Mortgage Borrowing Caps: Leverage, Default and Welfare

João Oliveira (Nova SBE)

Leonor Queiró (Banco de Portugal)

Disclaimer: The views expressed are those of the authors and not necessarily those of Banco de Portugal or the Eurosystem.

- Expansion of **mortgage debt** in Portugal
 - Housing loans / disposable income: 27% in 1997 Q4 \rightarrow 83% in 2012 Q1

- Expansion of **mortgage debt** in Portugal
 - Housing loans / disposable income: 27% in 1997 Q4 → 83% in 2012 Q1
- Increase in **default** rate
 - Default rate: 1.3% in 2008 Q1 \rightarrow 2.7% in 2016 Q3

- Expansion of **mortgage debt** in Portugal
 - Housing loans / disposable income: **27%** in 1997 Q4 \rightarrow **83%** in 2012 Q1
- Increase in **default** rate
 - Default rate: 1.3% in 2008 Q1 \rightarrow 2.7% in 2016 Q3
- **Policy** reaction:
 - Macroprudential policy in 2018: caps on LTV and PTI ratios

- Expansion of **mortgage debt** in Portugal
 - Housing loans / disposable income: **27%** in 1997 Q4 \rightarrow **83%** in 2012 Q1
- Increase in **default** rate
 - Default rate: 1.3% in 2008 Q1 \rightarrow 2.7% in 2016 Q3
- **Policy** reaction:
 - Macroprudential policy in 2018: caps on LTV and PTI ratios

"Enhance the resilience of the financial sector and the sustainability of households' financing, thereby minimizing defaults".

Question

• What is the long run impact of borrowing caps on household indebtedness, default and house prices?

Question

• What is the long run impact of borrowing caps on household indebtedness, default and house prices?

• What are the welfare implications of borrowing caps?

Relevance

- Widespread use of household borrowing caps:
 - ¾ of European Union Member States with limits on consumer loan contracts by 2018 (ESRB (2019));

Relevance

- Widespread use of household borrowing caps:
 - ¾ of European Union Member States with limits on consumer loan contracts by 2018 (ESRB (2019));
 - Dodd-Frank act in the U.S. included an "Ability-to-Repay" rule, which increases the cost of originating high leverage loans (Defusco et al. 2020);

Relevance

- Widespread use of household borrowing caps:
 - ¾ of European Union Member States with limits on consumer loan contracts by 2018 (ESRB (2019));
 - Dodd-Frank act in the U.S. included an "Ability-to-Repay" rule, which increases the cost of originating high leverage loans (Defusco et al. 2020);
 - Total of sixty economies have enacted some form of explicit limit on household lending standards since 1990 (Acharya et al. 2020).

Approach

- Study the specific macroprudential policy introduced in Portugal in 2018
 - LTV and PTI caps on mortgage loan contracts at origination

• Build a calibrated **structural model** with housing, rental markets, endogenous house prices and long-term defaultable mortgages

 Quantify aggregate effects as well as effects along the income and wealth distributions

Additionally...

- Through the structural calibrated model:
 - Quantify the effect of each borrowing cap **separately**;
 - Quantify the effect of **different** borrowing cap **levels**;

Additionally...

- Through the structural calibrated model:
 - Quantify the effect of each borrowing cap **separately**;
 - Quantify the effect of **different** borrowing cap **levels**;
 - Quantify the response of the economy to exogenous shocks with and without caps.

- Empirically:
 - Use loan-level data to document the distribution of LTV and PTI ratios on new mortgage loans in Portugal.

Main findings

- Between steady states:
 - Mortgage debt / Outupt: -31%
 - LTV ratio: -27%
 - Mortgage default rate: -94%
 - House prices: -2%

Main findings

- Between steady states:
 - Mortgage debt / Outupt: -31%
 - LTV ratio: -27%
 - Mortgage default rate: -94%
 - House prices: -2%
- Welfare
 - -1.9% CEV (wealth and income-poor households most affected)

Mechanism behind findings

- Impact comes mostly from LTV cap and low interest rates
 - LTV cap : home equity $\uparrow \rightarrow$ incentive to default \downarrow

Mechanism behind findings

- Impact comes mostly from LTV cap and low interest rates
 - LTV cap : home equity $\uparrow \rightarrow$ incentive to default \downarrow
 - PTI cap + idiosyncratic risk: LTV $\uparrow \rightarrow$ incentive to default \uparrow (*pre-emptive borrowing*)

Borrowing caps policy

Policy enacted in Portugal

- Macroprudential policy
 - Announced in February 2018 and implemented in July 2018
- Scope:
 - All financial institutions granting consumer credit in Portugal
 - New loans for house pruchase, mortgages and consumption loans
- Goal:
 - "Enhance the resilience of the financial sector and the sustainability of households' financing, thereby minimizing defaults".

