Macroprudential Policy and Income Inequality: Trade-off Between Crisis Prevention and Credit Redistribution

Martin Hodula Jan Janků Simona Malovaná

7th Annual Workshop of ESCB Cluster 3

November 23, 2023

Introduction and Motivation

- Rising income inequality since the 1990s (especially in Europe and the US)
- A growing popularity of studies exploring the link between finance and inequality
 - Empirical literature agrees that financial development decreases income inequality (Demirgüç-Kunt & Levine, 2009)
 - But the relationship is not linear (Cihak & Sahay, 2020)
- The finance-inequality literature has not (yet) explicitly accounted for the role of macroprudential policy (MaPP)
 - MaPP plays an important role in shaping the financial sector
 - Theoretical exploration is troublesome since different MaPP measures can affect the distribution of income in different ways
- We provide cross-country evidence that variations in MaPP (may) result in differences in income distribution

Data

- Country-level data for 105 advanced economies (AE) and emerging market and developing economies (EMDE) over the period 1990–2019
- Dependent variable income inequality measure
 - Data source: The Standardized World Income Inequality Database (SWIID)

 the longest and widest data sample
 - Baseline measure: the Gini index, the best coverage
 - We explore also alternative measures with less coverage
 - The data on wealth inequality is low quality or not available at all
- Explanatory variable macroprudential policy index
 - Data source: the Integrated Macroprudential Policy (iMaPP) Database maintained by the IMF
 - Dummy-type indicators which count the number of tightening (a positive integer) and loosening (a negative integer) actions in a given year
 - Capital- and liquidity-based measures (CLBM) and borrower-based measures (BBM)

ヘロト 人間 とくほとく ヨト

Hypotheses (1/2)

- We formulate two possible channels through which macroprudential policy affects income inequality
 - Credit redistribution channel
 - Crises prevention & mitigation channel

Hypothesis 1. Under the credit redistribution channel, macroprudential policy *increases* income inequality.

- The credit (income) redistribution channel has been described in the context of monetary policy (Auclert, 2019)
- Macroprudential policy can also, in theory, have a disproportionate effect on income and welfare
 - BBM restricts the ability of risky households to finance the purchase of real estate using excess leverage
 - Peydro et al. (2020) show that macroprudential borrowing limits affect low-income borrowers more than high-income borrowers

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Hypotheses (2/2)

Hypothesis 2. Under the crises prevention & mitigation channel, macroprudential policy *decreases* income inequality.

- MaPP aims to reduce the likelihood of financial crises which have redistributive effects
 - In the global financial crisis episode, higher unemployment was found to be a significant driver of rising market income inequality in Europe and the US (Jenkins *et al.*, 2012; Vacas-Soriano & Fernández-Macías, 2018)
 - Bridges et al. (2021) show that higher bank's capitalization may affect income distribution indirectly through the prevention of financial crises
- **Hypothesis 3.** The crisis prevention & mitigation channel is more likely to dominate in countries with riskier banking sector characteristics.
 - MaPP tightening aims to increase resilience and decrease riskiness of financial activities, thus decreasing the probability and/or impact of the financial crisis and its negative re-distributive effects

Estimation procedure

- Local projections method (Jorda, 2005)
 - A separate regression model is estimated for each forecast horizon *t+h*
 - β^h are used to calculate impulse response functions at a given horizon h

$$GI_{i,t+h}^{gap} = \beta^h MaPP_{i,t} + \gamma^h GI_{i,t}^{cs_trend} + \sum_{j=1}^2 \delta^h_j Z_{i,t-j} + \alpha^h_i + \alpha^h_t + \epsilon_{i,t}$$

- Following Bridges et al. (2021), we use two types of the trend for the Gini index
 - Global trend to calculate GI^{gap}_{i,t+h}
 - Country-specific trend $GI_{i,t}^{cs,trend}$ as a control variable
 - Conservative approach to shield estimated effects from the impact of long-term structural developments and attenuate the size of any cyclical effects that we estimate
- Detrending
- Identification

(日)

Responses of Gini Index to MaPP

- Macroprudential policy actions have a significant effect on income inequality
- The direction and magnitude of the effect depend on the type of macroprudential policy used and the region
- Evidence of both credit redistribution channel and crisis prevention & mitigation channel

Hodula, Janků, Malovaná (2023)

