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Abstract

The paper provides new tools for the evaluation of DSGE models, and applies them

to a large-scale New Keynesian dynamic stochastic general equilibrium (DSGE) model

with price and wage stickiness and capital accumulation. Specifically, we approximate

the DSGE model by a vector autoregression, and then systematically relax the implied

cross-equation restrictions and document how the model fit changes. Furthermore,

we study the nature of the misspecification by comparing the DSGE model’s impulse

responses to structural shocks with those obtained after relaxing the model restrictions.

We find that the degree of misspecification in large-scale DSGE models is no longer so

large to prevent their use in day-to-day policy analysis, yet it is not small enough to

be ignored. (JEL C11, C32, C53)
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1 Introduction

Dynamic stochastic general equilibrium (DSGE) models are not just attractive from a theo-

retical perspective, but they are also emerging as useful tools for forecasting and quantitative

policy analysis in macroeconomics. Due to improved time series fit these models are gaining

credibility in policy making institutions such as central banks. Up until recently DSGE

models had the reputation of being unable to track macroeconomic time series. In fact, an

assessment of their forecasting performance was typically considered futile, an exception be-

ing, DeJong, Ingram, and Whiteman (2000). Apparent model misspecifications were used as

an argument in favor of informal calibration approaches to the evaluation of DSGE models

along the lines of Kydland and Prescott (1982). Subsequently, researchers have developed

econometric frameworks that formalize aspects of the calibration approach.1 A common

feature of many evaluation procedures is that DSGE model predictions are either implicitly

or explicitly compared to those from a reference model. Much of the applied work related

to monetary models has, for instance, proceeded by assessing DSGE models based on dis-

crepancies between impulse response functions obtained from the DSGE model and those

obtained from the estimation of identified vector autoregressions (VARs). However, such an

evaluation is only sensible if the VAR indeed dominates the DSGE model in terms of time

series fit as pointed out in Schorfheide (2000).

Smets and Wouters (2003) develop a large-scale monetary DSGE model in the New

Keynesian tradition based on work by Christiano, Eichenbaum, and Evans (2005) and esti-

mate it on Euro-area data. One of the remarkable empirical results is that posterior odds

favor their DSGE model relative to VARs estimated with a fairly diffuse training sample

prior. Previous studies using more stylized DSGE models always found that even simple

VARs dominate DSGE models. On the methodological side, Smets and Wouters’ finding

challenges the practice of assessing DSGE models on their ability to reproduce VAR impulse

response functions without carefully documenting that the VAR indeed fits better than the

DSGE model. On the substantive side, it poses the question whether researchers from now

on have to be less concerned about misspecification of DSGE models.

The contributions of our paper are twofold, one methodological and the other substan-

tive. First, we develop a set of tools that is useful to assess the time series fit of a DSGE

model. In particular, we systematically relax the implied cross-coefficient restrictions of the
1Examples are Canova (1994), DeJong, Ingram, and Whiteman (1996), Diebold, Ohanian, and Berkowitz

(1998), Geweke (1999b), Schorfheide (2000), and Dridi, Guay, and Renault (2006).
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DSGE model to obtain a vector autoregressive specification that is guaranteed to fit better

than the DSGE model yet simultaneously stays as close as possible to the DSGE restric-

tions. We use this specification as a benchmark to characterize and understand the degree

of misspecification of the DSGE model. Second, we apply these tools to a variant of Smets

and Wouters’ model and document its fit and forecasting performance based on post-war

U.S. data. We find that model misspecification is still a concern.

Our model evaluation approach is related to work on DSGE model priors for VARs

by Ingram and Whiteman (1994) and Del Negro and Schorfheide (2004), as well as the

idea of indirect inference developed by Gourieroux, Monfort, and Renault (1993), Smith

(1993), and recently applied in a Bayesian setting by Gallant and McCulloch (2004). We

use the VAR as an approximating model for the DSGE model and construct a mapping from

the DSGE model to the VAR parameters. This mapping leads to a set of cross-coefficient

restrictions for the VAR. Deviations from these restrictions are interpreted as evidence for

DSGE model misspecification. In particular, we specify a prior distribution for deviations

from the DSGE model restrictions. The prior tightness is scaled by a hyperparameter λ.

The values λ = ∞ and λ = 0 correspond to the two polar cases where the cross-coefficient

restrictions are strictly enforced and completely ignored (unrestricted VAR), respectively.

The marginal likelihood function of λ ∈ (0,∞] provides an overall assessment of the DSGE

model restrictions that is more robust and informative than a comparison of the two polar

cases, which is widespread practice in literature.

We have evidence of misspecification whenever the peak λ̂ of the marginal likelihood

function is attained at a finite value. In this case the data suggest that fit improves if

the DSGE model restrictions are relaxed. The resulting vector autoregressive specification,

which we label DSGE-VAR(λ̂), can be used as a benchmark for evaluating the dynamics of the

DSGE model. We ask the question: In which dimension do the impulse response functions

change as we relax the cross-coefficient restriction? To facilitate impulse response function

comparisons, we provide a coherent identification scheme for the DSGE-VAR. By coherent we

mean that in the absence of DSGE model misspecification and VAR approximation error the

impulse responses of DSGE model and DSGE-VAR to all structural shocks would coincide.

Hence, in constructing a benchmark for the evaluation of the DSGE model we are trying to

stay as close to the original specification as possible.

The empirical findings are as follows. The marginal likelihood function of the hyperpa-

rameter λ has an inverse U-shape indicating that the fit of the autoregressive system can

be improved by relaxing the DSGE model restrictions. The shape of the posterior also im-
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plies that the restrictions should not be completely ignored when constructing a benchmark

for the model evaluation as VARs with very diffuse priors are clearly dominated by the

DSGE-VAR(λ̂). This finding is confirmed in the pseudo-out-of-sample forecasting experi-

ment. According to a widely-used multivariate forecast error statistic the DSGE model and

the VAR with diffuse prior perform about equally well in terms of one-step ahead forecasts,

but are clearly worse than the DSGE-VAR(λ̂).

When comparing impulse responses between the DSGE model and the DSGE-VAR(λ̂)

we find that the DSGE model misspecification does not translate into differences among

impulse response functions to technology or monetary policy shocks. The latter result is

important from a policy perspective, as it confirms that, in spite of its deficiencies, the New

Keynesian DSGE model can indeed generate realistic predictions of the effects of unantic-

ipated changes in monetary policy. However, responses to some of the other shocks differ

across DSGE model and DSGE-VAR(λ̂), in particular in the long-run, suggesting that some

low-frequency implications of the model are at odds with the data. We also use the DSGE-

VAR framework to make comparisons across DSGE model specifications. In particular, we

consider a version of the model without habit formation and another version without price

and wage indexation. We find that the evidence from the DSGE-VAR analysis against the

no-indexation specification is not nearly as strong as the evidence against the model without

habit formation.

The paper is organized as follows. The DSGE model is presented in Section 2. Section 3

discusses the DSGE model evaluation framework. Section 4 describes the data. Empirical

results are presented in Section 5 and Section 6 concludes.

2 The DSGE Model

This section describes the DSGE model, which is a slightly modified version of the DSGE

model developed and estimated for the Euro area in Smets and Wouters (2003). In particu-

lar, we introduce stochastic trends into the model, so that it can be estimated with unfiltered

time series observations. The DSGE model is based on work of Christiano, Eichenbaum,

and Evans (2005) and contains a large number of nominal and real frictions. To make this

paper self-contained we subsequently describe the structure of the model economy and the

decision problems of the agents in the economy.
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2.1 Final Goods Producers

The final good Yt is a composite made of a continuum of intermediate goods Yt(i), indexed

by i ∈ [0, 1]:

Yt =
[∫ 1

0

Yt(i)
1

1+λf,t di

]1+λf,t

(1)

where λf,t ∈ (0,∞) follows the exogenous process:

lnλf,t = (1− ρλf
) lnλf + ρλf

lnλf,t−1 + σλ,f ελ,t, (2)

where ελ,t is an exogenous shock with unit variance that in equilibrium affects the mark-

up over marginal costs. The final goods producers are perfectly competitive firms that

buy intermediate goods, combine them to the final product Yt, and resell the final good to

consumers. The firms maximize profits

PtYt −
∫
Pt(i)Yt(i)di

subject to (1). Here Pt denotes the price of the final good and Pt(i) is the price of inter-

mediate good i. From their first order conditions and the zero-profit condition we obtain

that:

Yt(i) =
(
Pt(i)
Pt

)− 1+λf,t
λf,t

Yt and Pt =
[∫ 1

0

Pt(i)
− 1

λf,t di

]−λf,t

. (3)

2.2 Intermediate goods producers

Good i is made using the technology:

Yt(i) = max
{
Z1−α
t Kt(i)αLt(i)1−α − ZtF , 0

}
, (4)

where the technology shock Zt (common across all firms) follows a unit root process, and

where F represent fixed costs faced by the firm. Based on preliminary estimation results

we decided to set F = 0 in the empirical analysis. We define technology growth zt =

log(Zt/Zt−1) and assume that zt follows the autoregressive process:2

zt = (1− ρz)γ + ρzzt−1 + σzεz,t. (5)

All firms face the same prices for their labor and capital inputs. Hence profit maximization

implies that the capital-labor ratio is the same for all firms:

Kt(i)
Lt(i)

=
α

1− α

Wt

Rkt
, (6)

2Smets and Wouters (2003) assume a stationary technology shock that follows an autoregressive process.

Their estimate of the autocorrelation coefficient however are very close to the upper boundary of one. We

therefore choose to assume a unit root process from the onset.
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where Wt is the nominal wage and Rkt is the rental rate of capital. Following Calvo (1983),

we assume that in every period a fraction of firms ζp is unable to re-optimize their prices

Pt(i). These firms adjust their prices mechanically according to

Pt(i) = (πt−1)ιp(π∗)1−ιp , (7)

where πt = Pt/Pt−1, π∗ is the steady state inflation rate of the final good, and ι ∈ [0, 1].

Those firms that are able to re-optimize prices choose the price level P̃t(i) that solves:

maxP̃t(i)
IEt

[∑∞
s=0 ζ

s
pβ

sΞpt+s
(
P̃t(i)

(
Πs
l=1π

ιp
t+l−1π

1−ιp
∗

)
−MCt+s

)
Yt+s(i)

]
s.t. Yt+s(i) =

 P̃t(i)(Πs
l=1π

ιp
t+l−1π

1−ιp
∗

)
Pt+s

−
1+λf,t

λf,t

Yt+s, MCt+s =
α−αW 1−α

t+s R
k α
t+s

(1− α)(1−α)Z1−α
t+s

,

(8)

where βsΞpt+s is today’s value of a future dollar for the consumers and MCt reflects marginal

costs. We consider only the symmetric equilibrium where all firms will choose the same P̃t(i).

