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Abstract

What frictions are important in a DSGE model? In the Bayesian DSGE literature

(e.g., Smets and Wouters 2003) this question is answered by computing the posterior

odds of the model with and without the friction of interest. The prior distribution

for the deep parameters plays a key role in these model comparisons. For some of

the parameters, like the autocorrelations and the standard deviations of the structural

shocks, the choice of the prior is not straightforward, and can make a difference for

model comparison. We provide an approach for choosing the prior aimed at levelling

the playing field for DSGE model comparisons.
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1 Introduction

2 A Simple Example

Consider the following two models, in which yt is the observed endogenous variable and ut

is an unobserved shock process. In model M1, the ut’s are serially correlated:

M1 : yt =
1
α

IEt[yt+1] + ut, ut = ρut−1 + εt ∼ iid(0, σ2). (1)

In model M2 the shocks are serially uncorrelated, but we introduce a backward-looking

term φyt−1 on the right-hand-side as is often done in the New Keynesian Phillips Curve

literature:

M2 : yt =
1
α

IEt[yt+1] + ρyt−1 + ut, ut = εt ∼ iid(0, σ2). (2)

This example is taken from Lubik and Schorfheide (2006). Under M1 the equilibrium law

of motion becomes

M1 : yt = ρyt−1 +
1

1− ρ/α
εt, (3)

whereas under the ‘backward looking’ specification1

M2 : yt =
1
2
(α−

√
α2 − 4ρα)yt−1 +

2α

α +
√

α2 − 4ρα
εt. (4)

Models M1 and M2 are observationally equivalent. The model with the ‘backward

looking’ component is distinguishable from the purely ‘forward looking’ specification only

under a strong a priori restriction on the exogenous component, namely ρ = 0. Although

M1 and M2 will generate identical reduced form forecasts, the effect of changes in α on the

law of motion of yt is different in the two specifications.

Subsequently, we will illustrate the consequences of seemingly innocuous choices for

prior distributions on posterior model odds. In the DSGE model literature, we can, broadly

speaking, distinguish two types of parameters: ‘deep’ taste and technology parameters and

‘auxiliary’ parameters that determine the law of motion of the exogenous processes. Priors

for the deep parameters are often chosen based on micro-econometric evidence, whereas the

priors for the auxiliary parameters are either chosen arbitrarily or they are chosen based

on some beliefs about the serial correlation and volatility of the endogenous variables. In

our example we assume that α is a deep parameter whose prior has been specified based on

micro-econometric evidence, whereas ρ and σ are auxiliary parameters. The baseline prior

is denoted as Prior 1 and summarized in Table 1.
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To start, we use the same prior distribution for models M1 and M2. We generate

200 draws from the prior predictive distribution of the sample autocorrelation and standard

deviation of yt. These draws are depicted in Panels (1,1) and (2,1) of Figure 1. Notice that

according to model M1 the prior mean of the autocorrelation of yt corresponds to the mean

of ρ and is approximately 0.5. Under M2 the reduced-form autocorrelation coefficient is

a nonlinear function of both ρ and α. It turns out that the prior mean of the predictive

distribution of the autocorrelation is about 0.7. Hence, M1 andM2 have seemingly different

implications for the observables.

We now generate a sample of T = 80 observations and compute the posterior for the

two models under Prior 1. Draws from the posterior predictive distribution of the sample

moments are plotted in Panels (1,2) and (2,2) of Figure 1. The intersection of the solid lines

depict the actual sample moments. Given the fairly tight prior on α and ρ the estimated

version of M2 still over-predicts the sample correlation of the data, whereas M1 captures it

quite well. Log marginal data densities are reported in Table 2. The Bayes factor in favor

of M1 is approximately 6.5. Whether this value provides a good summary of our post-data

model uncertainty depends crucially on how confident we are about the specification of

Prior 1. If the prior reflects our intrinsic uncertainty about the parameters then the Bayes

factor is appropriate and we are ready to conclude that the ‘backward-looking’ specification

is less desirable than the specification with serially correlated shocks. If, on the other hand,

the prior for the auxiliary parameters was fairly arbitrary, then the Bayes factors might be

regarded as misleading. After all, the two models are observationally equivalent. Therefore

we might regard a Bayes factor of 1 a more reasonable result than a Bayes factor of 6.5.