Crises Mitigation Channel - Setup

- We compare the effects of ex-ante macroprudential policy (before the financial crisis outburst) with ex-post policy (after the financial crisis outburst)
 - Crisis periods: identified using a binary dummy variable by Laeven & Valencia (2020)
 - Estimation sample: crisis period +/- 3 years; only countries with recorded crisis
 - Model 1: macroprudential policy tightened before the crisis (preemptive action)
 - Model 2: macroprudential policy tightened after the outbreak of the crisis (repressive action)

Crises Mitigation Channel - Results

- MaPP reduces income inequality when tightened before the crisis → works preemptively
- MaPP increases income inequality when tightened after the outbreak of the crisis → works repressively

Crises Prevention Channel - Setup

- What if macroprudential policy prevented a financial crisis (i.e. we do not observe it)?
- Hence, we identify periods with a high probability of crisis but no recorded crisis
 - Boom1: excessive credit growth (difference between credit and output growth higher than 2 pp over at least three years)
 - Boom2: excessive credit growth and house price growth (difference between house price and output growth higher than 2 pp over at least three years)
- We compare the impact of MaPP tightening before the boom period with "non-boom" periods

Table: The Misalignment of Credit and House Price Growth with Output Growth

	3Y before crisis			Crisis			All other periods		
	Mean	25%	75%	Mean	25%	75%	Mean	25%	75%
Credit growth - GDP growth House price - GDP growth	6.94 5.02	2.87 -1.21	10.15 8.78	-1.36 -2.02	-7.83 -4.74	4.28 1.62	2.79 1.58	-2.51 -2.43	7.43 5.46

・ロト ・同ト ・ヨト ・ヨト

Crises Prevention Channel - Results

- Results confirm the crisis prevention & mitigation channel
- \bullet MaPP reduces income inequality when tightened before the boom \rightarrow works preemptively

Credit Redistribution Channel - Setup

- Access to credit influences borrowers future income (Delis *et al.*, 2020; Agnello *et al.*, 2012; Mookerjee & Kalipioni, 2010)
- Hard to estimate distributional effects using macro-data
- MaPP affects credit growth (Malovaná et al., 2021, 2022) and house price growth (Akinci & Olmstead-Rumsey, 2018)
- Hence, we estimate system of two equations:
 - How MaPP affects credit growth and house price growth
 - How credit growth and house price growth affect income inequality

12/29

Credit Redistribution Channel - Results

(A) Impact of MaPP tightening

(B) Response of Gini index

ъ

Image: A matrix

Economic Significance

	(1)	(2)	(3)	(4)	(5)	(6)
	Average	Average number of	Average chang	e in Gini Index in	Average change in Gi	ni index in response to
	global trend	actions	response to	o one action	the average nu	mber of actions
BBM			5Y	10Y	5Y	10Y
All countries	45.67	2.12	0.074	0.084	0.156	0.179
AE	46.41	3.49	0.179	0.216	0.624	0.752
EMDE	45.30	1.44	0.014	0.016	0.020	0.023
CLBM						
All countries	45.67	11.36	0.009	0.029	0.099	0.327
AE	46.41	14.46	0.105	0.013	1.516	0.188
EMDE	45.30	9.81	-0.060	0.009	-0.591	0.084

Table: Back-of-the-envelope Calculations

The effects are economically significant

► In advanced economies, the Gini index increases by an average of 0.624 (3.49 × 0.179) after 5Y in response to BBM

Robustness

- Continuous measure changes to the LTV limit
 - Following a 5 pp increase in LTV translates into a 0.26 pp increase in the de-trended Gini index after five years
- Alternative measures of inequality income shares of different income groups
 - The shifts in income shares in response to MaPP are consistent with changes in the Gini index
- Excluding low-income countries and liquidity-based measures EME instead of EMDE and CBM instead of CLBM
 - Response for EME and EMDE almost identical
 - Response for a sample of countries excluding also switching LIDC is more pronounced but retains the same direction
 - Response to CLBM and CBM is similar (slightly weaker and decays more quickly in AE)
- Pseudo-placebo test "fake" macroprudential actions
 - We show that the results are unique to the years in which macroprudential actions were taken