Hence from (3) we obtain the following law of motion for the aggregate price level:

Pt =

[
(1− ζp)P̃

− 1
λf,t

t + ζp

(
π
ιp
t−1π

1−ιp
∗ Pt−1

)− 1
λf,t

]−λf,t

. (9)

2.3 Labor Packers

There is a continuum of households, indexed by j ∈ [0, 1], each supplying a differentiated

form of labor, L(j). The labor packers are perfectly competitive firms that hire labor from

the households and combine it into labor services Lt that are offered to the intermediate

goods producers:

Lt =
[∫ 1

0

Lt(j)
1

1+λw di

]1+λw

, (10)

where λw ∈ (0,∞) is a fixed parameter.3 From first-order and zero-profit conditions of

the labor packers we obtain the labor demand function and an expression for the price of

aggregated labor services Lt:

(a) Lt(j) =
(
Wt(j)
Wt

)− 1+λw
λw

Lt and (b) Wt =
[∫ 1

0

Wt(j)−
1

λw di

]−λw

. (11)

3Smets and Wouters (2003) assume that i.i.d. shocks to the degree of labor substitutability are another

source of disturbance in the economy.
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2.4 Households

The objective function for household j is given by:

IEt

∞∑
s=0

βsbt+s

[
log(Ct+s(j)− hCt+s−1(j))−

ϕt+s
1 + νl

Lt+s(j)1+νl +
χ

1− νm

(
Mt+s(j)
Zt+sPt+s

)1−νm
]

(12)

where Ct(j) is consumption, Lt(j) is labor supply, andMt(j) is money holdings. Household’s

preferences display habit-persistence. The preference shifters ϕt, which affects the marginal

utility of leisure, and bt, which scales the overall period utility, are exogenous processes

common to all households that evolve as:

lnϕt = (1− ρϕ) lnϕ+ ρϕ lnϕt−1 + σϕεϕ,t, (13)

ln bt = ρb ln bt−1 + σbεb,t. (14)

Real money balances enter the utility function deflated by the (stochastic) trend growth of

the economy, so to make real money demand stationary.

The household’s budget constraint written in nominal terms is given by:

Pt+sCt+s(j) + Pt+sIt+s(j) +Bt+s(j) +Mt+s(j) ≤ Rt+s−1Bt+s−1(j) +Mt+s−1(j) +At+s−1(j)

+ Πt+s +Wt+s(j)Lt+s(j) +
(
Rkt+sut+s(j)K̄t+s−1(j)− Pt+sa(ut+s(j))K̄t+s−1(j)

)
,

(15)

where It(j) is investment, Bt(j) is holdings of government bonds, Rt is the gross nominal

interest rate paid on government bonds, At(j) is the net cash inflow from participating in

state-contingent securities, Πt is the per-capita profit the household gets from owning firms

(households pool their firm shares, and they all receive the same profit), and Wt(j) is the

nominal wage earned by household j. The term within parenthesis represents the return to

owning K̄t(j) units of capital. Households choose the utilization rate of their own capital,

ut(j). Households rent to firms in period t an amount of effective capital equal to:

Kt(j) = ut(j)K̄t−1(j), (16)

and receive Rkt ut(j)K̄t−1(j) in return. They however have to pay a cost of utilization in

terms of the consumption good equal to a(ut(j))K̄t−1(j). Households accumulate capital

according to the equation:

K̄t(j) = (1− δ)K̄t−1(j) + µt

(
1− S

(
It(j)
It−1(j)

))
It(j), (17)

where δ is the rate of depreciation, and S(·) is the cost of adjusting investment, with

S(eγ) = 0, and S′′(·) > 0. The term µt is a stochastic disturbance to the price of investment
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relative to consumption, see Greenwood, Hercovitz, and Krusell (1998), which follows the

exogenous process:4

lnµt = (1− ρµ) lnµ+ ρµ lnµt−1 + σµεµ,t. (18)

The households’ wage setting is subject to nominal rigidities á la Calvo (1983). In

each period a fraction ζw of households is unable to re-adjust wages. For these households,

the wage Wt(j) will increase at a geometrically weighted average of the steady state rate

increase in wages (equal to steady state inflation π∗ times the steady state growth rate of

the economy eγ) and of last period’s inflation times last period’s productivity (πt−1e
zt−1).

The weights are 1− ιw and ιw, respectively. Those households that are able to re-optimize

their wage solve the problem:

maxW̃t(j)
IEt
∑∞
s=0 ζ

s
wβ

sbt+s

[
− ϕt+s

1 + νl
Lt+s(j)1+νl

]
s.t. Eq. (15) for s = 0, . . . ,∞, (11a), and

Wt+s(j) =
(
Πs
l=1(π∗e

γ)1−ιw(πt+l−1e
zt+l−1)ιw

)
W̃t(j).

(19)

We again consider only the symmetric equilibrium in which all agents solving (19) will

choose the same W̃t(j). From (11b) it follows that:

Wt = [(1− ζw)W̃
− 1

λw
t + ζw((π∗eγ)1−ιw(πt−1e

zt−1)ιwWt−1)−
1

λw ]−λw . (20)

Finally, we assume there is a complete set of state contingent securities in nominal

terms, which implies that the Lagrange multiplier Ξpt (j) associated with (15) must be the

same for all households in all periods and across all states of nature. This in turn implies

that in equilibrium households will make the same choice of consumption, money demand,

investment and capital utilization. Since the amount of leisure will differ across households

due to the wage rigidity, separability between labor and consumption in the utility function

is key for this result.

2.5 Government Policies

The central bank follows a nominal interest rate rule by adjusting its instrument in response

to deviations of inflation and output from their respective target levels:

Rt
R∗

=
(
Rt−1

R∗

)ρR
[(

πt
π∗

)ψ1
(
Yt
Y ∗t

)ψ2
]1−ρR

eσRεR,t , (21)

4We have also experimented with the introduction of a deterministic trend Υt in Equation (17). Since

this added parameter does not change the results or improve the fit for our empirical specification, we set

it equal to 1.
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where εR,t is the monetary policy shock, R∗ is the steady state nominal rate, Y ∗t is the target

level of output, and the parameter ρR determines the degree of interest rate smoothing. This

specification of the Taylor rule is more standard than the one in Smets and Wouters (2003),

who introduce a time-varying inflation objective that varies stochastically according to a

random walk. The random walk inflation target may help the model to fit the medium-

and long-frequency fluctuations in inflation. In this paper, we are interested in assessing the

model’s fit of inflation without the extra help coming from the exogenous inflation target

shocks. We set the target level of output Y ∗t in (21) equal to the trend level of output

Y ∗t = ZtY
∗, where Y ∗ is the steady state of the model expressed in terms of detrended

variables.5 The central bank supplies the money demanded by the household to support

the desired nominal interest rate.

The government budget constraint is of the form

PtGt +Rt−1Bt−1 +Mt−1 = Tt +Mt +Bt, (22)

where Tt are nominal lump-sum taxes (or subsidies) that also appear in household’s budget

constraint. Government spending is given by:

Gt = (1− 1/gt)Yt, (23)

where gt follows the process:

ln gt = (1− ρg) ln g + ρg ln gt−1 + σgεg,t (24)

2.6 Resource Constraint

The aggregate resource constraint:

Ct + It + a(ut)K̄t−1 =
1
gt
Yt. (25)

can be derived by integrating the budget constraint (15) across households, and combining

it with the government budget constraint (22) and the zero profit conditions of both labor

packers and final good producers.
5We also considered an alternative specification in which the central bank targets the level of output

that would have prevailed in absence of nominal rigidities. Preliminary estimation results indicated that the

flexible price target leads to deterioration of fit.
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2.7 Model Solution

As in Altig, Christiano, Eichenbaum, and Lindé (2004) our model economy evolves along

stochastic growth path. Output Yt, consumption Ct, investment It, the real wage Wt/Pt,

physical capital K̄t and effective capital Kt all grow at the rate Zt. Nominal interest

rates Rt, inflation πt, and hours worked Lt are stationary. The model can be rewritten in

terms of detrended variables. We find the steady states for the detrended variables and use

the method in Sims (2002) to construct a log-linear approximation of the model around the

steady state. We collect all the DSGE model parameters in the vector θ, stack the structural

shocks in the vector εt, and derive a state-space representation for the n× 1 vector ∆yt:

∆yt = [∆ lnYt,∆ lnCt,∆ ln It, lnLt,∆ ln(Wt/Pt), πt, Rt]′,

where ∆ denotes the temporal difference operator.

3 DSGE-VARs as Tools for Model Evaluation

In addition to the DSGE model we consider a vector autoregressive specification for ∆yt.

VARs are widely employed in empirical macroeconomics and often serve as benchmarks for

the evaluation of dynamic equilibrium economies. We borrow from the indirect inference

literature, e.g., Gourieroux, Monfort, and Renault (1993) and Smith (1993), and use the

VAR as an approximating model for the DSGE model. We construct a mapping from the

DSGE model parameters to the VAR parameters. As is well-known, the DSGE model leads

to a restricted VAR approximation. We interpret deviations of the VAR parameters from the

cross-coefficient restrictions as DSGE model misspecification. While most of the techniques

described below are also applicable if the DSGE model is solved with nonlinear techniques,

we use a log-linear approximation in our empirical analysis.

Broadly speaking, the goal of our analysis is to obtain estimates of the DSGE model and

the VAR parameters, assess the magnitude of the DSGE model misspecification, and to learn

from the discrepancy between restricted and unrestricted impulse response dynamics how

to improve the specification of the DSGE model. The analysis is conducted in a Bayesian

framework. Starting from a prior distribution for the DSGE model parameters θ we use

the mapping from θ to the VAR coefficients to obtain a prior for the VAR parameters.

This prior has the property that it concentrates in a lower dimensional subspace. Since

we are concerned about misspecification, we also form a prior over deviations of the VAR
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parameters from the DSGE model restrictions. This prior is centered at zero and its precision

is scaled by a hyperparameter λ. The hyperparameter generates a continuum of models,

which we call DSGE-VAR(λ), that essentially has an unrestricted VAR as one extreme (λ is

near zero) and the VAR approximation of the DSGE model at the other extreme (λ = ∞).

