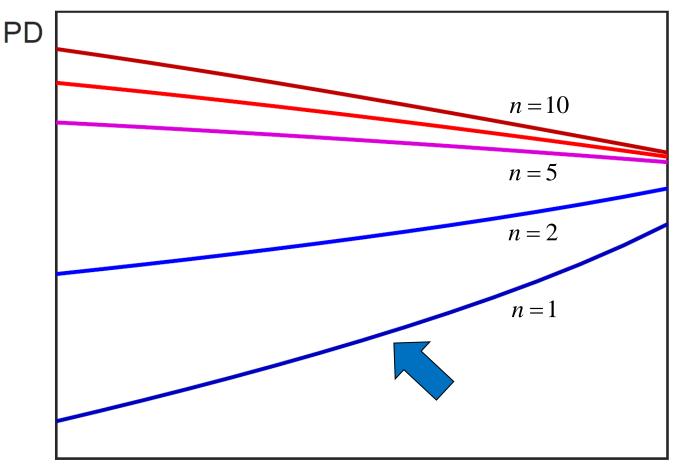
 \rightarrow a decrease in the probability of loan default $PD = p - m^*$

• Under competition $(n \rightarrow \infty)$ a decrease in safe rate R_0 leads to

 \rightarrow a decrease in monitoring m^*

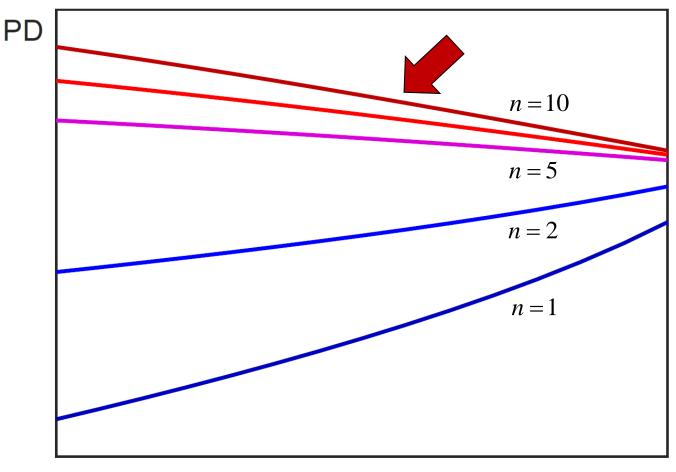
 \rightarrow an increase in the probability of loan default $PD = p - m^*$

Positive slope in monopolistic environments



R₀

Negative slope in competitive environments



R₀

What's the intuition?

- Refer to literature on **pass-through** in Cournot oligopoly
- With competition lower costs have little impact on margins
 - \rightarrow As loan rates are very sensitive to changes in safe rate
 - \rightarrow In our case margins (and monitoring) go down
 - \rightarrow Riskier banks

What's the intuition?

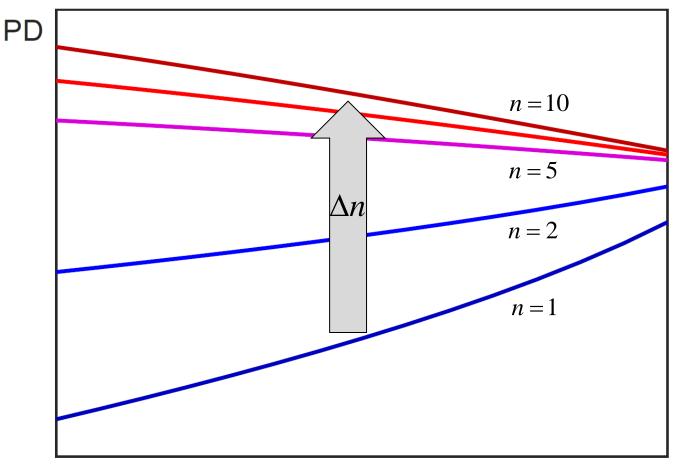
- Refer to literature on **pass-through** in Cournot oligopoly
- With competition lower costs have little impact on margins
 - \rightarrow As loan rates are very sensitive to changes in safe rate
 - \rightarrow In our case margins (and monitoring) go down
 - \rightarrow Riskier banks
- With monopoly lower costs have large impact on margins
 - \rightarrow As loan rates do not react much to changes in safe rate
 - \rightarrow In our case margins (and monitoring) go up
 - \rightarrow Safer banks