Policy details

Regulation	Scope	Сар
LTV cap	Household permanent residence	\leq 90%
	Other purposes	\leq 80%
	Property owned by the financial institution	\leq 100%
PTI cap	Loans (except credit cards)	\leq 50%
Maturity cap	Housing Auto loans, education, renewable energy Other consumer credit	\leq 40 years \leq 10 years \leq 7 years

From policy to model

- LTV cap
 - On loans for house purchase with real estate guarantee

 $\frac{Loan}{Value \ of \ house} \le 0.9$

• PTI cap

• On all non-credit card consumer credit

 $\frac{Loan \ payments}{After-tax \ labor \ income} \leq 0.5$

Data

Data

• Central Credit Register of Banco de Portugal (2019)

- Loan-level information on loan characteristics
- All loans granted to households by domestic institutions
- Banking Conduct Supervision reporting (2017)
 - Loan-level information on loan characteristics
 - Demographic features of borrower
 - Mortgages granted by domestic institutions

Data

• Central Credit Register of Banco de Portugal (2019)

- Loan-level information on loan characteristics
- All loans granted to households by domestic institutions
- Banking Conduct Supervision reporting (2017)
 - Loan-level information on loan characteristics
 - Demographic features of borrower
 - Mortgages granted by domestic institutions
- Concept of mortgage credit
 - Purpose: purchase of household's main residence
 - Collateral: household's main residene; no guarantors.

Empirical documentation

LTV distribution (new mortgage loans)

PTI distribution (new mortgage loans)

Table: Share of new loans (percent)

 $\mathsf{PTI} \leq \mathsf{50} \quad \mathsf{50} < \mathsf{PTI} \leq \mathsf{60} \quad \mathsf{PTI} > \mathsf{60}$

$LTV \leq 80$	38	4	6
$80 < LTV \leq 90$	10	2	2
90 < LTV	27	5	7

- 39% of new loans above LTV cap
- 26% of new loans above PTI cap

Table: Share of new loans (percent)

 $\mathsf{PTI} \leq 50 \quad 50 < \mathsf{PTI} \leq 60 \quad \mathsf{PTI} > 60$

$LTV \le 80$	38	4	6
$80 < LTV \leq 90$	10	2	2
90 < LTV	27	5	7

- 39% of new loans above LTV cap
- 26% of new loans above PTI cap
- 53% of new mortgage loans above caps

Table: Share of new loans (percent) $PTI \le 50$ $50 < PTI \le 60$ PTI > 60 $LTV \le 80$ 3930 $80 < LTV \le 90$ 533190 < LTV100

- 1% of new loans above LTV cap
- 7% of new loans above PTI cap

Table: Share of new loans (percent) $PTI \le 50$ $50 < PTI \le 60$ PTI > 60 $LTV \le 80$ 3930 $80 < LTV \le 90$ 533190 < LTV100

- 1% of new loans above LTV cap
- 7% of new loans above PTI cap
- 8% of new mortgage loans above caps

Structural model in the tradition of Hatchondo et al. (2015), Favilukis et al. (2017) and Kaplan et al. (2020)

• Households:

- OLG + idiosyncratic labor income risk + retirement
- Utility over consumption of non-durables and housing services
- Assets: risk-free bond and housing
- Mortgage loans: long-run, defaultable, subject to recourse

- Financial intermediaries
 - Competitive pricing (zero expected profits in each contract)
 - Exogenous LTV and PTI caps on mortgages at origination
 - Exogenous maturity (until death of household)
- Non-durable consumption goods sector
 - Production function: $F(K, N) = K^{\alpha} N^{1-\alpha}$
- Construction Sector
 - Production function: $Y_h = A_h L^{\varphi} Z^{1-\varphi}$

- Rental sector
 - Owns and rents housing units
 - Determines rental rate ρ
- Government
 - Taxes properties, consumption, labor and rental income
 - Issues land permits (\overline{L}), provides free housing and manages social security
Equilibrium definition

- Recursive stationary competitive equilibrium: set of value functions, policies and prices such that:
 - Invariant household distribution
 - Households optimize
 - Markets clear
 - Government budget constraint holds

Results

Model fit: LTV and PTI at origination

Model fit: Life-cycle homeownership and LTV

- Low homeownership at the start of life;
- High LTV at the start of life.

Model fit: Life-cycle Debt Financing and Net Worth

(c) Share of homeowners with mortgage across (d) Net worth life-cycle life-cycle

- Decline in extensive margin of debt over the life cycle;
- Accumulation of net worth over the life cycle.

