An Estimated Two-Country DSGE Model for the Euro Area and the US Economy

Discussion

Monday June 5, 2006.

Practical Issues in DSGE Modelling at Central Banks

Stephen Murchison

Presentation Outline

- 1. Paper Highlights
- 2. Model Highlights
- 3. A Few 'Practical Issues'

1 Paper Highlights

- Medium-sized 2-country symmetrical model of the U.S. and Euro Area (with a ROW attached)
- Estimated using Bayesian techniques as in Smets and Wouters (2003 a,b) using data on 22 series and 22 shocks
- Model is used
 - to investigate the relative contributions of different shocks to businesscycle fluctuations in output, trade and real exchange rate
 - compute impulse responses to several shocks

1.1 Some conclusions

- 1. Spillover effects to output in both countries are very small (>90%)
- 2. Model can explain relative-consumption/real exchange rate correlation (low sub. version)
- 3. Uncovered Interest Rate Parity is not supported by the data, the exchange rate is explained by UIRP shocks
- 4. Model has difficulty explaining international synchronization of business cycles (cons., inv., output)

- 5. The elasticity of substitution between domestic and foreign goods, while important for the behaviour of the model, is not well identified in the data
- 6. Output is explained by domestic demand shocks (68% at one year hor. for U.S., 14% for monetary policy)
- 7. Price inflation is explained largely by markup shocks (price and wage)
- 8. Trade balance is explained by open-economy shocks (UIRP and trade shocks)

2 Model Highlights

- Sticky domestic, import prices and wages (Calvo) with partial dynamic indexation
- Non-additively separable utility function in consumption and leisure, with habits
 - marginal utility of consumption depends on employment
- Replaced Dixit-Stiglitz aggregator with Eichenbaum and Fisher (2004) application of Kimball (1995)
- Oil, non-oil imports, capital and labour as inputs to production

- Consumer-owned capital services (capital rental market), $mc_i \neq f(y_i)$
- Adjustment costs on CAPU, changes to investment, changes to imports share
- Shocks may be AR(1) or ARMA(1,1)
- Version with UIRP and exogenous exchange rate

2.1 Structure of production

Domestic Output
$$(y_{i,t} = g(z(K_{it}, L_{it}), O_{it}^{p}, M_{it}^{p}))$$

 \Downarrow
Aggregator (EF 2004) $\int G(\frac{y_{i,t}}{D_{t}}) = 1$
 \Downarrow
Distribution sector $M_{t}^{d} = \min \left\{ \delta D_{t}^{d}; (1 - \delta) M_{t}^{f} \right\}$
 \Downarrow

Final good sector $F_t = f\left(\Omega_t M_t^d, D_t^f, O_t^p\right) = \text{Lots of flexibility!}$

3 Outstanding Issues

1. Limiting exchange-rate pass-through to prices

Little mention of model-generated pass-through in paper

- Sticky import prices (domestic output and distribution sectors)
- Sticky domestic output prices

• Aggregator (EF 2004)
$$\int G\left(\frac{y_{i,t}}{D_t}\right) = 1.$$

- Coefficient on mc_t scaled by $\xi = \frac{1}{1+\epsilon\lambda_p} \approx 0.75$ (for $\epsilon = 33, \lambda_p = 0.1$).
- ToTEM with firm-specific capital services yields $\xi = 0.2$.

Is this sufficient reproduce the magnitude and timing of pass-through? More discussion is needed. How do I measure ϵ ?

Figure 1: Consumer Price Inflation Response to Exchange Rate Shock

2. ARMA shocks

$$\lambda_{p,t} = \lambda_p + \rho \lambda_{p,t-1} - \phi \eta_{p,t-1} + \eta_{p,t} \qquad \eta_{p,t} \sim NIID(\mathbf{0}, \sigma_{\eta})$$

If $\rho = \phi$ then $\lambda_{p,t} = \lambda_p + \eta_{p,t}$. If $\rho \gtrsim \phi$ then

- Used to explain low frequency trends (inflation), no inflation objective shock.
- Cool trick, how do I interpret the structural shocks?.

3. Estimation

- What non-data information is being used to form priors?
- How much better is the fit relative to calibrating your prior?

- 4. Moments Spillover effects and synchronization of business cycles
 - Imports from (Exports to) Euro Area (% of U.S. GDP): 3% (2.4%)
 - Imports from (Exports to) U.S. (% of Euro Area GDP): 6% (7%)

Cross-country Correlation	Data	High sub.	Low sub.
GDP	0.42	0.05	0.00
Consumption	0.33	-0.04	-0.08
Investment	0.34	-0.08	-0.12

The models get the trade links correct.

Do we need greater international integration in financial markets/risk sharing? Are we happy with common shocks?

Figure 2: Cross-correlations ToTEM

Figure 3: Home Country Response to ROW demand shock

Figure 4: ROW demand shock in ToTEM

- 4. Moments con't variances
 - ToTEM and this model overstate variance of key series, often by a factor of two or more.
 - ToTEM is calibrated :-)

5. Do we have to abandon UIRP?

• Hybrid specification used in ToTEM

$$\ln e_t = \varpi \ln e_{t-1} + (1 - \varpi) \mathbf{E}_t \ln (e_{t+1}(1 + R_t^*)/(1 + R_t))$$

4 Overall Impression

- 1. Authors are to be applauded for this effort (two-country, 22 shock estimated model)
- 2. Most of the impulses would be regarded as reasonable
- 3. The historical (variance) decompositions tell mostly believable stories
- 4. Some model weaknesses are also present with ToTEM