Summing up

• Competition increases banks' risk-taking

 \rightarrow Standard "charter value" result

Higher risk in competitive environments



R₀

Summing up

• Competition increases banks' risk-taking

 \rightarrow Standard "charter value" result

• With high competition lower rates **increase** banks' risk-taking

 \rightarrow "Search for Yield" result

Summing up

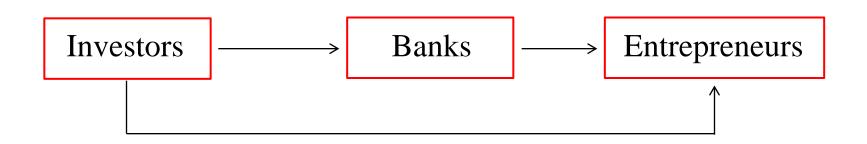
- Competition increases banks' risk-taking
 - \rightarrow Standard "charter value" result
- With high competition lower rates increase banks' risk-taking
 → "Search for Yield" result
- With low competition lower rates decrease banks' risk-taking
 → Novel result

Part 2

Model with a competitive bond market

Intermediated finance

Intermediated finance



Direct market finance

• Suppose that entrepreneurs can also borrow from the market

 \rightarrow Bond financing (directly provided by investors)

- Suppose that entrepreneurs can also borrow from the market
 → Bond financing (directly provided by investors)
- Assume that market finance entails no monitoring

 \rightarrow Market interest rate R_M satisfies zero profit condition

$$(1-p)R_M = R_0 \rightarrow R_M = \frac{R_0}{1-p}$$

- Suppose that entrepreneurs can also borrow from the market
 → Bond financing (directly provided by investors)
- Assume that market finance entails no monitoring

 \rightarrow Market interest rate R_M satisfies zero profit condition

$$(1-p)R_M = R_0 \rightarrow R_M = \frac{R_0}{1-p}$$

 \rightarrow Upper bound on the rate that banks can charge

- Suppose that entrepreneurs can also borrow from the market
 → Bond financing (directly provided by investors)
- Assume that market finance entails no monitoring

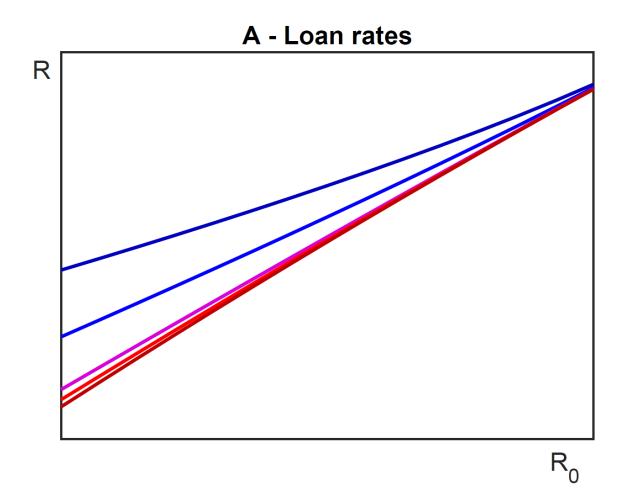
 \rightarrow Market interest rate R_M satisfies zero profit condition

$$(1-p)R_M = R_0 \rightarrow R_M = \frac{R_0}{1-p}$$

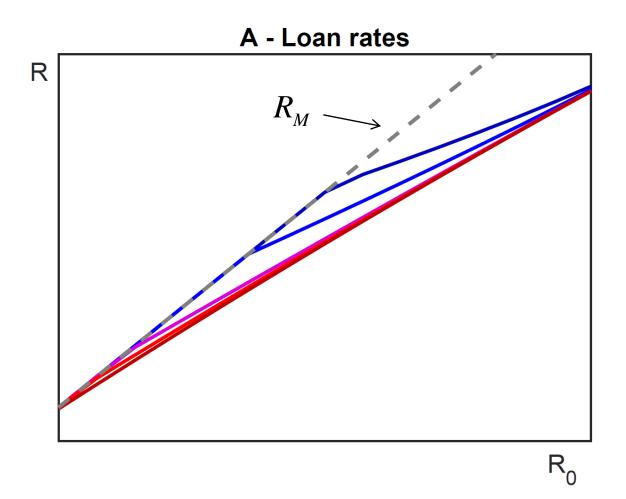
 \rightarrow Upper bound on the rate that banks can charge

 \rightarrow When will the bound be binding?