Impact of borrowing caps

- Main policy experiment
 - LTV: $1.2 \rightarrow 0.9$
 - PTI: $1.2 \rightarrow 0.5$

Impact of caps: Aggregate results

	Baseline	Both caps
Leverage and foreclosure		
Mortgage debt to GDP	0.48	0.33
Share of homeowners w/ mortgage	0.51	0.46
LTV	0.41	0.30
Foreclosure rate (%)	0.53	0.03
Homeownership and prices		
Homeownership rate	0.78	0.71
House price	1.00	0.98
Mortgage interest rate (%)	1.11	1.13

- Mortgage debt / GDP: -31%
- Foreclosure rate: -94%

Impact of caps: Aggregate results

	Baseline	Both caps	LTV cap
Leverage and foreclosure			
Mortgage debt to GDP	0.48	0.33	0.33
Share of homeowners w/ mortgage	0.51	0.46	0.46
LTV	0.41	0.30	0.30
Foreclosure rate (%)	0.53	0.03	0.03
Homeownership and prices			
Homeownership rate	0.78	0.71	0.70
House price	1.00	0.98	0.98
Mortgage interest rate (%)	1.11	1.13	1.13

• LTV cap accounts for total fall in debt and foreclosure

Impact of caps: Aggregate results

	Baseline	Both caps	LTV cap	PTI cap
Leverage and foreclosure				
Mortgage debt to GDP	0.48	0.33	0.33	0.50
Share of homeowners w/ mortgage	0.51	0.46	0.46	0.54
LTV	0.41	0.30	0.30	0.42
Foreclosure rate (%)	0.53	0.03	0.03	0.55
Homeownership and prices				
Homeownership rate	0.78	0.71	0.70	0.81
House price	1.00	0.98	0.98	1.00
Mortgage interest rate (%)	1.11	1.13	1.13	1.11

- PTI cap raises Mortgage debt / GDP
- PTI cap raises the foreclosure rate

Impact of caps: Across income distribution

• Home ownership most affected in bottom quintiles

Impact of caps: Across income distribution

- Home ownership most affected in bottom quintiles
- Foreclosure limited to 1st quintile

Impact of caps: Across wealth distribution

• Home ownership impacted across all quintiles

Impact of caps: Across wealth distribution

- Home ownership impacted across all quintiles
- Foreclosure eliminated with LTV but rises with PTI in bottom quintile

Impact of caps: Welfare

	Both caps	LTV cap	PTI cap
Unborn	-1.1	-1.1	0.0
Unborn (transition)	-1.9	-1.9	0.0
Average	-0.1	-0.1	0.0
Average (transition)	-0.3	-0.3	0.0

 Constrained credit access → Higher welfare costs (in CEV) for households entering the economy

Impact of caps: Welfare across distribution

- Welfare **costs** for bottom quintiles of income and wealth distributions
- A complete welfare analysis would require aggregate risk in the model

Impact of caps: Alternative LTV levels

- Linear effect on home ownership
- Linear effect on intensive and extensive margins of mortgage choice

Impact of caps: Alternative LTV levels

- Linear effect on home ownership
- Linear effect on intensive and extensive margins of mortgage choice

Impact of caps: Alternative PTI levels

- Minimal impact of PTI cap on home ownership
- Lowering PTI cap increases Mortgage / GDP ratio

Impact of caps: Alternative PTI levels

- Minimal impact of PTI cap on home ownership
- Lowering PTI cap increases Mortgage / GDP ratio

- We calibrate a structural model of mortgage debt and default to the Portuguese economy
- Document empirical distribution of LTV and PTI

- We calibrate a structural model of mortgage debt and default to the Portuguese economy
- Document empirical distribution of LTV and PTI
- LTV caps reduce indebtedness and the default rate, but have welfare costs
- PTI caps can restrict default if set at stricter values, but raise aggregate debt if set in isolation

- We calibrate a structural model of mortgage debt and default to the Portuguese economy
- Document empirical distribution of LTV and PTI
- LTV caps reduce indebtedness and the default rate, but have welfare costs
- PTI caps can restrict default if set at stricter values, but raise aggregate debt if set in isolation
- Welfare costs centered around lowest quintiles of income and wealth distributions
- Welfare analysis limited by absence of aggregate risk in the model

- We calibrate a structural model of mortgage debt and default to the Portuguese economy
- Document empirical distribution of LTV and PTI
- LTV caps reduce indebtedness and the default rate, but have welfare costs
- PTI caps can restrict default if set at stricter values, but raise aggregate debt if set in isolation
- Welfare costs centered around lowest quintiles of income and wealth distributions
- Welfare analysis limited by absence of aggregate risk in the model
- Next step: add aggregate risk

Thank you

Exogenous shock 1: House price crash

- No caps: temporary rise in foreclosures as prices drop, but quick price recovery
- Caps: foreclosures unchanged, but longer house price recovery

Exogenous shock 2: Monetary policy tightening

- No caps: faster recovery of house market, but foreclosures and debt increase
- Caps: house prices drop; foreclosure rate rises, but rapidly returns to zero