By model we mean a joint probability distribution for the data and parameters.

Markov-Chain-Monte-Carlo (MCMC) methods are used to conduct posterior inference.

We interpret the marginal likelihood function of λ as an overall measure of fit and denote

its peak by λ̂. A large value of λ̂ and a likelihood ratio of λ = λ̂ versus λ = ∞ close to

one is interpreted as evidence in favor of the DSGE model restrictions. Impulse response

comparisons of DSGE-VAR(∞) and DSGE-VAR(λ̂) can generate insights into the sources of

DSGE model misspecification. Our approach is related to recent work by Gallant and Mc-

Culloch (2004) who proposed a Bayesian framework for indirect inference. In their analysis

the approximating model is mainly a device for obtaining a likelihood function in a setting

where it is computationally cumbersome to evaluate the underlying structural model. In our

analysis we use the approximating model mainly as a tool to relax DSGE model restrictions

and obtain an empirical specification that fits well and can serve as a benchmark for impulse

response comparisons.

In the remainder of this section we present the VAR approximation of the DSGE

model, the specification of the prior distribution, a characterization of the posteriors and

the marginal likelihood of λ, a method to construct identified impulse responses from the

DSGE-VAR, and a simple analytical illustration of our method.

3.1 VAR Approximation of the DSGE Model

We use a VAR in vector error correction form as approximating model for our analysis:

∆yt = Φ0 + Φβ(β′yt−1) + Φ1∆yt−1 + . . .+ Φp∆yt−p + ut. (26)

We assume that the vector of reduced-form innovations ut ∼ N (0,Σu) conditional on past

information. According to the DSGE model, the technology process Zt generates a common

trend in output, consumption, investment, and real wages. We impose this common trend

structure on the approximating model by including the error correction term

β′yt−1 =
[

lnCt−1 − lnYt−1, ln It−1 − lnYt−1, ln(Wt−1/Pt−1)− lnYt−1

]′
on the right-hand-side of (26). We denote the dimension of ∆yt by n, define the k×1 vector

xt = [1, (β′yt−1)′,∆y′t−1, . . . ,∆y
′
t−p]

′, and let Φ = [Φ0,Φβ ,Φ1, . . . ,Φp]′. Assuming that
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under the DSGE model the distribution of xt is stationary with a non-singular covariance

matrix (both conditions are satisfied for the model specified in Section 2), we define the

moments ΓY Y (θ) = IEDθ [∆yt∆y′t], ΓXX(θ) = IEDθ [xtx′t], and ΓXY (θ) = IEDθ [xt∆y′t] and use

a population regression to obtain the mapping from DSGE model to VAR parameters:

Φ∗(θ) = Γ−1
XX(θ)ΓXY (θ), Σ∗u(θ) = ΓY Y (θ)− ΓY X(θ)Γ−1

XX(θ)ΓXY (θ). (27)

Here, ΓY X = Γ′XY . We will refer to Φ∗(θ) and Σ∗u(θ) as restriction functions.

3.2 Misspecification and Bayesian Inference

If the vector autoregressive representation of ∆yt deviates from the restriction functions

Φ∗(θ) and Σ∗u(θ) then the DSGE model is misspecified. A key step in our analysis is the

formulation of a prior distribution for the discrepancy between Φ and Φ∗(θ), which we

denote by Φ∆. We use a prior whose density is decreasing in Φ∆, implying that large

misspecifications have low probabilities. This assumption reflects the belief that the DSGE

model provides a good albeit not perfect approximation of reality.

To fix ideas we will begin by (i) ignoring the dependence of Φ∗ on θ and (ii) imposing

that Σu = Σ∗u. Suppose we generate a sample of λT observations from the DSGE model,

collected in the matrices Y∗ and X∗. Our prior for Φ∆ has the property that its density is

proportional to the expected likelihood ratio of Φ∗+Φ∆ versus Φ∗. The log-likelihood ratio

is given by

ln
[
L(Φ∗ + Φ∆,Σ∗u|Y∗, X∗)
L(Φ∗,Σ∗u|Y∗, X∗)

]
(28)

= −1
2
tr

[
Σ∗−1
u

(
Φ∆′

X ′
∗X∗Φ

∆ + 2Φ∗
′
X ′
∗X∗Φ

∆ − 2(Φ∗ + Φ∆)′X ′
∗Y∗ + 2Φ∗

′
X ′
∗Y∗

)]
.

Y∗ denotes the λT × n matrix with rows y∗
′

t and X∗ is the λT × k matrix with rows x∗
′

t .

Taking expectations under the distribution generated by the DSGE model yields

IEDθ

[
ln
[
L(Φ∗ + Φ∆,Σ∗u|Y∗, X∗)
L(Φ∗,Σ∗u|Y∗, X∗)

] ]
= −1

2
tr

[
Σ∗−1
u

(
Φ∆′

λTΓXXΦ∆

)]
. (29)

We now choose a prior density that is proportional (∝) to the expected likelihood ratio:

p(Φ∆|Σ∗u) ∝ exp
{
− 1

2
tr

[
λTΣ∗−1

u

(
Φ∆′

ΓXXΦ∆

)]}
. (30)

As the sample size λT increases the prior places more mass on misspecification matrices

that are close to zero. A graphical illustration is provided in Figure 1.
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In the empirical application we allow for uncertainty about θ by specifying a prior with

density p(θ) and we take potential misspecification of the covariance matrix Σ∗u(θ) into

account. T will correspond to the size of the actual sample and λ is a hyperparameter

that controls the expected magnitude of the deviations from the DSGE model restrictions.

Conditional on θ our prior for the VAR coefficients takes the form

Σu|θ ∼ IW
(
λTΣ∗u(θ), λT − k

)
(31)

Φ|Σu, θ ∼ N

(
Φ∗(θ),

1
λT

[
Σ−1
u ⊗ ΓXX(θ)

]−1
)
,

where IW denotes the inverted Wishart distribution. This prior distribution is proper, i.e.,

has mass one, provided that λT ≥ k+ n. Hence, we restrict the domain of λ to the interval

[(k+n)/T,∞]. The prior is identical to the one used in Del Negro and Schorfheide (2004) but

its motivation is different. Del Negro and Schorfheide (2004) focused on the improvement of

VARs and emphasized mixed estimation based on artificial data from a DSGE model and

actual data. The present paper asks the opposite question: how can we relax DSGE model

restrictions and evaluate the extent of their misspecification?

3.3 Posterior Distributions

The posterior density is proportional to the product of prior density and likelihood function.

We factorize the posterior into the conditional density of the VAR parameters given the

DSGE model parameters and the marginal density of the DSGE model parameters:

pλ(Φ,Σu, θ|Y ) = pλ(Φ,Σu|Y, θ)pλ(θ|Y ). (32)

The actual observations are collected in the matrices Y and X and the λ-subscript indicates

the dependence of the posterior on the hyperparameter. We use Γ̂XX , Γ̂XY , and Γ̂XX to

denote the sample autocovariances such as 1
T

∑
xtx

′
t. It is straightforward to show, e.g.,

Zellner (1971), that the posterior distribution of Φ and Σ is also of the Inverted Wishart –

Normal form:

Σu|Y, θ ∼ IW
(
T (λ+ 1)Σ̂u,b(θ), T (λ+ 1)− k

)
(33)

Φ|Y,Σu, θ ∼ N
(

Φ̂b(θ), Σu ⊗ [T (λΓXX(θ) + Γ̂XX)]−1

)
,
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where Φ̂b(θ) and Σ̂u,b(θ) are the given by

Φ̂b(θ) = (λΓXX(θ) + Γ̂XX)−1(λΓXY (θ) + Γ̂XY )

Σ̂u,b(θ) =
1

(λ+ 1)

[
(λΓY Y (θ) + Γ̂Y Y )− (λΓY X(θ) + Γ̂Y X)

×
(
λΓXX(θ) + Γ̂XX

)−1

(λΓXY (θ) + Γ̂XY )
]
.

Thus, the larger the weight λ of the prior, the closer the posterior mean of the VAR param-

eters is to Φ∗(θ) and Σ∗u(θ), the values that respect the cross-equation restrictions of the

DSGE model. On the other hand, if λ equals the lower bound (n+ k)/T then the posterior

mean is close to the OLS estimate Γ̂−1
XX Γ̂XY . The formula for the marginal posterior density

of θ and the description of a MCMC algorithm that generates draws from the joint posterior

of Φ, Σu, and θ are provided in Del Negro and Schorfheide (2004). They also demonstrate

(Proposition 2) that under certain conditions the estimate of θ can be interpreted as min-

imum distance estimate that is obtained by projecting the VAR coefficient estimates back

onto the restriction functions Φ∗(θ) and Σ∗u(θ).

3.4 The Marginal Likelihood Function of λ

We will study the fit of the DSGE model by examining the marginal likelihood function of

the hyperparameter λ, which is defined as6

p(Y |λ) =
∫
p(Y |θ,Σ,Φ)pλ(θ,Σ,Φ)d(θ,Σ,Φ). (34)

For computational reasons, we only consider a finite set of values Λ = {l1, . . . , lq}, where

l1 = (n+ k)/T and lq = ∞. If we assign equal prior probabilities to the elements of Λ, the

posterior probabilities for the hyperparameter are proportional to the marginal likelihood.

Hence, we will also refer to p(Y |λ) as the posterior of λ and denote its mode by

λ̂ = argmaxλ∈Λ p(Y |λ). (35)

It is common in the literature, e.g., Smets and Wouters (2003) to use marginal data densities

to document the fit of DSGE models relative to VARs with diffuse priors. In our framework

this approach corresponds (approximately) to comparing p(Y |λ) for the extreme values of

λ, that is, λ = ∞ (DSGE model) and λ = (k + n)/T (VAR with nearly flat prior). It is

preferable to report the entire marginal likelihood function p(Y |λ) rather than just its end-

points. The function p(Y |λ) summarizes the time series evidence on model misspecification
6We use Geweke’s (1999a) modified harmonic mean estimator to obtain a numerical approximation of

the marginal likelihood function based on the output of the MCMC computations.
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and documents by how much the restrictions of the DSGE model have to be relaxed to

balance in-sample fit and model complexity.