We re-estimate model M1 under an alternative prior, denoted as Prior 2, that puts

more weight on large values of ρ. The prior predictive distribution of the sample moments

under this prior is depicted in Panel (3,1) of Figure 1. The draws are virtually indistinguish-

able from those obtained with model M2 and Prior 1. Indeed, under this modified prior

distribution the Bayes factor of M1 versus M2 is essentially 1. Draws from the prior and

posterior distribution of the M1 parameters under Priors 1 and 2 are depicted in Figures 2

and 3. Under Prior 1 the joint prior distribution of ρ and α is virtually indistinguishable

from the posterior, whereas the distribution of σ is much more concentrated. Under Prior 2,

the mean of ρ shifts from 0.73 (prior) to about 0.55 (posterior). The fairly tight Prior 2

prevents M1 from correctly capturing the fairly low autocorrelation in the data.
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3 Adjusting Prior Distributions for Model Comparisons

Suppose we would like to compare structural models Mi, i = 1, . . . , J with parameter

vectors θ(i). We split each parameter vector into two components: θ = [θ′1, θ2]′. Roughly

speaking, θ1 collects the “deep” parameters for which we can solicit prior distributions,

say, based on micro-econometric evidence, and θ2 is a sub-vector of auxiliary parameters

for which we choose prior distributions such that the model implied autocovariances of the

endogenous variables are “realistic” and comparable across models.

Our adjusted prior distributions are based on quasi-likelihood functions for the DSGE

models. These quasi-likelihood functions are based on vector autoregressions (VAR) of the

form

yt = Φ0 + Φ1yt−1 + . . . + Φpyt−p + ut, ut ∼ N (0, Σ), (5)

where yt is an n × 1 vector of observables. Let xt be the k × 1 vector [1, y′t−1, . . . , yt−p; ]′.

We re-write the VAR in matrix notation as

Y = XΦ + U. (6)

Here Y is the T ×n matrix with rows y′t, X is the T ×k matrix with rows x′t, U is composed

of u′t and Φ = [Φ0, Φ1, . . . , Φp]′. In general, we use ΓY Y , ΓY X and ΓXX to denote popu-

lation autocovariances IE[yty
′
t], IE[ytx

′
t], and IE[xtx

′
t], respectively. Sample autocovariances

are signified by a hat, e.g., Γ̂Y Y . If the population autovariances are calculated from a

DSGE model conditional on a particular parameterization, we use the notation Γ(i)
Y Y (θ(i)),

Γ(i)
Y Y (θ(i)

1 , θ
(i)
2 ) or, if no ambiguity arises, Γ(i)

Y Y . We also define the VAR approximation of

the DSGE model given by

Φ(i)
∗ = [Γ(i)

XX ]−1Γ(i)
XY , Σ(i)

∗ = Γ(i)
Y Y − Γ(i)

Y X [Γ(i)
XX ]−1Γ(i)

XY . (7)

Omitting the (i) superscripts, the adjusted prior distributions are of the form

p(θ|ΓY Y ,ΓXY ,ΓXX) (8)

∝ L(θ|ΓY Y , ΓXY , ΓXX)

= |Σ∗(θ)|−(T∗+n+1)/2 × exp
{
−T ∗

2
tr

[
Σ∗(θ)−1(ΓY Y − 2Φ∗(θ)ΓXY + Φ′∗(θ)ΓXXΦ∗(θ)

]}
,

where the autocovariance matrices ΓY Y , ΓXY , ΓXX are either constructed from introspec-

tion, a pre-sample of actual observations, or an alternative candidate model. The prior (8)

places low probability on values of θ for which the DSGE model implied autocovariances
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strongly differ from the Γ’s. The larger T ∗, the more concentrated the prior density. The ap-

proaches discussed subsequently mainly differ in their choice of Γ matrices. To simplify the

notation, we abbreviate the conditioning “·|ΓY Y , ΓXY , ΓXX” by “·|Γ” and we use L(θ1, θ2|Γ)

as shorthand for L([θ′1, θ
′
2]
′|Γ).

3.1 Adjustments Based on Pre-samples

Throughout this subsection we are omitting the (i) superscript. We use a proper prior for

the “deep” parameters θ1 and employ the quasi-likelihood function to construct a prior for

θ2. The Γ matrices are sample autocovariances estimated from a pre-sample. Hence,

p(θ1, θ2) = c0L(θ1, θ2|Γ̂)π(θ1)π(θ2). (9)

Thus, starting from some initial distributions π(θ1) and π(θ2) the quasi-likelihood function

is used to construct the prior for the actual estimation, p(θ1, θ2). Here, π(θ2) could be

chosen to be diffuse. The constant c0 ensures that the prior is properly normalized. Notice

that the marginal prior of the “deep” parameters θ1 is in general different from π(θ1), that

is,

p(θ1) =
∫

p(θ1, θ2)dθ2 = c0

[∫
L(θ1, θ2|Γ̂)p(θ2)dθ2

]
π(θ1) 6= π(θ1). (10)

In order to preserve π(θ1) as the marginal prior distribution for the “deep” parameters

we have to use the alternative prior

p∗(θ1, θ2) = c1(θ1)L(θ1, θ2|Γ̂)π(θ1)π(θ2), (11)

where c1(θ1) is chosen such that

1
c1(θ1)

=
∫
L(θ1, θ2|Γ̂)π(θ2)dθ2 for all θ1.