Annex

• Preferences

Expected lifetime utility:
$$\mathbb{E}_0\left[\sum_{j=1}^J \beta^{j-1} \left[S_j u_j(c_j, s_j) + (1 - S_j)v(b)\right]\right],$$
 (1)

Period utility:
$$u_j = \frac{e_j [(1-\varphi)c_j^{1-\gamma} + \varphi s_j^{1-\gamma}]^{\frac{1-\vartheta}{1-\gamma}} - 1}{1-\vartheta},$$
 (2)

Utility from bequests:
$$v(b) = \nu \frac{(b - \underline{b})^{1 - \vartheta} - 1}{1 - \vartheta}$$
, (3)

• Endowment

$$\ln y_j^w = \ln w + a + f_j + \varepsilon_j, \tag{4}$$

- $j = age; y_j^w = labour income endowment$
- $\ln w + a$ = permanent component
- \in_j = persistent component
- f_j = age profile
- Bond:

One-period risk-free bond b_j with exogenous fixed price q_b and implied interest rate $r_b = \frac{1}{q_b} - 1$ set in the world market

- Housing
 - Own: $h \in \mathcal{H} = \{h^1, ..., h^N\}$ at price p_h , $s_j = \omega h_j$, $\omega > 1$

(5)

- Rent: $\tilde{h} \in \tilde{\mathcal{H}} = \{\tilde{h}^1, ..., \tilde{h}^{\tilde{N}}\}$ at price ρ , $s_j = \tilde{h}_j$
- Period expenses: $(\delta_h + \tau_h) p_h h_j$, δ_h = housing depreciation rate τ_h = property tax rate
- Transaction cost: $\kappa_h p_h h$

- Mortgages
 - Fixed origination cost: κ^m
 - Funds received: $q_j m_{j+1}$
 - Individual-specific price of the mortgage: q_j
 - Mortgage balance: m'
 - Base lending rate: $r_m = r_b(1 + \iota)$
 - Intermediation wedge: ι
 - Mortgage price: $q_j(\mathbf{x}_{j+1}, \mathbf{y}_j)$
 - All available characteristics of the borrower: $\mathbf{x}_{j+1} := (b_{j+1}, h_{j+1}, m_{j+1})$
 - Known elements of the labor productivity endowment process: $\mathbf{y}_j := (a, arepsilon_j)$
 - Down payment made by households: $p_h h_{j+1} q_j(\mathbf{x}_{j+1}, \mathbf{y}_j) m_{j+1}$

• τ = labor income tax liability

• Minimum installment:
$$\pi_j^{\min}(m_{j+1}) = m_{j+1} \frac{r_m (1+r_m)^{J-j}}{(1+r_m)^{J-j} - 1}$$
, (8)

- Refinancing: pay residual balance + origination cost
- Recourse: pay fraction κ_d of after-tax y_j and b_j if default occurs
 - Recourse payment: $\Phi = \min(\kappa_d [y_j \mathcal{T}(y_j) + b_j], m^d)$
- Sale price of foreclosed house by financial intermediary:

$$\Omega = (1 - \delta_h^d - \tau_h - \kappa_h) p_h h_h$$

where

$$\delta_h^d > \delta_h$$

Dynamic program of households

Problem of a non-homeowner

• Choice between continuing to rent or to buy a house

Problem of a non-homeowner

• Rent:

$$V_{j}^{r}(b_{j}, \mathbf{y}_{j}) = \max_{c_{j}, \tilde{h}_{j+1}, b_{j+1}} u_{j}(c_{j}, s_{j}) + \beta \mathbb{E}_{\varepsilon} \left[\mathbb{V}_{j+1}^{N}(b_{j+1}, \mathbf{y}_{j+1}) \right]$$
(A-1)
s.t.:
$$c_{j}(1 + \tau_{c}) + q_{b}b_{j+1} + \rho \tilde{h}_{j+1} \leq b_{j} + y_{j} - \mathcal{T}(y_{j}, \rho \tilde{h}_{j+1})$$

$$c_{j} \geq 0, b_{j+1} \geq 0, \ s_{j} = \tilde{h}_{j+1} \in \tilde{\mathcal{H}}, \ y_{j} \sim \Xi(\mathbf{y}_{j}).$$
• Buy:

$$\begin{split} V_{j}^{o}(b_{j},\mathbf{y}_{j}) &= \max_{c_{j},h_{j+1},b_{j+1},m_{j+1}} u_{j}(c_{j},s_{j+1}) + \beta \mathbb{E}_{\varepsilon} \left[\mathbb{V}_{j+1}^{H}(\mathbf{x}_{j+1},\mathbf{y}_{j+1}) \right] \quad (A-2) \\ s.t.: \\ c_{j}(1+\tau_{c}) + q_{b}b_{j+1} + p_{h}h_{j+1} + \kappa_{m}\mathbb{1}_{m_{j+1}>0} \leq \\ b_{j} + y_{j} - \mathcal{T}(y_{j},\rho\tilde{h}_{j+1}) + q_{j}(\mathbf{x}_{j+1},\mathbf{y}_{j})m_{j+1} \\ q_{j}(\mathbf{x}_{j+1},\mathbf{y}_{j})m_{j+1} \leq \lambda^{m}p_{h}h_{j+1} \quad (A-3) \\ q_{j}(\mathbf{x}_{j+1},\mathbf{y}_{j})m_{j+1} \leq \lambda^{m}p_{h}h_{j+1} \quad (A-4) \\ \pi_{j}^{\min}(m_{j+1}) \leq \lambda^{\pi}(y_{j} - \mathcal{T}) \quad (A-5) \\ c_{j} \geq 0, \ b_{j+1} \geq 0, \ s_{j} = \omega h_{j+1}, \ h_{j+1} \in \mathcal{H}, \ y_{j} \sim \Xi(\mathbf{y}_{j}) \end{split}$$

• Choice between paying mortgage (if it exists), refinancing, selling house and buy another one or renting one and defaulting

$$\mathbb{V}_{j}^{H}(\mathbf{x}_{j}, \mathbf{y}_{j}) = \max \begin{cases} \mathsf{Pay} : & V_{j}^{p}(\mathbf{x}_{j}, \mathbf{y}_{j}) \\ \mathsf{Refinance} : & V_{j}^{f}(\mathbf{x}_{j}, \mathbf{y}_{j}) \\ \mathsf{Sell} : & \mathbb{V}_{j}^{N}(b_{j}^{n}, \mathbf{y}_{j}) \\ \mathsf{Default} : & V_{j}^{d}(\mathbf{x}_{j}, \mathbf{y}_{j}) \end{cases}$$

• Pay

$$V_{j}^{p}(\mathbf{x}_{j}, \mathbf{y}_{j}) = \max_{c_{j}, b_{j+1}, \pi_{j}} u_{j}(c_{j}, s_{j}) + \beta \mathbb{E}_{\varepsilon} \left[\mathbb{V}_{j+1}^{H}(\mathbf{x}_{j+1}, \mathbf{y}_{j+1}) \right]$$
(A-7)
s.t.:

$$c_{j}(1 + \tau_{c}) + q_{b}b_{j+1} + (\delta_{h} + \tau_{h})p_{h}h_{j} + \pi_{j} \leq b_{j} + y_{j} - \mathcal{T}(y_{j}, 0)$$

$$\overset{\text{Maintenance and installment}}{\prod_{j=1}^{min} (m_{j}) \leq \pi_{j} \leq (1 + r_{m})m_{j}}$$
(A-8)

$$m_{j+1} = (1 + r_{m})m_{j} - \pi_{j}$$

$$c_{j} \geq 0, \ b_{j+1} \geq 0, \ s_{j} = \omega h_{j+1}, \ h_{j+1} = h_{j}, \ y_{j} \sim \Xi(\mathbf{y}_{j}).$$

• Refinance

$$V_{j}^{f}(\mathbf{x}_{j}, \mathbf{y}_{j}) = \max_{c_{j}, b_{j+1}, m_{j+1}} u_{j}(c_{j}, s_{j}) + \beta \mathbb{E}_{\varepsilon} \left[\mathbb{V}_{j+1}^{H}(\mathbf{x}_{j+1}, \mathbf{y}_{j+1}) \right]$$
(A-9)
s.t.:
$$c_{j}(1 + \tau_{c}) + q_{b}b_{j+1} + (\delta_{h} + \tau_{h})p_{h}h_{j} + (1 + r_{m})m_{j} + \kappa_{m}$$
$$\leq b_{j} + y_{j} - \mathcal{T}(y_{j}, 0) + q_{j}(\mathbf{x}_{j+1}, \mathbf{y}_{j})m_{j+1}$$
$$q_{j}(\mathbf{x}_{j+1}, \mathbf{y}_{j})m_{j+1} \leq \lambda^{m}p_{h}h_{j}$$
$$\pi_{j}^{\min}(m_{j+1}) \leq \lambda^{\pi}(y_{j} - \mathcal{T})$$
$$c_{j} \geq 0, \ b_{j+1} \geq 0, \ s_{j} = \omega h_{j+1}, \ h_{j+1} = h_{j}, m_{j+1} > m_{j}, \ y_{j} \sim \Xi(\mathbf{y}_{j}).$$