Effect of market finance on loan rates



Effect of market finance on loan rates



Characterization of binding equilibrium

• When the bound is binding banks will choose L_M such that

 $R_M = R(L_M)$

Characterization of binding equilibrium

• When the bound is binding banks will choose L_M such that

$$R_M = R(L_M)$$

• Equilibrium characterized by

 \rightarrow Banks' choice of monitoring

$$m(B) = \arg\max_{m} \left[(1 - p + m)(R_{M} - B) - c(m) \right]$$

Characterization of binding equilibrium

• When the bound is binding banks will choose L_M such that

$$R_M = R(L_M)$$

• Equilibrium characterized by

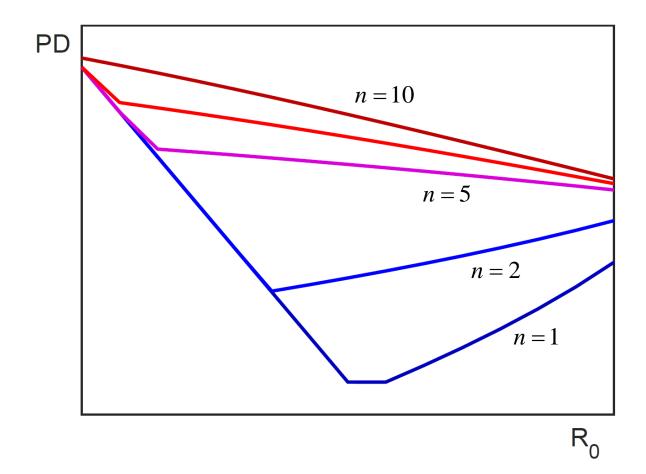
 \rightarrow Banks' choice of monitoring

$$m(B) = \arg\max_{m} \left[(1 - p + m)(R_{M} - B) - c(m) \right]$$

 \rightarrow Investors' participation constraint

$$[1-p+m(B)]B=R_0$$

Effect of market finance on risk-taking



Summing up (i)

- Competition with bond market
 - \rightarrow Limits bank's market power
 - \rightarrow Reduces equilibrium loan rates and intermediation margins
 - \rightarrow Reduces monitoring and increases banks' risk-taking

Summing up (i)

- Competition with bond market
 - \rightarrow Limits bank's market power
 - \rightarrow Reduces equilibrium loan rates and intermediation margins
 - → Reduces monitoring and increases banks' risk-taking
- Constraint is binding when interest rates are low

→ In such case lower rates increase banks' risk-taking

Summing up (ii)

- In monopolistic markets
 - \rightarrow U-shaped relationship between safe rates and risk-taking
 - \rightarrow Decreasing for low rates (when constraint is binding)
 - \rightarrow Increasing for high rates (when constraint is not binding)

Part 3

Dynamic model with bank capital

- What happens when banks can adjust their leverage?
 - \rightarrow In response to changes in safe rate
 - \rightarrow Dell'Ariccia et al. (2014)

- What happens when banks can adjust their leverage?
 - \rightarrow In response to changes in safe rate
 - \rightarrow Dell'Ariccia et al. (2014)
- Model with (inside) equity capital
 - \rightarrow Provided by long-lived agents taking monitoring decisions

- What happens when banks can adjust their leverage?
 - \rightarrow In response to changes in safe rate
 - \rightarrow Dell'Ariccia et al. (2014)
- Model with (inside) equity capital
 - \rightarrow Provided by long-lived agents taking monitoring decisions

 \rightarrow Shareholders' discount rate $R_0 + \delta$

- What happens when banks can adjust their leverage?
 - \rightarrow In response to changes in safe rate
 - \rightarrow Dell'Ariccia et al. (2014)
- Model with (inside) equity capital
 - \rightarrow Provided by long-lived agents taking monitoring decisions
 - \rightarrow Shareholders' discount rate $R_0 + \delta$
 - \rightarrow Excess cost of capital $\delta > 0$