In practice prior p∗(θ1, θ2) is more difficult to implement since it depends on the generally

unknown normalization function c1(θ1). A more easily implementable prior is obtained by

fixing θ1 at its prior mean θ1:

p∗∗(θ1, θ2) = c1(θ1)L(θ1, θ2|Γ̂)π(θ1)π(θ2). (12)

3.2 Adjustments Based on a Benchmark DSGE

Alternatively, we can adjust the prior for a model M2 to make it comparable to a prior for

benchmark model M1. The notation is slightly more delicate. We use Γ(1)(θ(1)) to denote
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the implied autocovariances from model M1 conditional on the parameter θ(1). The prior

distribution for θ(1) is p(θ(1)). Moreover, L(θ|Γ) will denote the quasi-likelihood function

associated with model M2 and π(θ1), π(θ2) some initial distribution for its parameters.

For simplicity we will omit the (2)-superscript from both the likelihood function and the

parameter vectors associated with M2. A natural choice for a prior distribution for the M2

parameters conditional on the M1 parameters would be

p∗(θ1, θ2|θ(1)) = c1(θ1, θ
(1))L(θ1, θ2|Γ(1)(θ(1)))π(θ1)π(θ2), (13)

where
1

c1(θ1, θ(1))
=

∫
L(θ1, θ2|Γ(1)(θ(1)))π(θ2)dθ2 for all θ1, θ(1).

As in the previous subsection, a practical difficulty is the calculation of the normalization

function c1(θ1, θ
(1)) for every value of the conditioning parameters. A shortcut would be to

condition on the prior means θ(1) and θ1:

p∗∗(θ1, θ2) = c1(θ1, θ
(1))L(θ1, θ2|Γ(1)(θ(1)))π(θ1)π(θ2). (14)

4 The Simple Example Revisited

We regard α as “deep” parameter θ1 and interpret ρ and σ as auxiliary parameters θ2.

In this simple example, the quasi-likelihood function coincides with the actual likelihood

functions for models M1 and M2. We will focus on the adjustments based on a pre-

sample and assume that ΓXX = ΓY Y = 4 and ΓXY = 0.7. Draws from the adjusted prior

distributions are plotted in Figure 4. While the priors for α (by construction) and σ are

nearly identical across the two models, the priors for ρ are very different. However, the prior

predictive distribution for the sample autocorrelation and standard deviation is now very

similar under Prior 3 as can be seen from Panels (1,1) and (1 2) of Figure 5. Consequently

the Bayes factor for the two models is very close to one, 1.6 to be exact. Hence, the model

odds are not distorted due to a careless choice of prior distribution, as under Prior 1.
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Table 1: Example 1 – Prior Distributions

Name Domain Prior 1 Prior 2

Density Para (1) Para (2) Para (1) Para (2)

α IR+ Gamma 2.00 0.10 2.00 0.10

ρ [0, 1) Beta 0.50 0.05 0.73 0.10

σ IR+ InvGamma 1.00 4.00 1.00 4.00

Notes: Para (1) and Para (2) list the means and the standard deviations for Beta, Gamma,

and Normal distributions; the upper and lower bound of the support for the Uniform distri-

bution; s and ν for the Inverse Gamma distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs2/2σ2
.

The effective prior is truncated at the boundary of the determinacy region.

Table 2: Example 1 – Log Marginal Data Densities

Specification ln p(Y )

Model M1, Prior 1 -161.27

Model M1, Prior 2 -163.21

Model M2, Prior 1 -163.16

Notes: We truncate the prior distribution of α, ρ, σ at the boundary of the indeterminacy

region. The marginal data densities have been adjusted accordingly.
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Figure 1: Example 1 - Predictive Distributions of Sample Moments

Notes: Each panel depicts 200 draws from predictive distribution for the sample autocorre-

lation and standard deviation. Intersection of solid lines signifies the actual sample moment.
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Figure 2: Example 1 – Parameter Draws from Model M1, Prior 1

Notes: Left (right) column of panels depicts 200 draws from prior (posterior) distribution.

Intersection of dotted (solid) lines indicates prior (posterior) means.
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Figure 3: Example 1 – Parameter Draws from Model M1, Prior 2

Notes: Left (right) column of panels depicts 200 draws from prior (posterior) distribution.

Intersection of dotted (solid) lines indicates prior (posterior) means.
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Figure 4: Example 1 – Parameter Draws from Model M1, Prior 3

Notes: Left (right) column of panels depicts 200 draws from M1 (M2) prior distribution.

Intersection of dotted (solid) lines indicates prior means.
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Figure 5: Example 1 - Predictive Distributions of Sample Moments

Notes: Each panel depicts 200 draws from predictive distribution for the sample autocorre-

lation and standard deviation. Intersection of solid lines signifies the actual sample moment.