• Sell:
$$\mathbb{V}_{j}^{N}(b_{j}^{n},\mathbf{y}_{j})$$

where $b_{j}^{n} = b_{j} + (1 - \delta_{h} - \tau_{h} - \kappa_{h})p_{h}h_{j} - (1 + r_{m})m_{j},$ (A-6)
Net proceeds from sale

• Default:

$$V_{j}^{d}(\mathbf{x}_{j}, \mathbf{y}_{j}) = \max_{c_{j}, \tilde{h}_{j+1}, b_{j+1}} u_{j}(c_{j}, s_{j}) + \beta \mathbb{E}_{\varepsilon} \left[\mathbb{V}_{j+1}^{N}(b_{j+1}, \mathbf{y}_{j+1}) \right]$$
(A-10)
s.t.:
$$c_{j}(1 + \tau_{c}) + q_{b}b_{j+1} + \rho \tilde{h}_{j+1} \leq b_{j} + y_{j} - \mathcal{T}(y_{j}, \rho \tilde{h}_{j+1}) + \Phi$$
$$\Phi = \max\{(1 - \delta_{h}^{d} - \tau_{k} - \kappa_{h})p_{h}h_{j} - (1 + r_{m})m_{j}, -\kappa_{d}(b_{j} + y_{j} - \mathcal{T})\}$$
$$c_{j} \geq 0, \ b_{j+1} \geq 0, \ s_{j} = \tilde{h}_{j+1} \in \tilde{\mathcal{H}}, \ y_{j} \sim \Xi(\mathbf{y}_{j}),$$

Financial intermediaries

- Issue m_{j+1} with wedge ι over r_b
- Risk-neutral and competitive (zero-expected profits in each contract)
- Mortgage pricing function:

$$q_j(\mathbf{x}_{j+1}, \mathbf{y}_j) = \frac{1}{(1+r_m)m_{j+1}} \mathbb{E}_{\varepsilon} \{ q_{\mathsf{sell}} + q_{\mathsf{default}} + q_{\mathsf{pay}} \}.$$
(9)

• Payoffs:

$$q_{\text{sell}} = \left[g_{j+1}^n + g_{j+1}^f\right] (1 + r_m) m_{j+1} \tag{10}$$

$$q_{\mathsf{pay}} = \left[1 - g_{j+1}^n - g_{j+1}^f - g_{j+1}^d\right] \cdot \left(\pi_{j+1}(\mathbf{x}_{j+1}, \mathbf{y}_{j+1}) + q_{j+1}(\mathbf{x}_{j+2}, \mathbf{y}_{j+1}) \left[(1 + r_m)m_{j+1} - \pi_{j+1}(\mathbf{x}_{j+1}, \mathbf{y}_{j+1})\right]\right)$$
(11)

Financial intermediaries

$$q_{\text{default}} = g_{j+1}^{d} \cdot \left[\min\left\{ (1 - \delta_{h}^{d} - \tau_{h} - \kappa_{h}) p_{h}' h_{j+1}, m_{j+1} (1 + r_{m}) \right\} + \min\left\{ \kappa_{d} (b_{j+1} + y_{j+1} - \mathcal{T}), m_{j+1}^{\text{Collateral value}} - (1 - \delta_{h}^{d} - \tau_{h} - \kappa_{h}) p_{h}' h_{j+1} \right\} \right]$$

$$(12)$$

Recourse payment

Construction sector

- Problem: $\max_{Z} p_h A_h \bar{L}^{\varphi} Z^{1-\varphi} p_L \bar{L} Z.$ (15)
- Output given by: $Y_h = A_h L^{\varphi} Z^{1-\varphi}$, (14) • Z = Final goods input; \overline{L} = construction/land permits
- Eq. new housing given by:

$$Y_h = A_h^{\frac{1}{\varphi}} \left[p_h (1 - \varphi) \right]^{\frac{1 - \varphi}{\varphi}} \bar{L}, \tag{16}$$

• Eq. price of land:

$$p_L = \varphi (1 - \varphi)^{\frac{1 - \varphi}{\varphi}} (p_h A_h)^{\frac{1}{\varphi}}$$

Rental sector

• Equilibrium rental price:

Government

- Taxes labor and rental income, consumption and properties
- Issues new land permits (\overline{L})
- Wasteful government expenditure (G) and provision of public housing (H^G)
- Pension income before taxes until death:

$$y_{\rm ret} = \rho_{ss} \frac{\bar{y}_{J_{\rm ret}-1}^w}{1 + \tilde{\tau}_{ss}}, \tag{19}$$
 Gross replacement rate

• Labour income tax rate:

$$\mathcal{T}\left(y_{j},\tilde{h}_{j}\right) = \tau_{y}^{0}\left(\max\left[\frac{y_{j}}{1-\tau_{ss}} - \min\{\tau_{\rho}\rho\tilde{h}_{j},\bar{\tau}_{\rho}\},0\right]\right)^{-\tau_{y}^{1}},\qquad(18)$$