To illustrate the properties of the marginal likelihood function p(Y |λ) it is instructive

to consider the following univariate example. Suppose the VAR takes the special form of an

AR(1) model:

yt = φyt−1 + ut, ut ∼ iidN (0, 1) (36)

and the DSGE model restricts φ to be equal to φ∗. We will denote the DSGE model implied

autocovariances of order 0 and 1 by γ0 and γ1, respectively. Moreover, γ̂0 and γ̂1 are sample

autocovariances based on T observations. The prior in (31) simplifies to

φ ∼ N
(
φ∗,

1
λTγ0

)
. (37)

For this simple model the marginal likelihood of λ takes the following form

ln p(Y |λ, φ∗) = −T
2

ln(2π)− T

2
σ̃2(λ, φ∗)− 1

2
c(λ, φ∗). (38)

The term σ̃2(λ, φ∗) measures the in-sample one-step-ahead forecast error and can be

written as

σ̃2(λ, φ∗) = γ̂0 + λγ0 −
(γ̂1 + λγ1)2

γ̂0 + λγ0
− λ

(
γ0 −

γ2
1

γ0

)
. (39)

It can be verified that as λ approaches zero σ̃2(λ, φ∗) converges to the OLS forecast error,

whereas as λ −→ ∞ we obtain the in-sample forecast error under the restriction φ = φ∗.

Formally,

lim
λ−→0

σ̃2(λ, φ∗) =
1
T

∑
(yt − φ̂yt−1)2, lim

λ−→∞
σ̃2(λ, φ∗) =

1
T

∑
(yt − φ∗yt−1)2,

where φ̂ = γ̂1/γ̂0. Moreover, σ̃2(λ, φ∗) is monotonically increasing in λ, that is, the larger

λ the worse the in-sample fit. The third term in (38) can be interpreted as a penalty for

model complexity and is of the form

c(λ, φ∗) = ln
(

1 +
γ̂0

λγ0

)
. (40)

In the context of a standard regressor selection problem model complexity is tied to the

number of included regressors and the penalty is an increasing function of the number

of parameters that are being estimated. In our setup, model complexity is a continuous

function of the hyperparameter λ. If λ = ∞ there is no parameter to estimate in the AR(1)

example and the complexity, or alternatively, the dimensionality of the model is zero. If

λ = 0 then the autoregressive parameter is completely unrestricted and the dimensionality is



15

one. Accordingly, the penalty term (40) is monotonically decreasing in λ. As λ approaches

zero and the prior becomes more diffuse the penalty diverges to infinity.

Several features of the marginal data density are noteworthy. First, the marginal likeli-

hood function is either monotonically decreasing, increasing, or it has an interior maximum.

If an interior maximum exists, it is given by

λ̂ =
γ0γ̂

2
0

T (γ̂0γ1 − γ0γ̂1)2 − γ2
0 γ̂0

. (41)

Thus, if the sample autocovariances are very different from the autocovariances derived

under the restriction φ = φ∗, the marginal likelihood peaks at a small value of λ. As the

discrepancy between sample and DSGE model autocovariances decreases, λ̂ increases, and

the marginal likelihood will eventually attain its maximum at λ̂ = ∞.

Second, as λ approaches zero, the marginal log likelihood function tends to minus infin-

ity. In the context of high-dimensional VARs this feature of the marginal likelihood function

enforces parsimony and prevents the use of over-parameterized specifications that cannot be

precisely estimated based on the fairly short samples that are available to macroeconomists.

In these cases, a naive posterior odds comparison of VAR and DSGE model based on the

endpoints of the marginal likelihood function, corresponding to a VAR with diffuse prior

(small λ) and a VAR with DSGE model restrictions imposed, may not be very informative

because it automatically tends to favor the restricted specification. This phenomenon arises

more generally in Bayesian posterior odds comparisons and is called Lindley’s Paradox.

Rather than limiting the attention to extremes, our procedure creates a continuum of prior

distributions and evaluates the marginal likelihood function for a range of hyperparame-

ter values. The magnitudes of λ̂ and p(Y |λ = λ̂, φ∗)/p(Y |λ = ∞, φ∗) provide measures of

overall fit of the DSGE model.

Third, consider the comparison of two models M1 and M2. In the context of our uni-

variate example these models correspond to different restrictions, φ∗(1) and φ∗(2), say. In our

empirical analysis we will compare the marginal likelihood functions associated with differ-

ent DSGE model specifications. For small values of λ the goodness-of-fit terms σ̃2(λ, φ∗(1))

and σ̃2(λ, φ∗(2)) are essentially identical and differences in marginal likelihoods are due to

differences in the penalty terms. For large values of λ, on the other hand, penalty differ-

entials are less important and the marginal likelihood comparison is driven by the relative

in-sample fit of the two restricted specifications. If the autocovariances associated with

M1 are closer to the sample autocovariances than the M2 autocovariances, then according

to (41) λ̂(1) tends to be larger than λ̂(2).
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3.5 Impulse Response Function Comparisons

The goal of our impulse response function comparisons is to document in which dimensions

the DSGE model dynamics are (in)consistent with the data. There is an extensive literature

that evaluates DSGE models by comparing their impulse responses to those obtained from

VARs: Cogley and Nason (1994), Rotemberg and Woodford (1997), Schorfheide (2000),

Boivin and Giannoni (2005), and Christiano, Eichenbaum, and Evans (2005), to name a

few. Such a comparison faces two challenges. First, for the VAR to be a meaningful

benchmark it has to fit the data better, accounting for model complexity, than the DSGE

model. Many authors use simple least squares techniques which lead to very noisy coefficient

estimates in high-dimensional systems. The imprecise coefficient estimates translate into

impulse response function estimates that in a mean-squared-error sense are worse than the

estimates obtained directly from the DSGE model. Second, the VAR has to be expressed

in terms of structural shocks. It is typically difficult to find identification schemes that are

consistent with the DSGE model and simultaneously identify an entire vector of structural

shocks in a high-dimensional VAR.

In the DSGE-VAR procedure the benchmark is given by DSGE-VAR(λ̂), the model that

attains the highest marginal likelihood. Therefore, by construction our procedure meets the

first challenge: the benchmark model attains a better fit – penalized for model complexity to

avoid over-parameterization – and tends to deliver more reliable impulse response estimates

than the restrictive DSGE model. The spirit of our evaluation is to keep the autocovariance

sequence associated with the benchmark model as close to the DSGE model as possible

without sacrificing the ability to track the historical time series. Next, we describe how the

DSGE-VAR analysis can address the second challenge, identification.

While the DSGE model provides a state-space representation in terms of the vector of

structural shocks εt from which we can calculate the impulse responses directly, the DSGE-

VARs are specified in terms of reduced form innovations ut. Hence, the first step toward the

comparison of impulse responses is the identification of structural shocks in the DSGE-VARs.

We express the one-step-ahead VAR forecast errors as a linear function of the structural

shocks εt:

ut = ΣtrΩεt, (42)

where Σtr is the Cholesky decomposition of Σ and Ω is an orthonormal matrix with the

property ΩΩ′ = I. The matrix Ω is not identifiable from the data since the likelihood
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function of the VAR depends only on the covariance matrix

Σu = ΣtrΩΩ′Σ′tr = ΣtrΣ′tr.

Hence, we have to make auxiliary assumptions to determine Ω.

We follow Del Negro and Schorfheide (2004) and construct Ω as follows. The state space

representation of the DSGE model is identified in the sense that for each value of θ there

is a unique matrix A0(θ) that determines the contemporaneous effect of εt on ∆yt. Using

a QR factorization of A0(θ), the initial response of ∆yt to the structural shocks can be can

be uniquely decomposed into(
∂∆yt
∂ε′t

)
DSGE

= A0(θ) = Σ∗tr(θ)Ω
∗(θ), (43)

where Σ∗tr(θ) is lower triangular and Ω∗(θ) is orthonormal. According to Equation (26) the

initial impact of εt on the endogenous variables ∆yt in the VAR is given by(
∂∆yt
∂ε′t

)
V AR

= ΣtrΩ. (44)

To identify the DSGE-VAR, we maintain the triangularization of its covariance matrix Σu

and replace the rotation Ω in Equation (44) with the function Ω∗(θ) that appears in (43).

Using the rotation matrix Ω∗(θ), we turn the reduced-form DSGE-VAR into an identified

DSGE-VAR. The prior distribution

pλ(θ,Φ,Σu) = p(θ)pλ(Φ,Σu|θ)

together with the mapping Ω = Ω∗(θ) induces a prior distribution for the coefficients of the

structural VAR, which is then updated using the likelihood function of the reduced-form

VAR. Since beliefs about the VAR parameters are centered around the restriction functions

Φ∗(θ) and Σ∗u(θ) our prior implies, roughly speaking, that beliefs about impulse responses

to structural shocks are centered around the DSGE model responses, even for small values

of the hyperparameter λ. However, the smaller λ, the wider are the probability intervals

for the response functions. Our approach differs from much of the empirical literature on

identified VARs as it ties identification closely to the underlying DSGE model. We do not

view this feature as a shortcoming. Since the premise of our analysis is that the DSGE

model provides a good albeit not perfect approximation of reality, strong views about the

identification of particular structural shocks can and should be directly incorporated into

the underlying DSGE model.

Two pairwise comparisons of impulse responses are interesting: (i) DSGE model versus

DSGE-VAR(∞) and (ii) DSGE-VAR(∞) versus DSGE-VAR(λ̂). In our application we are
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working with a log-linearized DSGE model that can be expressed a vector autoregressive

moving average (VARMA). The first comparison provides some insights about the accuracy

of the VAR approximation, while the second comparison helps to understand the dimensions

in which the DSGE model is misspecified. If the DSGE model’s MA polynomial is non-

invertible or has roots near the unit circle, then the approximation by a finite-order VAR

could be poor.7 If, on the other hand, the MA polynomial is well approximated by a

few autoregressive terms, then our identification procedure for the DSGE-VAR is able to

recover the DSGE model responses associated with the VARMA representation. In our

application we find that for parameter values of θ near the posterior mode the discrepancy

between DSGE and DSGE-VAR(∞) responses is fairly small, in particular in the short-run.

However, as in the indirect inference literature, our analysis remains coherent and insightful

even if the VAR provides only an approximation to the underlying DSGE model.