The Role of Country and Time Characteristics

- Do certain time or cross-sectional (country) characteristics influence the relative dominance of the two channels?
 - We interact MaPP and dummy variable that takes value one when certain characteristics cross a selected threshold and zero otherwise
- Monetary policy: in periods of low or declining interest rates, the effect is more positive/stronger (larger role of *the credit redistribution channel*)
 Results
- Banking sector capitalization: in less capitalized countries, the effect is less positive/more negative (larger role of *the crises prevention & mitigation channel*)
 Results
 - Less capitalized banking sector increases the risk of financial instability
- Banking sector concentration: in less competitive countries, the effect is less positive/more negative (larger role of *the crises prevention & mitigation channel*)
 - Less banking sector competition increases the risk of financial instability

Conclusions

- A panel of 105 countries between 1990–2019
- Macroprudential policy affects income inequality via two channels:
 - Crisis prevention & mitigation: MaPP tightening decreases income inequality
 - Credit redistribution channel: MaPP tightening *increases* income inequality (via credit growth and house price growth)
- Crisis prevention & mitigation channel is stronger in emerging market and developing economies, countries with less resilient and less competitive banking sectors
- Credit redistribution channel is stronger in advanced economies and during a period of highly accommodative monetary policy
- Borrower-based measures work mainly via credit redistribution channel (income inequality increases)
- Capital- and liquidity-based measures work mainly via crisis prevention & mitigation channel (income inequality decreases)

Appendix

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

Detrended Gini Index Back

- AE - EME

Note: Average across countries

・ロン ・四 ・ ・ ヨン・

æ

Unconditional Relationship

 The Gini index is expressed as a percentage change relative to its average level 5 years before the tightening

Hodula, Janků, Malovaná (2023)

November 23, 2023

Summary Statistics of the Gini Index

	Level			First difference			Growth rate (%)		
	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Entire period									
All countries AE EMDE	45.49 45.94 45.23	21.80 28.70 21.80	72.30 56.30 72.30	0.06 0.14 0.00	-2.00 -1.40 -2.00	3.20 2.30 3.20	0.13 0.33 0.02	-3.96 -3.07 -3.96	8.04 6.35 8.04
1990–1999									
All countries AE EMDE	44.75 44.33 45.00	23.10 28.70 23.10	68.40 54.10 68.40	0.21 0.31 0.15	-0.70 -0.70 -0.60	3.20 2.30 3.20	0.50 0.71 0.37	-1.58 -1.58 -1.30	8.04 6.35 8.04
2000–2009									
All countries AE EMDE	45.82 46.24 45.61	22.50 30.80 22.50	72.30 55.10 72.30	0.04 0.15 -0.02	-1.20 -1.20 -1.20	2.10 1.50 2.10	0.08 0.32 -0.05	-2.75 -2.75 -2.23	3.98 3.28 3.98
2010–2019									
All countries AE EMDE	45.86 47.25 44.99	21.80 30.50 21.80	72.10 56.30 72.10	-0.06 0.00 -0.10	-2.00 -1.40 -2.00	1.60 1.20 1.60	-0.14 -0.01 -0.22	-3.96 -3.07 -3.96	2.86 2.47 2.86

Note: The table shows summary statistics for the entire sample, different sub-groups and sub-periods. We track Gini in 35 advanced economies (AE) and 70 emerging economies (EMDE) over the 1990–2019 period.

・ロト ・回ト ・ヨト・

Number of Macroprudential Policy Actions Over 1990–2019

	E	BBM	CLBM			
	No. of events	No. of countries	No. of events	No. of countries		
All countries	285	61	1,296	105		
Advanced economies Emerging markets and developing economies	151 134	29 32	539 757	35 70		
Africa Asia and Pacific Europe Middle and South America Middle East and Central Asia North America	2 103 136 9 20 15	1 14 31 5 8 2	62 267 664 152 120 31	12 21 41 15 14 2		
1990–1999 2000–2009 2010–2019	7 87 191	6 30 49	67 233 996	39 72 96		

Note: The table shows the total number of macroprudential policy actions in our sample. We differentiate between borrower-based measures (BBM) and capital- and liquidity-based measures (CLBM). Total number of observations in our sample is 0,372 (105 countries over 30 years). Number of events is calculated as a sum of absolute value of the iMaPP indexes which can take both positive (macroprudential policy easing) and negative (macroprudential policy easing) values. For example, a value of 3 means that the policy was tightened three times that year.