Structure of the game (i)

• Four stages at each date *t*

1. Each bank *j* sets supply of loans l_j

 \rightarrow This determines total supply of loans $L = \sum_{i=1}^{n} l_i$

 \rightarrow and the loan rate R = R(L)

Structure of the game (i)

• Four stages at each date t

1. Each bank *j* sets supply of loans l_j \rightarrow This determines total supply of loans $L = \sum_{j=1}^{n} l_j$ \rightarrow and the loan rate R = R(L)

2. Bank *j* chooses its capital per unit of loans k_i

Structure of the game (i)

- Four stages at each date t
 - 1. Each bank *j* sets supply of loans l_j \rightarrow This determines total supply of loans $L = \sum_{j=1}^{n} l_j$ \rightarrow and the loan rate R = R(L)
 - 2. Bank *j* chooses its capital per unit of loans k_i
 - 3. Bank *j* offers interest rate B_j to outside investors
 - 4. Bank *j* (privately) chooses monitoring intensity m_i

Structure of the game (ii)

- With probability $p m_j$ bank *j* fails in which case
 - \rightarrow It loses its charter value
 - \rightarrow A new bank enters the market

Structure of the game (ii)

- With probability $p m_j$ bank *j* fails in which case
 - \rightarrow It loses its charter value
 - \rightarrow A new bank enters the market
 - \rightarrow Total number of banks is always *n*

Two limit cases (i)

• When excess cost of capital $\delta = 0$

 \rightarrow Banks will be fully funded with equity capital (k = 1)

Two limit cases (i)

• When excess cost of capital $\delta = 0$

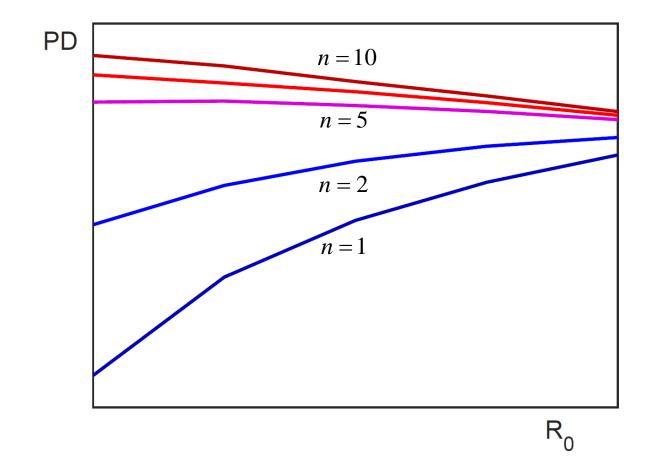
 \rightarrow Banks will be fully funded with equity capital (k = 1)

 \rightarrow Moral hazard problem disappears

Two limit cases (i)

- When excess cost of capital $\delta = 0$
 - \rightarrow Banks will be fully funded with equity capital (k = 1)
 - \rightarrow Moral hazard problem disappears
 - \rightarrow Same qualitative results as in benchmark model

Zero excess cost of capital



Two limit cases (ii)

• When excess cost of capital $\delta \to \infty$

 \rightarrow Banks will have no equity capital (k = 0)

Two limit cases (ii)

• When excess cost of capital $\delta \to \infty$

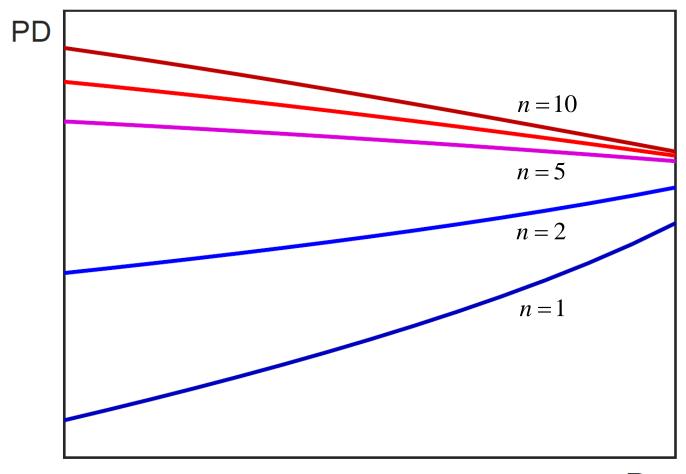
 \rightarrow Banks will have no equity capital (k = 0)