A comparison of DSGE-VAR(λ̂) and DSGE-VAR(∞) responses illustrates the discrep-

ancy between the coefficient estimates that optimally relax the DSGE model restrictions

and the restricted estimates. If the posterior estimates of the VAR parameters are close

to the restriction functions Φ∗(θ) and Σ∗u(θ) then the DSGE-VAR(λ̂) and DSGE-VAR(∞)

will be very similar. If on the other hand, the posterior estimates strongly deviate from

the restriction function, the discrepancy between the impulse responses potentially provides

valuable insights on how to improve the underlying DSGE model.

4 The Data

All data are obtained from Haver Analytics (Haver mnemonics are in italics). Real output,

consumption of nondurables and services, and investment (defined as gross private domestic

investment plus consumption of durables) are obtained by dividing the nominal series (GDP,

C - CD, and I + CD, respectively) by population 16 years and older (LN16N), and deflating

using the chained-price GDP deflator (JGDP). The real wage is computed by dividing

Compensation of Employees (YCOMP) by total hours worked and the GDP deflator. Note

that compensation per hours includes wages as well as employer contribution. It accounts for
7Fernandez-Villaverde, Rubio-Ramirez, and Sargent (2004) provide necessary and sufficient conditions

for the invertibility of the moving average components of linear state-space models. We did not replace

the VAR specification in (26) by an unrestricted VARMA to avoid the approximation error for two reasons.

First, VARs have established themselves as popular and powerful tools for empirical research and forecasting

in macroeconomics. Second, from a computational perspective the posterior of DSGE-VAR is much easier

to analyze than the posterior of a DSGE-VARMA.
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both wage and salary workers and proprietors. Our measure of hours worked is computed by

taking total hours worked reported in the National Income and Product Accounts (NIPA),

which is at annual frequency, and interpolating it using growth rates computed from hours

of all persons in the non-farm business sector (LXNFH). We divide hours worked by LN16N

to convert them into per capita terms. Our broad measure of hours worked is consistent with

our definition of both wages and output in the economy. All growth rates are computed

using quarter-to-quarter log differences and then multiplied by 100 to convert them into

annualized percentages. Inflation rates are defined as log differences of the GDP deflator

and converted into annualized percentages. The nominal rate corresponds to the effective

Federal Funds Rate (FFED), also in percent. Data are available from QIII:1954 to QI:2004.

5 Empirical Results

The empirical analysis is conducted in four parts. The first part reports on the prior and

posterior distributions for the DSGE model parameters. The second part discusses the

evidence of misspecification in the New Keynesian model. We calculate marginal likelihood

functions for the hyperparameter λ and study the discrepancy in the impulse responses to

monetary and technology shocks between the DSGE-VAR(λ̂) and the DSGE-VAR(∞). In the

third part, we use the DSGE-VAR framework for the comparison of different DSGE model

specifications. We strip the baseline model of some of its frictions (habit formation and

price/wage indexation) and ask to what extent the time series fit suffers as a consequence.

Finally, we report some results on pseudo-out-of-sample forecasting accuracy.

Unless otherwise noted, all results are based on thirty years of observations (T = 120),

starting in QII:1974 and ending in QI:2004. The same sample size is used in the pseudo-out-

of-sample forecasting exercise. Beginning from QIII:1954 we construct 58 rolling samples of

120 observations, estimate the DSGE-VARs as well as the state-space representation of the

DSGE model for each sample, and compute forecast error statistics. All MCMC results are

based on 110,000 draws from the relevant posterior distribution, discarding the first 10,000.

We checked whether 110,000 draws were sufficient by repeating the MCMC computations

from over-dispersed starting points, verifying that we obtain the same results for parameter

estimates and log marginal likelihood functions.

The lag-length p of the DSGE-VAR is 4. To make the DSGE-VAR estimates comparable

to the estimates of the state-space representation of the DSGE model, we used in both cases

likelihood functions that condition on the four observations that are needed to initialize
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lags in period t = 1 as well as on the cointegration vector β′y0. Since DSGE-VAR(∞)

is not equivalent to the state-space representation of the DSGE model we will adopt the

convention that whenever we refer to the estimation of the DSGE model, we mean its

state-space representation.

5.1 Priors for the DSGE Parameters

Priors for the DSGE model parameters are provided in the first four columns of Table 1.

All intervals reported in the text are 90% probability intervals. The priors for the degree

of price and wage stickiness, ζp and ζw, are both centered at 0.6, which implies that firms

and households re-optimize their prices and wages on average every two and half quarters.

The 90% interval is very wide and encompasses findings in micro-level studies of price

adjustments such as Bils and Klenow (2004). The priors for the degree of price and wage

indexation, ιp and ιw, are nearly uniform over the unit interval. The prior for the adjustment

cost parameter s′′ is taken from Smets and Wouters (2003) and is consistent with the values

that Christiano, Eichenbaum, and Evans (2005) use when matching DSGE impulse response

functions to consumption and investment, among other variables, to VAR responses.

Our prior for the habit persistence parameter h is centered at 0.7, which is the value

used by Boldrin, Christiano, and Fisher (2001). These authors find that h = 0.7 enhances

the ability of a standard DSGE model to account for key asset market statistics. The prior

for a′ implies that in response to a 1% increase in the return to capital, utilization rates rise

by 0.1 to 0.3%. These numbers are considerably smaller than the one used by Christiano,

Eichenbaum, and Evans (2005). The 90% interval for the prior distribution on νl implies

that the Frisch labor supply elasticity lies between 0.3 and 1.3, reflecting the micro-level

estimates at the lower end, and the estimates of Kimball and Shapiro (2003) and Chang

and Kim (2006) at the upper end.

We use a pre-sample of observations from QI:1960 to QI:1974 to choose the prior means

for the parameters that determine steady states. The prior mean for the technology growth

rate is 2% per year. The annualized steady state inflation rate lies between 0.5 and 5.5%

and the prior for the inverse of the discount factor r∗ implies a growth adjusted real interest

rate of 4% on average. The prior means for the capital share α, the substitution parameter

λf , and the steady state government share 1 − 1/g are chosen to capture the labor share

of 0.57, the investment-to-output ratio of 0.24, and the government share of 0.21 in the
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pre-sample. The distribution for ψ1 and ψ2 is approximately centered at Taylor’s (1993)

values, whereas the smoothing parameter lies in the range from 0.18 to 0.83.

Since we model the level of technology Zt as a unit root root process, the prior for ρz,

which measures the serial correlation of technology growth zt, is centered at 0.2. The priors

for ρµ (shocks to the capital accumulation equation), and ρg (government spending) are quite

tight around 0.8 in order to prevent these parameters from hitting the boundary. The priors

for the remaining autocorrelation coefficients of the structural shocks – ρϕ (preferences

of leisure), ρb (overall preference shifter), ρλf
(price markup shocks)– are fairly diffuse

and centered around 0.6. Finally, the priors for the standard deviation parameters are

chosen to obtain realistic magnitudes for the implied volatility of the endogenous variables.

Throughout the analysis we fix the capital depreciation rate δ = 0.025 and λw = 0.3. The

parameter λw affects the substitution elasticity between different types of labor. Unlike λf

it is not identifiable from the steady-state relationships. We introduce a parameter Ladj

that captures the units of measured hours worked. In our model, we choose ϕ such that in

steady state each household supplies one unit of labor. A prior for Ladj is chosen based on

quarterly per capita hours worked in the pre-sample.

5.2 Posteriors for the DSGE Parameters

The remaining columns of Table 1 report on the posterior estimates of the DSGE model

parameters, for both the DSGE model and the estimation of the DSGE-VAR(λ̂). As described

later in detail, for the sample beginning in QII:1974 the value of λ̂ is 1.25. We start by

focusing on the parameter estimates for the state space representation of the DSGE model.

The comparison of the 90% coverage intervals suggests that likelihood contains information

about most of the parameters. Three exceptions are the parameters a
′
, νl, and ρz, for which

prior and posterior intervals roughly overlap. The parameter estimates for the DSGE model

are also generally in line with those of Smets and Wouters (2005), which is not surprising

since our model specification and choice of prior is similar to theirs. In particular, the model

displays a relatively high degree of price and wage stickiness, as measured by the probability

that firms (wage setters) cannot change their price (wage) in a given period. The posterior

means of ζp and ζw are 0.83 and 0.89, respectively. The estimated degree of indexation is

about 0.7 for both prices and wages. For some of the structural shocks, notably φt and λf,t,

the degree of persistence is not as high as that found in Smets and Wouters (2005).

We now turn to the parameter estimates obtained from the DSGE-VAR(λ̂). Del Negro
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and Schorfheide (2004) showed that as the prior on the VAR parameters becomes more

diffuse information about the DSGE model parameters accumulates more slowly. In the

limit, when λ = 0 the DSGE-VAR(λ) likelihood contains no information about the parameter

vector θ and the posterior will be identical to the prior. Hence, in general we expect that

for λ̂ < ∞ the DSGE-VAR(λ̂) posteriors to be closer to the prior than the DSGE model

posterior. Table 1 confirms that for many of the parameters, including the degree of price

and wage stickiness, the policy parameters, and some of the autocorrelation coefficients, the

DSGE-VAR(λ̂) estimates indeed lie between the DSGE posterior and the prior distribution.

One exception are the standard deviations of the structural shocks, which are estimated to

be lower under DSGE-VAR(λ̂) than under the DSGE model regardless of the prior.

5.3 Evidence of Misspecification in the New Keynesian Model

Smets and Wouters (2003, Table 2) found for Euro area data that a large-scale new-

Keynesian DSGE models can attain a larger marginal likelihood than VARs with training

sample prior and specific versions of the Minnesota prior. This result has had a considerable

impact on applied macroeconomists and policymakers, as it suggests that New Keynesian

DSGE models have achieved a degree of sophistication that makes them competitive with

more densely parameterized models such as VARs. In this subsection we revisit Smets and

Wouters’ findings using the DSGE-VAR procedure. We make three distinct points based on

marginal likelihood functions and impulse response comparisons. First, the posterior odds of

a DSGE model versus a VAR with a fairly diffuse prior do not provide a particularly robust

assessment of fit. Small changes in the sample period can lead to reversals of the model

ranking. The DSGE-VAR analysis, on the other hand, is much less sensitive to changes in the

sample period. Second, there is strong evidence of misspecification in the New Keynesian

model, suggesting that forecasts and policy recommendations obtained from this class of

models should be viewed with some degree of skepticism. Finally, on the positive side we

find that accounting for misspecification by optimally relaxing the DSGE model restrictions

does not alter the responses to a monetary policy shock in any significant way, both qualita-

tively and quantitatively. Thus, in spite of its deficiencies, the New Keynesian DSGE model

can indeed generate realistic predictions of the effects of unanticipated changes in monetary

policy.
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5.3.1 The Marginal Likelihood Function of λ

The two panels of Figure 2 show the logarithm of the marginal likelihood of DSGE-VAR(λ)

for different values of λ, as well as for the DSGE model. The values of λ considered are

0.33 (smallest λ value for which we have a proper prior), 0.5, 0.75, 1, 1.25, 1.5, 2, 5, and

∞. We re-scale the x-axis according to x = λ/(1 + λ). In the top panel of Figure 2 depicts

the marginal likelihood function for the the 30-year sample beginning in QII:1974, which is

the sample used for most of the subsequent analysis. The bottom panel is based on 30-year

sample that begins four years earlier in QII:1970.