Equilibrium

- Recursive stationary competitive equilibrium, comprising a set of value functions, policies and prices such that:
 - Invariant household distribution
 - Households optimize
 - Markets clear
 - Government budget constraint holds

Rental market

$$\begin{split} \tilde{H} &= \sum_{j=1}^{J} \left[\underbrace{\int_{\mathbb{X}^{H}} \tilde{h}_{j+1}^{N} \left(b_{j}^{n}(\mathbf{x}_{j}^{H}), \mathbf{y}_{j} \right) \left[1 - g_{j}^{o} \left(b_{j}^{n}(\mathbf{x}_{j}^{H}), \mathbf{y}_{j} \right) \right] g_{j}^{n}(\mathbf{x}_{j}^{H}) \, d\mu_{j}^{H}} \\ &+ \underbrace{\int_{\mathbb{X}^{H}} \tilde{h}_{j+1}^{H} (b_{j}^{d}(\mathbf{x}_{j}^{H}), \mathbf{y}_{j}) g_{j}^{d}(\mathbf{x}_{j}^{H}) \, d\mu_{j}^{H}}_{\text{Homewoners who default}} + \underbrace{\int_{\mathbb{X}^{N}} \tilde{h}_{j+1}^{N}(\mathbf{x}_{j}^{N}) \left[1 - g_{j}^{o}(\mathbf{x}_{j}^{N}) \right] \, d\mu_{j}^{N}}_{\text{Non-homeowners who decide to keep renting}} \end{split}$$

Housing market clearing

Non-durable goods market

$$\begin{split} Y_{c} &= \sum_{j=1}^{J} \left\{ \underbrace{\int_{\mathbb{X}^{H}} c_{j}^{H}(\mathbf{x}_{j}^{H}) d\mu_{j}^{H} + \int_{\mathbb{X}^{N}} c_{j}^{N}(\mathbf{x}_{j}^{N}) d\mu_{j}^{N}}_{\text{Non-durable consumption expenditures}} \right. \\ &+ \underbrace{\kappa_{h} p_{h} \int_{\mathbb{X}^{H}} h_{j}^{H}(\mathbf{x}_{j}^{H}) [g_{j}^{N}(\mathbf{x}_{j}^{H}) + g_{j}^{d}(\mathbf{x}_{j}^{H})] d\mu_{j}^{H}}_{\text{Transaction fees}} \\ &+ \underbrace{\kappa_{m} \left[\int_{\mathbb{X}^{N}} g_{j}^{o}(\mathbf{x}_{j}^{N}) d\mu_{j}^{N} + \int_{\mathbb{X}^{H}} g_{j}^{o}(b^{n}(\mathbf{x}_{j}^{H}), \mathbf{y}_{j}) + g_{j}^{f}(\mathbf{x}_{j}^{H}) d\mu_{j}^{H} \right]}_{\text{Origination expenditures}} \\ &+ \underbrace{\iotar_{b} \int_{\mathbb{X}^{H}} m_{j}(\mathbf{x}_{j}^{H}) d\mu_{j}^{H}}_{\text{Intermediation costs}} \right\} \quad + \underbrace{\sum_{j=J_{\text{ret}}}^{J} \hat{S}_{j} \kappa_{h} \int_{\mathbb{X}^{H}} h_{j+1}^{H}(\mathbf{x}_{j}^{H}) d\mu_{j}^{H}}_{\text{Transaction fees from wills}} \end{split}$$

Government budget clearing

$$\underbrace{H^G \delta_h + G + r_b B^G + \int_{\mathbb{Y}^{\mathsf{ret}}} y^{\mathsf{ret}} d\mu^{\mathsf{ret}}}_{\mathbb{Y}^{\mathsf{ret}}} = \sum_{j=1}^J \left[\int_{\mathbb{X}^H} \mathcal{T}(y_j, 0) \, d\mu_j^H + \int_{\mathbb{X}^N} \mathcal{T}(y_j, \rho \tilde{h}) \, d\mu_j^N \right]$$

Public housing, consumption, debt service, and SS

Labor taxes

$$+ \frac{\tilde{\tau}_{ss} + \tau_{ss}}{1 + \tilde{\tau}_{ss}} \sum_{j=1}^{J_{\text{ret}}-1} \left[\int_{\mathbb{X}^H} y_j^w d\mu_j^H + \int_{\mathbb{X}^N} y_j^w d\mu_j^N \right]$$

Social Security contributions

$$+\underbrace{\tau_h p_h (H + \tilde{H} - H^G)}_{\text{Property taxes}} + \underbrace{(\tilde{H} - H^G)(\rho - \psi - \tilde{\delta}_h p_h - \tau_h p_h)\tau_r}_{\text{Rental income taxes}},$$