 \rightarrow Charter value equals zero (since discount rate is $+\infty$)

Two limit cases (ii)

- When excess cost of capital $\delta \to \infty$
 - \rightarrow Banks will have no equity capital (k = 0)
 - \rightarrow Charter value equals zero (since discount rate is $+\infty$)
 - \rightarrow Identical to (static) benchmark model

Infinite excess cost of capital



R₀

• What happens when $0 < \delta < \infty$?

• What happens when $0 < \delta < \infty$?

 \rightarrow Symmetric Cournot equilibrium of dynamic game

• What happens when $0 < \delta < \infty$?

 \rightarrow Symmetric Cournot equilibrium of dynamic game

• Solution steps

 \rightarrow Solve stages 3 and 4 to get monitoring m(L, v, k)where v is charter value per unit of loans

• What happens when $0 < \delta < \infty$?

→ Symmetric Cournot equilibrium of dynamic game

• Solution steps

→ Solve stages 3 and 4 to get monitoring m(L, v, k)
 where v is charter value per unit of loans
 → Solve stage 2 to get capital k(L, v) and profits π(L, v)

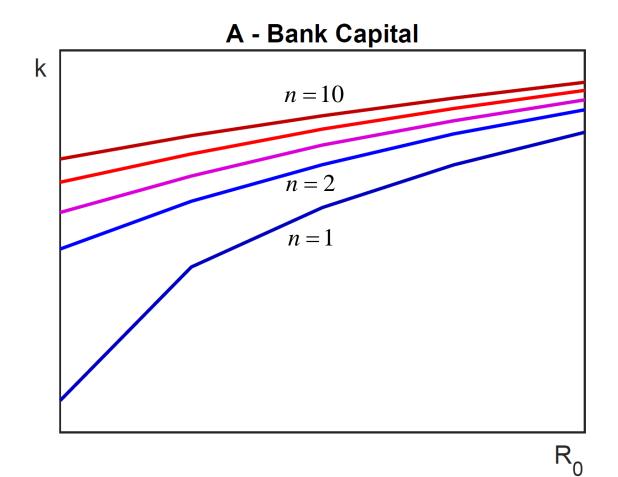
- What happens when $0 < \delta < \infty$?
 - → Symmetric Cournot equilibrium of dynamic game
- Solution steps
 - → Solve stages 3 and 4 to get monitoring m(L, v, k)where v is charter value per unit of loans
 - \rightarrow Solve stage 2 to get capital k(L, v) and profits $\pi(L, v)$
 - \rightarrow Solve stage 1 to get Cournot equilibrium lending *L* using Bellman equation for charter value *V*

• Lower safe rate R_0 leads to

 \rightarrow Lower capital per unit of loans k – **leverage effect**

- Lower safe rate R_0 leads to
 - \rightarrow Lower capital per unit of loans k **leverage effect**
 - \rightarrow Lower skin in the game and higher risk-taking incentives

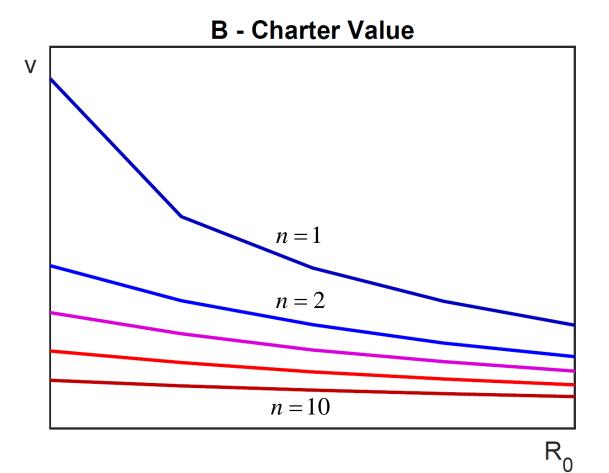
Leverage effect



- Lower safe rate R_0 leads to
 - \rightarrow Lower capital per unit of loans k **leverage effect**
 - \rightarrow Lower skin in the game and higher risk-taking incentives
- Lower safe rate R_0 leads to
 - \rightarrow Higher charter value V charter value effect