The comparison between the two extremes – the VAR with loose prior on the left-hand

side of the plot and the DSGE model on the right-hand side – leads to opposite conclusions

depending on the sample period. In the QII:1974 – QI:2004 sample the difference in log-

marginal likelihoods between the DSGE model and DSGE-VAR(0.33) is 5, which translates

into posterior odds that are roughly 150 to 1 in favor of the DSGE model. Conversely, for

the QII:1970 – QI:2000 sample the difference is −14, overwhelmingly against the DSGE

model. This result confirms Sims’ (2003) conjecture that marginal likelihood comparisons

among “far-apart” models are not robust. The four years of difference between the two

samples are very unlikely to contain major shifts in the economy, and therefore should not

cause a change in the DSGE model’s assessment.

The lack of robustness in the comparison between the two extremes contrasts with

the robustness of the overall shape of the marginal likelihood function. In both panels, this

function has an inverted U-shape. The marginal likelihood increases sharply as λmoves from

0.33 to 0.75, is roughly flat for values between 0.75 and 1.25, and subsequently decreases,

first gradually and then more rapidly, as λ exceeds 1.5. The substantial drop in marginal

likelihood between DSGE-VAR(λ̂) and DSGE-VAR(∞) is strong evidence of misspecification

for the New-Keynesian model: As the prior tightly concentrates in the neighborhood of the

cross-equation restrictions imposed by the DSGE model, the in-sample fit of the DSGE-

VAR deteriorates. Del Negro and Schorfheide (2006) show that the shape of the posterior

distribution of λ is roughly the same for all the 58 30-year rolling samples considered in the

forecasting exercise in Section 5.4. The evidence of misspecification for the New-Keynesian

model is therefore robust to the choice of the sample.

This inverted-U shape with peaks between 0.75 and 1.25 contrasts with the pattern

we would expect if the data were generated by the DSGE model. The AR(1) example

in Section 3.4 suggests that if the sample autocovariances were close to the population



24

autocovariances implied by the DSGE model, then the marginal likelihood function would

peak at a much larger value of λ and possibly be monotonically increasing. This is confirmed

by simulation results reported in An and Schorfheide (2006), who generate observations from

a small-scale DSGE model and then calculate marginal likelihood functions for λ which are

indeed monotone in λ.

5.3.2 Impulse Response Function Comparisons

In order to gain further insights about the misspecification of the DSGE model we proceed

by comparing impulse responses from the DSGE-VAR(∞) to our benchmark specification

DSGE-VAR(λ̂). It turns out that in our application the approximation error of the DSGE-

VAR(∞) relative to the state-space representation of the DSGE model is small (see Ap-

pendix). Consequently, the impulse responses from the DSGE-VAR(∞), in particular to a

technology and a monetary policy shock, are very similar to those from the DSGE model.

We subsequently focus on the impulse response functions that have received the most

attention in the literature: responses to monetary policy and technology shocks. The full set

of 49 response functions can be found in the Appendix. Figure 3 depicts mean responses to

one-standard deviation shocks for the DSGE-VAR(∞) (gray solid lines), the DSGE-VAR(λ̂)

(dark dash-and-dotted lines), and 90% bands (dark dotted lines) for DSGE-VAR(λ̂).8 The

top panels of Figure 3 show that the impulse response functions with respect to a monetary

policy shock for DSGE-VAR(∞) match those for DSGE-VAR(λ̂), not only qualitatively but

also – by and large – quantitatively. Both in the DSGE-VAR(∞) and in the DSGE-VAR(λ̂)

output, consumption, investment and hours display a hump-shaped response to the policy

shock, although quantitatively the hump for investment is more pronounced in the data

than it is in the DSGE model. Unlike in Christiano, Eichenbaum, and Evans (2005), our

DSGE model implies that monetary policy shocks are observed contemporaneously. Yet,

thanks to various sources of inertia, including habit formation, the initial impact of the

shock on real variables is very small. The response of inflation is the only dimension where

DSGE model and data disagree: according to the DSGE-VAR(λ̂) it is more sluggish than

in the DSGE model. In summary, as in Christiano, Eichenbaum, and Evans (2005) we find

that the DSGE model’s impulse response to a policy shock are in agreement with the data.
8The responses are computed based on the respective posterior draws for the DSGE-VAR(∞) and

DSGE-VAR(λ̂). Alternatively, one could evaluate for each θ draw from the DSGE-VAR(λ̂) posterior the

restriction functions Φ∗(θ) and Σ∗
u(θ) and calculate the corresponding impulse responses to to illustrate how

far the DSGE-VAR(λ̂) estimates are away from the restriction functions.
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This finding may not be too surprising, given that this specific model was written with this

purpose in mind. Yet it is comforting to know that it is robust to a different data set and

identification procedure.

The bottom panels of Figure 3 show that the responses to a technology shock have

similar shapes for the DSGE-VAR(∞) and DSGE-VAR(λ̂), but they appear to be quantita-

tively different. The technology shock seems to have a larger effect in the DSGE-VAR(∞).

The amplification is due to a larger estimate of the shock standard deviation caused by

poorer in-sample fit of the DSGE-VAR(∞) relative to the DSGE-VAR(λ̂). The differences

between the response functions disappear if the technology shocks in the two models are

re-normalized to have the same long-run effect on output.9

In conclusion, we find that the DSGE model’s misspecification does not translate in

impulse responses to monetary policy or technology shocks that are very different between

the DSGE model and the benchmark DSGE-VAR(λ̂). Many macroeconomists believe that

these two shocks provide a very important source of business cycle fluctuations. Our results

suggests that business cycle research has to a large extent been successful in developing

a model that can procedure realistic responses to these shocks. However, a non-negligible

fraction of fluctuations is attributed to the remaining five shocks in the model. We document

in the Appendix that for some of the shocks, such as µt, which affects the shadow price of

installed capital, DSGE-VAR(∞) and DSGE-VAR(λ̂) differ substantially, in particular in the

long-run, suggesting that some low-frequency implications of the model are at odds with

the data.

5.4 Comparing DSGE Model Specifications

The DSGE model used in this paper is rich in terms of nominal and real frictions. An im-

portant part of the empirical analysis in Smets and Wouters (2003) and Christiano, Eichen-
9According to Altig, Christiano, Eichenbaum, and Lindé’s (2004) analysis inflation in the DSGE model

does essentially not move in response to a permanent technology shock. We find that it does. Moreover, the

inflation response is consistent with our benchmark impulse response function obtained from the DSGE-

VAR(λ̂). We conjecture this difference is due to the estimation procedure used: Altig et al. estimate their

DSGE model by matching impulse response functions. Technology shocks in their VAR are identified through

long-run restrictions which tend to be imprecisely estimated. Hence, when minimizing the discrepancy

between VAR and DSGE responses, more weight is placed on the responses to the monetary shocks. But

as the top panel Figure 3 shows, in the data inflation react with a delay to the monetary shock. Therefore

a sluggish response of inflation is wired into their estimates, and translates into a sluggish response to a

technology shock as well. Our likelihood-based estimation implicitly places more weight on reproducing the

response of inflation to a technology shock.
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baum, and Evans (2005) is to assess which of these frictions are important to fit the data.

Smets and Wouters (2003) use marginal likelihood comparisons, eliminating one friction

at a time and computing posterior odds relative to the baseline specification. Christiano,

Eichenbaum, and Evans (2005) study whether the impulse responses of a model without a

specific friction can match the VAR’s impulse responses as well as the baseline model.

In this paper we use DSGE-VARs to assess the importance of two particular features

of the DSGE model: price and wage indexation and habit formation. We will refer to the

model without wage and price indexation as the No Indexation model and to the model

without habit formation as the No Habit model, while the standard DSGE model used up

to now will be referred to as the Baseline model. We will document that habit formation is

important to fit the data, whereas the evidence in favor of indexation is weak.

We compare the marginal likelihood of λ for the baseline model with that of the two

alternative specifications. Our example in Section 3.4 suggests that as the mismatch be-

tween sample autocovariances and population autocovariances implied by the DSGE model

increases, λ̂ decreases and the marginal likelihood function shifts downward. Therefore, we

can infer from the magnitude of the south-west shift in the marginal likelihood function the

extent to which a specific friction is useful in fitting the data.

We emphasized previously that in the absence of a more elaborate DSGE model a com-

parison of impulse responses between the DSGE-VAR(∞) and DSGE-VAR(λ̂) can generate

important insights on how to improve the model specification. Using the hindsight from our

analysis of the Baseline model, we will subsequently examine whether such a comparison

for the No Indexation and No Habit models reveal in what directions these models need to

be augmented.

5.4.1 Evidence from the Marginal Likelihood Functions

Figure 4 resembles the top panel of Figure 2, except that we overlay the marginal likelihood

functions for the Baseline (solid line), the No Indexation (dashed line), and the No Habit

(dash-and-dotted line) model. Smets and Wouters (2003) dogmatically enforced the cross-

equation restrictions of the DSGE model specifications, which leads to a comparison of the

three marginal likelihood values on the right edge of Figure 4. Both alternative specifications

are strongly rejected in favor of the Baseline, even though the rejection for the No Indexation

is not as stark as for the No Habit model.
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The evidence contained in the overall posterior distribution of λ against the No Habit

model is equally strong. Figure 4 shows that relative to the Baseline model the marginal

likelihood of λ not only shifts down, but also to the left. Translating the marginal likelihood

values into posterior probabilities, for the No Habit model there is very little probability

mass associated with values of λ greater than one. Conversely, the left-ward shift for the

No Indexation model is much less pronounced and the marginal likelihood remains fairly

flat for values of λ between 0.75 and 2.

