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Abstract

In this appendix, we provide additional estimation results for the model with the modified
UIP condition in Adolfson et al. (2006), in order to provide the interested reader with more
information to judge the robustness of our econometric results.
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1. Overview

1.1. Prior vs posterior plots

Figures 1a to 1c report the prior and posterior distributions for all estimated parameters in the
model including the modified UIP condition and using a flexible Taylor-type instrument rule to
model the pre-inflation targeting regime (i.e., the last model in Table 1). In accordance with the
results in Table 1, the figures show that the data is generally informative about the parameters,
as the posterior distributions differ from the priors, with a few exceptions (i.e., ,, and r;). The
results for these parameters are discussed in greater detail in the main text.

1.2. Raw Metropolis chains

In Figures 2a to 2c we report the 500,000 post burn-in Metropolis draws for each parameter.
The Markov chain in Figure 2 show that there are no clear trends or correlations between the
parameters in the model.

The CUSUM plots of the Metropolis draws are depicted in Figures 3a to 3c. The solid
line (labeled posterior) is the accumulated mean of the draws, while the dashed line (labeled
average) is a window average of the last 50,000 draws. As expected from the raw Metropolis
draws, the CUSUM plots show no sign of a trending mean in the parameters throughout the
whole chain. Even if the window averages are varying slightly, there do not appear to be any
high correlation between the different parameters. In particular, we notice from Figures 2 and 3
that the risk premium parameters és, Py and p do not show any clear sign of cross-correlation
or time-varying means, supporting the discussion in the main text that these parameters are
well identified.

1.3. Sequential log marginal likelihoods

In Figure 4, we plot the log marginal likelihood sequentially for each 50,000th draw, using all the
preceding iterations in the computation of the marginal likelihood with the modified harmonic
estimator in Geweke (1999).! The lines pertain to eight different probabilities of the truncated
elipsodes of the joint posterior distribution. As can be seen from Figure 4, the spread between
the largest and smallest elipsodes is not very large after a couple of 100,000 draws. It is also
clear from the figure that the marginal likelihood converges after about 200,000 draws. To obtain
convergence, we found it to be of critical importance to obtain a good estimate of the Hessian
matrix. We start by maximizing the posterior density and evaluating the Hessian matrix at
the posterior mode using standard numerical optimization routines. Prior to the optimization
we transform all the parameters to the unconstrained domain (we use logit transformations
on parameters restricted to the unit interval, and a log transformation for strictly positive
parameters). Second, draws from the posterior distribution are generated using the Metropolis-
Hastings algorithm.

IThe marginal likelihood of a model i is defined as m,; = fLi(Gi;x)pi(Hi)dﬁi, where L;(0;;z) is the usual
likelihood function of the model’s parameter vector conditional on the observed data z. p;(;) is the prior
distribution of the model’s parameters. m; is the unconditional probability of the observed data, under the
assumed prior distribution, and is therefore a measure of model fit. The marginal likelihood is a relative measure
and should be compared across competing models. The Bayes factor comparing two models ¢ and j is defined as
Bi]‘ = mz/mj



1.4. Multivariate ANOVA

In Figure 5, we report the multivariate potential scale reduction factor (MPSRF') based on four
independent Metropolis chains with different starting values consisting of 500,000 draws each.
The analysis is based on subsampling every 5th draw for computational reasons. Gelman et al.
(1995) argue that by rule-of-thumb, the MPSRF should be less than 1.1 to have a satisfactory
convergence. As is evident from Figure 5, this requirement is fulfilled in our chains after about
100, 000 draws (i.e, after 20,000 iterations in the plot), and after about 250,000 draws it is down
to less than 1.05. Figure 5 also depicts the total variance in all the four Markov chains together
with the variance within each each parallel chain. As the number of draws increases we see that
the difference betwen the total and within variation in the parallel chains decreases.

1.5. Contour plots

In the main text, we argue from using uniform priors and comparing Bayesian model probabilities
that the parameters associated with the UIP condition, ¢, and pg, are well identified given our
set, of observable variables in the measurement equation. In Figure 6 we show contour plots of

the likelihood function in the {q?)s, p&)} —space conditional on the posterior median of the other

parameters. Figure 6a shows the likelihood for different values of (Nbs and Py using the entire set

of 15 observables. The data is relatively informative about the intrinsic persistence &S but has
less to say about the exogenous autocorrelation Py Even if the likelihood in Figure 6a is nearly
constant in the neighborhood of the posterior mode, the likelihood function appear to be well
shaped when all the other parameters are not kept fixed. When plotting the likelihood contours
using only the real exchange rate in the measurement equation, we see that the data is even less
informative about Py (see Figure 6b). p; can take on almost any value for small values of (}55,

and the likelihood function in this case suggest a crner solution of ((NbS =1,p;= 0).
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Figure la: Prior and posterior distributions, friction parameters
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Figure 1b: Prior and posterior distributions, shock parameters
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Figure 1c: Prior and posterior distributions, policy parameters
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Figure 2a: Plots of the raw Metropolis draws, friction parameters
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Figure 2b: Plots of the raw Metropolis draws, shock parameters
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Figure 2c: Plots of the raw Metropolis draws, policy parameters
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Figure 3a: CUSUM plots of the Metropolis draws, friction parameters
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Figure 3b: CUSUM plots of the Metropolis draws, shock parameters
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Figure 3c: CUSUM plots of the Metropolis draws, policy parameters
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Figure 4: Sequential marginal likelihoods
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Figure 5: Multivariate ANOVA
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Note: The analysis is based on four Metropolis chains with different inital values and 500,000 draws each, subsampling every 5th draw.



Figure 6a: Log likelihood contours in the {;ZV)S, p¢}—space, using all observable variables
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Figure 6b: Log likelihood contours in the {qNbS, p¢}—space, only using the real exchange rate
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