- Lower safe rate R_0 leads to
 - \rightarrow Lower capital per unit of loans k **leverage effect**
 - \rightarrow Lower skin in the game and higher risk-taking incentives
- Lower safe rate R_0 leads to
 - \rightarrow Higher charter value V charter value effect
 - \rightarrow Higher survival payoff and lower risk-taking incentives

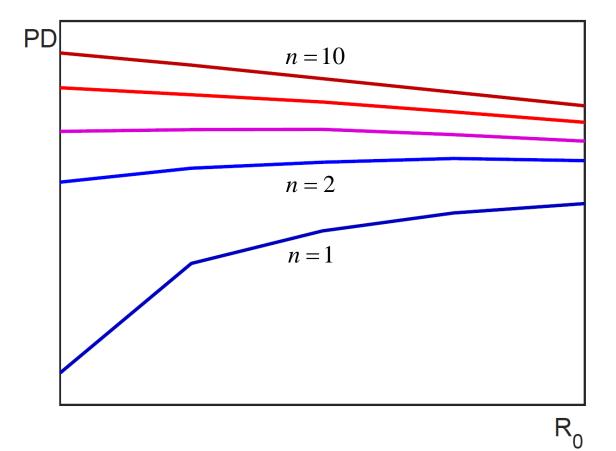
Charter value effect



- Lower safe rate R_0 leads to
 - \rightarrow Lower capital per unit of loans k **leverage effect**
 - \rightarrow Lower skin in the game and higher risk-taking incentives
- Lower safe rate R_0 leads to
 - \rightarrow Higher charter value V charter value effect
 - \rightarrow Higher survival payoff and lower risk-taking incentives
- Which effect dominates?

 \rightarrow Depends on the number of banks *n*

Positive excess cost of capital: risk-taking



Summing up

- Dynamic model with costly equity capital
 - \rightarrow Bank failure entails losing charter
 - \rightarrow New bank enters the market upon failure
 - \rightarrow Total number of banks is always *n*

Summing up

- Dynamic model with costly equity capital
 - \rightarrow Bank failure entails losing charter
 - \rightarrow New bank enters the market upon failure
 - \rightarrow Total number of banks is always *n*
- Two effects of lower safe rates
 - \rightarrow Higher leverage and higher risk-taking
 - \rightarrow Higher charter values and lower risk-taking

Summing up

- Dynamic model with costly equity capital
 - \rightarrow Bank failure entails losing charter
 - \rightarrow New bank enters the market upon failure
 - \rightarrow Total number of banks is always *n*
- Two effects of lower safe rates
 - \rightarrow Higher leverage and higher risk-taking
 - \rightarrow Higher charter values and lower risk-taking
 - \rightarrow Charter value effect dominates when *n* is small

Part 4 Three extensions

Three extensions

- Back to static benchmark model
 - \rightarrow No inside equity capital and no charter values
- Extensions
 - → Heterogeneous monitoring costs
 - \rightarrow Insured deposits
 - \rightarrow Endogenous deposit rates

Part 4a

• Two observable types of banks: high and low monitoring costs

- Two observable types of banks: high and low monitoring costs
- Main results: effects of lower safe rates

 \rightarrow Market share of high cost banks increases

- Two observable types of banks: high and low monitoring costs
- Main results: effects of lower safe rates
 - \rightarrow Market share of high cost banks increases
 - \rightarrow High cost banks are safer
 - \rightarrow Low cost banks are riskier

- Two observable types of banks: high and low monitoring costs
- Main results: effects of lower safe rates
 - \rightarrow Market share of high cost banks increases
 - \rightarrow High cost banks are safer
 - \rightarrow Low cost banks are riskier
 - \rightarrow Average PD goes up (because of composition effect)

- Two observable types of banks: high and low monitoring costs
- Main results: effects of lower safe rates
 - \rightarrow Market share of high cost banks increases
 - \rightarrow High cost banks are safer
 - \rightarrow Low cost banks are riskier
 - \rightarrow Average PD goes up (because of composition effect)
- Results closer to model with low market power