Calibration: external

Description	Parameter	Value	Source	
Demographics				
Maximum model age	J	30	-	
Period of retirement	J_{Jret}	23	-	
Survival probability by age	$\{S_j\}$	-	Statistics Portugal	
Preferences				
Consumption equivalence scale	$\{e_i\}$	-	HFCS	
EOS of housing/non-durable consumption	$1/\gamma$	1.250	Piazzesi et al. (2007)	
Risk aversion	θ	2.000	Kaplan et al. (2020)	
Endowment				
Life cycle profile of earnings	$\{\chi_i\}$	-	Brinca et al. (2021)	
Auto-correlation (persistent component)	ρ_{ε}	0.335	Brinca et al. (2021)	
Std. dev. (persistent component)	$\sigma_{arepsilon}$	0.439	Brinca et al. (2021)	
Financial instruments				
Risk-free interest rate	r_b	0.010	Assumption	
Origination cost	κ_m	0.045	1000€ in the model	
LTV cap	λ^m	1.200	Authors' calculation	
PTI cap	λ^{π}	1.190	Authors' calculation	

Calibration: external (cont.)

δ_h	0.019	Penn World Table		
κ_h	0.089	Authors' calculations		
α	0.449	Statistics Portugal		
φ	0.400	Assumption		
δ_k	0.038	Penn World Table		
$ au_c$	0.125	Statistics Portugal		
$ au_h$	0.007	Portuguese Tax Authority		
$ au_r$	0.280	Portuguese Tax Authority		
τ_0^y	0.937	Brinca et al (2021)		
$ au_1^y$	0.136	Brinca et al (2021)		
$\tau_{ ho}$	0.150	Portuguese Tax Authority		
$\bar{\tau}_{ ho}$	-	Portuguese Tax Authority		
g	0.169	Statistics Portugal		
$ au_{ss}$	0.110	Portuguese Social Security		
$ ilde{ au}_{ss}$	0.238	Portuguese Social Security		
$ ho_{ss}$	0.547	OECD		
	$ \begin{array}{c} \delta_h \\ \kappa_h \\ \alpha \\ \varphi \\ \delta_k \\ \tau_c \\ \tau_h \\ \tau_r \\ \tau_0^y \\ \tau_1^y \\ \tau_\rho \\ \tau_{rss} \\ \tilde{\tau}_{ss} \\ \tilde{\tau}_{ss} \\ \rho_{ss} \end{array} $	$\begin{array}{ccccccccc} \delta_h & 0.019 \\ \kappa_h & 0.089 \\ \end{array} \\ \begin{array}{c} \alpha & 0.449 \\ \varphi & 0.400 \\ \delta_k & 0.038 \\ \end{array} \\ \\ \begin{array}{c} \tau_c & 0.125 \\ \tau_h & 0.007 \\ \tau_r & 0.280 \\ \tau_0^y & 0.937 \\ \tau_1^y & 0.136 \\ \tau_\rho & 0.150 \\ \hline \tau_{\rho} & - \\ g & 0.169 \\ \tau_{ss} & 0.238 \\ \rho_{ss} & 0.547 \end{array}$		

Table 4. External calibration summary

Calibration: internal

Description	Parameter	Value	Target	Model	Data
Discount Factor	β	0.982	NW to GDP	2.613	2.561
Housing utility weight	arphi	0.131	Share of housing expenditures	0.215	0.209
Ownership extra utility	ω	1.005	Homeownership	0.776	0.747
Management costs	ψ	0.013	Homeownership < 35	0.411	0.419
Bequest motive strength	u	55.58	Ratio of NW of 75/50	2.272	0.914
Bequests as luxury goods	\overline{b}	0.011	Fraction of retired with zero NW	0.0	0.05
S.D. permanent component	σ_a	0.370	S.D. of log household earnings	0.824	0.824
Housing grid	${\cal H}$	-	Housing NW/NW		
			p10	0.195	0.252
			p50	0.396	0.751
			р90	0.946	0.993
Minimum rental size	$ ilde{h}_1$	0.01	Public housing as a share of housing stock	0.054	0.064
Rental grid size	$ ilde{N}$	4	Earnings homeowners/nonhomeowners	1.671	1.604
Depreciation rate	δ_h^d	0.201	Depreciation rate of foreclosed properties	0.250	0.250
Intermediation wedge	L	0.140	Average rate on new mortgages	0.011	0.011
Attachment limit	κ_d	0.233	Foreclosure rate	0.005	0.005
Building permits	$ar{L}$	0.146	Residential housing investment to GDP	0.027	0.028

Table 5. Internal calibration summary

Necessary condition for default

• Agent begins period with b = 0 and $y_j^w - \tau < \pi^{min}$

• Equity value in default < 0
$$\Rightarrow k_d (y_j^w - \tau)$$