Categorization of Macroprudential Policy Instruments in iMaPP

Capital- and liquidity-based measures	Leverage ratio, counter-cyclical capital buffer, capital conservation buffer, capital requirements, liquidity requirements, limits of FX positions, limits on credit growth, loan loss provisions, limits on loan-to-deposit ratio, limits on foreign currency loans
Borrower-based measures	Limits on loan-to-value ratio, limits on debt service-to-income, limits on loan-to-income ratio

≣ ⊳

э

Identification Back

- Shocks to macroprudential policy should be:
 - exogenous with respect to the current and lagged real variables,
 - uncorrelated with other shocks,
 - preferably unexpected.
- We rely on a narrative identification approach used to identify shocks to macroprudential policy
- We check whether the stated objectives of macroprudential policies reflect in any way the current state of the real economy
 - e.g. we do not consider changes of the reserve requirements as capital- and liquidity-based measures
 - Richter et al. (2019) show that a dominant share of borrower-based policy actions are not related to real economic developments
- Macroprudential policy, unlike monetary policy, does not respond to the real economy, which makes identification easier
- The reliance on the local projection method should be helpful in taking care of the endogeneity bias

Macroprudential Policy, Monetary Policy, and Income Inequality

Regulatory Capital, Macroprudential Policy and Income Inequality

Banking Sector Concentration, Macroprudential Policy and Income Inequality

Financial Development, Macroprudential Policy and Income Inequality

November 23, 2023

Image: A matrix

Literature

Agnello, Luca, Mallick, Sushanta K., & Sousa, Ricardo M. 2012. Financial Reforms and Income Inequality. Economics Letters, 116(3).

Akinci, Ozge, & Olmstead-Rumsey, Jane. 2018. How Effective Are Macroprudential Policies? An Empirical Investigation. Journal of Financial Intermediation, 33.

Auclert, Adrien. 2019. Monetary Policy and the Redistribution Channel. American Economic Review, 109(6).

Bridges, Jonathan, Green, Georgina, & Joy, Mark. 2021. Credit, Crises and Inequality. SSRN Electronic Journal.

Cihak, Mr Martin, & Sahay, Ms Ratna. 2020. Finance and Inequality. IMF Staff Discussion Note 20/01. International Monetary Fund.

Delis, Manthos D., Fringuellotti, Fulvia, & Ongena, Steven R. G. 2020. Credit, Income and Inequality. SSRN Electronic Journal.

Demirgüç-Kunt, Asli, & Levine, Ross. 2009. Finance and Inequality: Theory and Evidence. Annual Review of Financial Economics, 1(1).

Jenkins, Stephen P, Brandolini, Andrea, Micklewright, John, & Nolan, Brian. 2012. The Great Recession and the Distribution of Household Income. Oxford: Oxford University Press.

Jorda, Oscar. 2005. Estimation and Inference of Impulse Responses by Local Projections. American Economic Review, 95(1).

Laeven, Luc, & Valencia, Fabian. 2020. Systemic Banking Crises Database II. IMF Economic Review, 68(2).

- Malovaná, Simona, Hodula, Martin, Bajzik, Josef, Gric, Zuzana, et al. 2021. A Tale of Different Capital Ratios: How to Correctly Assess the Impact of Capital Regulation on Lending. CNB Working Paper No. 2021/8.
- Malovaná, Simona, Hodula, Martin, Bajzik, Josef, Gric, Zuzana, et al. 2022. Borrower-based Macroprudential Measures and Credit Growth: How Biased is the Existing Literature? CNB Working Paper No. 2022/8.
- Mookerjee, Rajen, & Kalipioni, Paul. 2010. Availability of Financial Services and Income Inequality: The Evidence from Many Countries. *Emerging Markets Review*, **11**(4).
- Peydro, Jose-Luis, Rodriguez Tous, Francesc, Tripathy, Jagdish, & Uluc, Arzu. 2020. Macroprudential Policy, Mortgage Cycles and Distributional Effects: Evidence from the UK. SSRN Electronic Journal.

Richter, Björn, Schularick, Moritz, & Shim, Ilhyock. 2019. The Costs of Macroprudential Policy. Journal of International Economics, 118.

Vacas-Soriano, Carlos, & Fernández-Macías, Enrique. 2018. Income Inequality in the Great Recession from an EU-wide Perspective. CESifo Forum, 19(2).

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))