Part 4b Insured deposits

Insured deposits

• With insured deposits banks are funded at safe rate: $B(L) = R_0$

 \rightarrow Simpler model

Insured deposits

- With insured deposits banks are funded at safe rate: $B(L) = R_0$
 - \rightarrow Simpler model
- Main results
 - \rightarrow Lower safe rates always lead to higher margins
 - \rightarrow Lower probability of default

Insured deposits

- With insured deposits banks are funded at safe rate: $B(L) = R_0$
 - \rightarrow Simpler model
- Main results
 - \rightarrow Lower safe rates always lead to higher margins
 - \rightarrow Lower probability of default
- Results similar to model with high market power

Part 4c

Endogenous deposit rates

Cournot competition in deposit market

• Introduce linear inverse supply function of deposits

Cournot competition in deposit market

- Introduce linear inverse supply function of deposits
- Cournot competition for deposits and loans

 \rightarrow Balance sheet constraint $l_j = d_j$

Cournot competition in deposit market

- Introduce linear inverse supply function of deposits
- Cournot competition for deposits and loans

 \rightarrow Balance sheet constraint $l_j = d_j$

- Similar results as those of the original model
 - \rightarrow With high competition lower rates increase risk-taking
 - \rightarrow With low competition lower rates decrease risk-taking

Concluding remarks

Concluding remarks (i)

- Market structure shapes effect of safe rates on financial stability
 - \rightarrow With high competition: lower rates imply riskier banks
 - \rightarrow With low competition: lower rates imply safer banks

Concluding remarks (i)

- Market structure shapes effect of safe rates on financial stability
 - \rightarrow With high competition: lower rates imply riskier banks
 - \rightarrow With low competition: lower rates imply safer banks
- Results are consistent with "charter value" hypothesis

 \rightarrow Competition always increases banks' risk-taking

Concluding remarks (ii)

- Results show that you can have higher credit and lower risk
- When banks have significant market power
 - \rightarrow Lower rates increase lending and decrease risk-taking
 - \rightarrow No trade-off between credit and financial stability

Testable implications (i)

• Model yields key testable implication

$$Risk = \alpha + \beta_0 R_0 + \beta_1 HHI + \beta_2 R_0 * HHI + Controls$$

 \rightarrow where *HHI* = Herfindahl index = 1/n

Testable implications (ii)

• Other testable implications

 \rightarrow Nonlinear effect of direct market finance

$$Risk = \alpha + \beta_0 R_0 + \beta_1 HHI + \beta_2 R_0 * HHI + \beta_3 R_0^2 * HHI + \beta_4 R_0 * D + Controls$$

Testable implications (ii)

• Other testable implications

 \rightarrow Nonlinear effect of direct market finance

 \rightarrow Effect of proportion *D* of insured deposits

 $Risk = \alpha + \beta_0 R_0 + \beta_1 HHI + \beta_2 R_0 * HHI + \beta_3 R_0^2 * HHI + \beta_4 R_0 * D + Controls$

Some references

- Dell'Ariccia, L. Laeven, and R. Marquez (2014), "Real Interest Rates, Leverage, and Bank Risk-Taking," *Journal of Economic Theory*.
- Dell'Ariccia, L. Laeven, and G. Suarez (2017), "Bank Leverage and Monetary Policy's Risk-Taking Channel," *Journal of Finance*.
- Drechsler, I., A. Savov, and P. Schnabl (2017), "The Deposits Channel of Monetary Policy," *Quarterly Journal of Economics*.
- Hellmann, T., K. Murdock, and J. Stiglitz (2000), "Liberalization, Moral Hazard in Banking, and Prudential Regulation," *American Economic Review*.
- Jimenez, G., S. Ongena, J.-L. Peydro, and J. Saurina (2014), "Hazardous Times for Monetary Policy," *Econometrica*.
- Martinez-Miera, D., and R. Repullo (2017), "Search for Yield," *Econometrica*.
- Repullo, R. (2004), "Capital Requirements, Market Power, and Risk-Taking in Banking," *Journal of Financial Intermediation*.