5.4.2 Evidence from Impulse Response Functions

Suppose all we have available is the No Habit (No Indexation) model. Can we learn from

the impulse response comparison between the DSGE-VAR(∞) and DSGE-VAR(λ̂) that some

important feature is missing from the structural model? Figure 5 depicts the mean impulse

responses to monetary policy (top panel) and technology shocks (bottom panel) for DSGE-

VAR(∞) (gray solid line) and DSGE-VAR(λ̂) (dark dash-and-dotted lines), as well a the 90%

bands (dark dotted lines) for DSGE-VAR(λ̂). Figure 5 is obtained based on the No Habit

model. Therefore the benchmark DSGE-VAR(λ̂) in Figure 5 differs from that in Figure 3 for

two reasons. First, the value of λ̂ is lower, as can be appreciated from Figure 4. Second, the

prior for the VAR coefficients is based on the No Habit model as opposed to the Baseline

model.

A comparison of Figures 5 and 3 indicates that the initial responses to a monetary policy

shock of output, consumption, and hours for the No Habit DSGE model look very different

from those of the Baseline DSGE model. All real variables with the exception of investment

and real wages now display a strong initial reaction to the monetary shock, which contrasts

with the hump-shaped responses in the DSGE-VAR(λ̂). Even if Figure 3 were not available

to the researcher, the comparison between the impulse responses for λ = ∞ and λ = λ̂ in

Figure 5 would reveal that something is amiss in DSGE model without habit formation. A

similar analysis applies to the responses to a technology shock (bottom panel of Figure 5),

where consumption reacts strongly on impact according to DSGE-VAR(∞), compared to

the more gradual response in the DSGE-VAR(λ̂). Importantly, the benchmark responses in

Figures 5 and 3 are similar, both qualitatively and quantitatively, in spite of the fact that

the underlying set of cross-equation restrictions is different. Thus, even under No Habit the

DSGE-VAR(λ̂) provides a reasonable benchmark although the DSGE model misspecification

is seemingly stronger than for the Baseline model.
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Figure 6 shows the impulse responses for the No Indexation model. Unlike Figure 5,

Figure 6 shows no stark divergence between DSGE-VAR(∞) and the benchmark, DSGE-

VAR(λ̂). Indeed the impulse response functions in both panels of Figure 6 are quite similar

to those of Figures 3. The change in the cross-equation restrictions does not seem to

translate into an appreciable change in the transmission mechanism of monetary policy

and technology shocks. Perhaps the main difference consists in the response of inflation

to technology shocks, which is somewhat hump-shaped in Figure 3 but not in Figure 6.

Quantitatively however this difference does not amount to much, as the hump is small.

In conclusion the evidence from the DSGE-VAR procedure against the No Indexation

model is not nearly as strong as that against the No Habit model. These findings suggest

that habit persistence in preferences substantially improves the fit of the DSGE model.

Hence, those who believe that habit persistence is not a “structural” feature may have

to introduce alternative mechanisms that deliver similar effects. Simply eliminating habit

persistence comes at a cost in terms of fit. On the contrary, the evidence in favor of price

and wage indexation is not nearly as strong, in spite of the fact that the marginal likelihood

comparison between DSGE models (Figure 4) – if taken literally – rejects the No Indexation

model in favor of the Baseline.

5.5 Pseudo-Out-of-Sample Forecast Accuracy

We now discuss the pseudo-out-sample fit of DSGE-VAR(∞) and compare it to that of the

DSGE-VAR(λ̂) and an unrestricted VAR. The out-of-sample forecasting accuracy is assessed

based on a rolling sample starting in QIV:1985 and ending in QI:2000, for a total of 58

periods. At each date of the rolling sample we use the previous 120 observations to re-

estimate the models, and the following eight quarters to assess forecasting accuracy, which

is measured by the root mean squared error (RMSE) of the forecast. For the variables that

enter the VAR in growth rates (output, consumption, investment, real wage) and inflation

we forecast cumulative changes. For instance, the RMSE of inflation for eight quarters

ahead forecasts measures the error in forecasting cumulative inflation over the next two

years (in essence, average inflation), as opposed to quarter-to-quarter inflation in two years.

The DSGE-VARs are re-estimated for each of the 58 samples. As discussed above, the value

of λ̂ hovers between 0.75 and 1.25.

Table 2 documents for each series and forecast horizon the root mean square error

(RMSE) of the unrestricted VAR, as well as the percentage improvement in forecasting



29

accuracy (whenever positive) of DSGE-VAR(λ̂) and DSGE-VAR(∞ ) relative to the VAR. The

last three rows of the Table report the corresponding figures for the multivariate statistic,

a summary measure of joint forecasting performance, which is computed as the converse of

the log-determinant of the variance-covariance matrix of forecast errors.

Table 2 shows that for the multivariate statistic, and for most variables, DSGE-VAR(λ̂)

improves over the VAR for all forecasting horizons. Short-run consumption forecasts and

long-run investment forecasts are an exception. Interestingly, there seems to be a trade-

off between forecasting consumption and investment. This trade-off reflects the fact that

all three models considered in Table 2 are error correction models with the same long-run

cointegrating restrictions on output, consumption, investment, and the real wage. These

cointegrating restrictions are at odds with the data. Hence, accurate forecasts for some of

these variables result in inaccurate forecasts for others, given that not all series grow propor-

tionally in the long run as the model predicts. Another manifestation of this phenomenon

is the fact that DSGE-VAR(∞) outperforms the other two models in forecasting the real

wage in the long run, but performs very poorly in forecasting both output and investment.

In summary, the fact that the DSGE model imposes these long-run cointegrating restric-

tions results in a serious limitation of its forecasting ability. To the extent that DSGE-VAR

inherits the same long-run restrictions, its accuracy suffers as well.

For the remaining variables, DSGE-VAR(λ̂) is roughly as accurate as the unrestricted

VAR in terms of hours per capita, while DSGE-VAR (∞) is far worse, especially in the long

run. Conversely, DSGE-VAR (∞) performs well in terms of the nominal variables, inflation

and the interest rate. For inflation DSGE-VAR (∞)’s forecasting accuracy is inferior to that

of DSGE-VAR(λ̂), but far better than that of the unrestricted VAR. For the nominal interest

rate, DSGE-VAR(∞) outperforms DSGE-VAR(λ̂) for longer forecast horizons, while in the

short run the two models have roughly the same forecasting performance.

Extending the analysis of Section 5.4, we now discuss the comparison of the out-of-

sample forecasting performance across models. Figure 7 shows the one-quarter ahead per-

centage improvement in the multivariate forecast statistic relative to the unrestricted VAR

for the Baseline (solid line), No Indexation (dashed line), and the No Habit (dash-and-

dotted line) models, as a function of λ. Note that the benchmark used for the computation

of the percentage improvement – the unrestricted VAR – is the same for all three models.

Figure 7 focuses on one-period-ahead forecasting accuracy to facilitate the comparison with

the results in Figure 4, which were based on the marginal likelihood.

The results in Figure 7 agree in a number of dimensions with those in Figure 4. The
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inverted-U shape that characterized the posterior distribution of λ for each of the model

in Figure 4 also describes the improvement in forecasting accuracy relative to the VAR.

Results documented in Del Negro and Schorfheide (2006) show that this inverted-U shape

characterizes the improvement in forecasting accuracy for all forecasting horizons from one

to eight quarters ahead. Relaxing, yet not ignoring the cross-equation restrictions leads to

an improvement in fit and forecasting performance. Consistently with the overall message

from the previous section, the No Indexation and the Baseline model perform roughly as

well in terms of multivariate statistic, while the forecasting accuracy worsens considerably

for the No Habit model relative to the Baseline model as the DSGE prior becomes too tight.

6 Conclusions

Smets and Wouters (2003) showed that large-scale New-Keynesian models with real and

nominal rigidities can fit as well as VARs estimated under diffuse priors, and possibly better.

This result implies that these models are becoming a tool usable for quantitative analysis

by policy making institutions. In addition, it implies that vector autoregressions estimated

with simple least squares techniques, or from a Bayesian perspective, estimated under a

very diffuse prior, many not provide a reliable benchmark. In turn, this suggests that

more elaborate tools for model evaluation are necessary. Using techniques developed in

Del Negro and Schorfheide (2004) we constructed a reliable benchmark by systematically

relaxing the restrictions that the DSGE model poses on a vector autoregressive to optimize

its fit measured by the marginal likelihood function. We argued that comparing the DSGE

model’s and the benchmark’s impulse response function can shed light on the nature of the

DSGE model’s misspecification.
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Table 1: DSGE Model’s Parameter Estimates

Prior DSGE-VECM(λ̂) Post. DSGE Post.

Distr. P(1) P(2) Interval Mean Interval Mean Interval

α B 0.33 0.10 [ 0.16 , 0.49 ] 0.23 [ 0.20 , 0.26 ] 0.26 [ 0.23 , 0.29 ]

ζp B 0.60 0.20 [ 0.29 , 0.93 ] 0.79 [ 0.72 , 0.86 ] 0.83 [ 0.79 , 0.87 ]

ιp B 0.50 0.28 [ 0.08 , 0.95 ] 0.75 [ 0.53 , 1.00 ] 0.76 [ 0.57 , 0.97 ]

s′′ G 4.00 1.50 [ 1.60 , 6.28 ] 4.57 [ 2.60 , 6.61 ] 5.70 [ 3.34 , 7.90 ]

h B 0.70 0.05 [ 0.62 , 0.78 ] 0.75 [ 0.70 , 0.81 ] 0.81 [ 0.77 , 0.85 ]

a′ G 0.20 0.10 [ 0.05 , 0.35 ] 0.27 [ 0.10 , 0.43 ] 0.19 [ 0.07 , 0.32 ]

νl G 2.00 0.75 [ 0.81 , 3.15 ] 1.69 [ 0.66 , 2.74 ] 2.09 [ 0.95 , 3.19 ]

ζw B 0.60 0.20 [ 0.29 , 0.94 ] 0.79 [ 0.70 , 0.87 ] 0.89 [ 0.84 , 0.93 ]

ιw B 0.50 0.28 [ 0.05 , 0.93 ] 0.45 [ 0.04 , 0.80 ] 0.70 [ 0.47 , 0.96 ]

r∗ G 2.00 1.00 [ 0.49 , 3.49 ] 1.36 [ 0.41 , 2.28 ] 1.52 [ 0.48 , 2.50 ]

ψ1 G 1.50 0.40 [ 0.99 , 2.09 ] 1.80 [ 1.42 , 2.19 ] 2.21 [ 1.79 , 2.63 ]

ψ2 G 0.20 0.10 [ 0.05 , 0.35 ] 0.16 [ 0.09 , 0.22 ] 0.07 [ 0.03 , 0.10 ]

ρr B 0.50 0.20 [ 0.18 , 0.83 ] 0.76 [ 0.70 , 0.83 ] 0.82 [ 0.78 , 0.86 ]

π∗ N 3.01 1.50 [ 0.56 , 5.46 ] 2.98 [ 0.89 , 5.19 ] 5.98 [ 4.61 , 7.38 ]

γ G 2.00 1.00 [ 0.46 , 3.47 ] 1.08 [ 0.39 , 1.80 ] 0.94 [ 0.40 , 1.43 ]

λf G 0.15 0.10 [ 0.01 , 0.29 ] 0.35 [ 0.29 , 0.42 ] 0.29 [ 0.24 , 0.34 ]

g∗ G 0.30 0.10 [ 0.14 , 0.46 ] 0.19 [ 0.13 , 0.24 ] 0.23 [ 0.20 , 0.26 ]

Ladj N 252.0 10.0 [ 235.5 , 268.4 ] 257.6 [ 244.3 , 271.5 ] 245.2 [ 233.5 , 255.3 ]

Notes: See Section 2 for a definition of the DSGE model’s parameters, and Section 4
for a description of the data. B is Beta, G is Gamma, IG is Inverse Gamma, and N is
Normal distribution. P (1) and P (2) denote means and standard deviations for B, G, and
N distributions; s and ν for the IG distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs

2/2σ2
.

The effective prior is truncated at the boundary of the determinacy region and the prior
probability interval reflects this truncation. All probability intervals are 90% credible. The
following parameters are fixed: δ = 0.025, λw = 0.3, Φ = 0. Estimation results are based
on the sample period QII:1974 - QI:2004.
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Table 1: (continued)

Prior DSGE-VECM(λ̂) Post. DSGE Post.

Distr. P(1) P(2) Interval Mean Interval Mean Interval

ρz B 0.20 0.10 [ 0.04 , 0.35 ] 0.20 [ 0.08 , 0.32 ] 0.20 [ 0.09 , 0.31 ]

ρφ B 0.60 0.20 [ 0.29 , 0.93 ] 0.38 [ 0.20 , 0.58 ] 0.25 [ 0.11 , 0.37 ]

ρλf
B 0.60 0.20 [ 0.28 , 0.93 ] 0.11 [ 0.03 , 0.21 ] 0.12 [ 0.02 , 0.21 ]

ρµ B 0.80 0.05 [ 0.72 , 0.88 ] 0.74 [ 0.68 , 0.81 ] 0.87 [ 0.81 , 0.94 ]

ρb B 0.60 0.20 [ 0.29 , 0.93 ] 0.80 [ 0.68 , 0.92 ] 0.92 [ 0.86 , 0.97 ]

ρg B 0.80 0.05 [ 0.72 , 0.88 ] 0.90 [ 0.85 , 0.96 ] 0.95 [ 0.93 , 0.97 ]

σz IG 1.33 2.64 [ 0.31 , 2.34 ] 0.57 [ 0.48 , 0.65 ] 0.82 [ 0.72 , 0.91 ]

σφ IG 7.12 11.82 [ 1.64 , 12.57 ] 11.83 [ 4.41 , 19.84 ] 40.54 [ 18.21 , 64.09 ]

σλf
IG 1.33 2.36 [ 0.31 , 2.34 ] 0.21 [ 0.18 , 0.25 ] 0.24 [ 0.21 , 0.28 ]

σµ IG 1.32 2.29 [ 0.30 , 2.33 ] 0.55 [ 0.43 , 0.67 ] 0.66 [ 0.54 , 0.78 ]

σb IG 1.33 2.32 [ 0.30 , 2.33 ] 0.32 [ 0.24 , 0.41 ] 0.54 [ 0.36 , 0.71 ]

σg IG 1.34 5.60 [ 0.31 , 2.34 ] 0.30 [ 0.26 , 0.34 ] 0.38 [ 0.34 , 0.42 ]

σr IG 0.36 0.85 [ 0.08 , 0.62 ] 0.18 [ 0.15 , 0.21 ] 0.28 [ 0.25 , 0.31 ]
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Table 2: Pseudo-Out-of-Sample RMSEs: Percentage Improvement relative to VAR

forecast horizon

1 2 4 6 8

Y DSGE-VAR(λ̂), 16.3 14.1 12.5 13.5 13.6

DSGE-VAR(∞), 0.9 -17.6 -56.5 -82.5 -102.9

VAR, RMSE: 0.67 0.97 1.68 2.38 2.98

C DSGE-VAR(λ̂), -6.8 -7.6 7.1 16.6 21.5

DSGE-VAR(∞), -15.7 -21.4 -0.8 11.3 12.0

VAR, RMSE: 0.42 0.62 1.06 1.56 2.03

I DSGE-VAR(λ̂), 17.8 8.0 -5.0 -11.5 -17.2

DSGE-VAR(∞), -4.2 -41.2 -101.0 -135.3 -157.8

VAR, RMSE: 2.67 3.98 6.59 9.14 11.45

H DSGE-VAR(λ̂), 10.0 10.9 -0.6 -0.0 0.7

DSGE-VAR(∞), -13.6 -37.9 -95.4 -116.5 -127.2

VAR, RMSE: 0.58 0.92 1.56 2.26 2.88

W DSGE-VAR(λ̂), 8.2 11.7 11.1 14.9 18.4

DSGE-VAR(∞), 6.7 12.7 18.1 27.0 36.6

VAR, RMSE: 0.65 1.06 1.72 2.28 2.82

Inflation DSGE-VAR(λ̂), 10.7 10.9 22.9 31.0 36.6

DSGE-VAR(∞), 8.4 4.2 10.4 21.1 29.6

VAR, RMSE: 0.25 0.47 0.98 1.68 2.42

R DSGE-VAR(λ̂), 27.3 23.4 9.2 7.0 9.1

DSGE-VAR(∞), 27.7 17.8 3.2 8.2 17.1

VAR, RMSE: 0.68 1.14 1.63 2.11 2.64

Multivariate DSGE-VAR(λ̂), 11.0 8.8 6.1 9.4 9.4

Statistic DSGE-VAR(∞), 3.8 -2.1 -6.9 -2.7 -0.2

VAR, RMSE: 0.68 0.23 -0.18 -0.47 -0.65

Notes: Results are based on 58 rolling samples of 120 observations. For each rolling sample,
we estimate DSGE model and DSGE-VARs, compute λ̂, and calculate pseudo-out-of-sample
forecast errors for the subsequent 8 periods. For each variable, the table reports RMSE of the
forecast from the VAR and improvements in forecast accuracy obtained by the DSGE model
and the DSGE-VAR(λ̂). Improvements (positive entries) are measured by the percentage
reduction in RMSE. The multivariate statistic is computed as the converse of the log-
determinant of the variance-covariance matrix of forecast errors. The forecast horizon is
measured in quarters. See Section 4 for a description of the data.
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Figure 1: Stylized View of DSGE Model Misspecification
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Notes: Φ = [φ1, φ2]′ can be interpreted as the VAR parameters, and Φ∗(θ) is the restriction
function implied by the DSGE model.
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Figure 2: Marginal Likelihood as a Function of λ

30-Year Sample: QII:1974 to QI:2004
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Notes: The two panels depict the log marginal likelihood function on the y-axis and the
corresponding value of λ, re-scaled between via the transformation λ/(1+λ), on the x-axis.
The right endpoint depicts the log marginal likelihood for the state-space representation of
the DSGE model.
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Figure 3: Impulse Response Functions: DSGE-VAR(λ̂) vs. DSGE-VAR(∞)

Monetary Policy Shocks
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Notes: Figure depicts posterior mean responses for the DSGE-VAR(∞) (gray solid lines)
and the DSGE-VAR(λ̂) (dark dash-and-dotted lines), and 90% bands (dark dotted lines) for
DSGE-VAR(λ̂).
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Figure 4: Marginal Likelihood as a Function of λ: Comparison across Models
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Figure 5: Impulse Response Functions for the No Habit Model: DSGE-VAR(λ̂) vs.

DSGE-VAR(∞)

Monetary Policy Shocks
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Figure 6: Impulse Response Functions for the No Indexation Model: DSGE-VAR(λ̂)

vs. DSGE-VAR(∞)

Monetary Policy Shocks
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Figure 7: One-period Ahead Root Mean Square Error Summary: Model Com-

parison
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Notes: Figure depicts asymptotic risks as a function of local misspecification: solid is λ = λ̂,
dashed is λ = ∞, and dotted is λ = T−1.
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A Appendix

Figure A-1 shows the impulse responses of the endogenous variables to one-standard devi-

ation shocks for the DSGE-VAR(∞) (dotted lines) and for the state-space representation of

the DSGE model (solid lines). Both impulse responses are computed using the same set

of DSGE model parameters, namely the mean estimates for the DSGE model reported in

Table 1.

Figure A-2 depicts mean responses of the endogenous variables to one-standard devi-

ation shocks for the DSGE-VAR(∞) (gray solid lines), the DSGE-VAR(λ̂) (dark dash-and-

dotted lines), and 90% bands (dark dotted lines) for DSGE-VAR(λ̂).

The impulse responses are computed with respect to the following shocks: technol-

ogy growth zt (Tech), labor/leisure preference (ϕ), capital adjustment (µ), intertemporal

preference (b), government spending (g), mark-up (λf ), and monetary policy (Money).
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Figure A-1: Baseline Model Impulse Response Functions: DSGE model vs.

DSGE-VAR(∞)
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Notes: Figure depicts the impulse responses of the endogenous variables to one-standard
deviation shocks for the DSGE-VAR(∞) (dotted lines) and for the state-space representation
of the DSGE model (solid lines).
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Figure A-2: Baseline Model Impulse Response Functions: DSGE-VAR(λ̂) vs.

DSGE-VAR(∞)
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Notes: Figure depicts mean responses of the endogenous variables to one-standard deviation
shocks for the DSGE-VAR(∞) (gray solid lines), the DSGE-VAR(λ̂) (dark dash-and-dotted
lines), and 90% bands (dark dotted lines) for DSGE-VAR(λ̂).


