
Adaptive vs. Eductive Learning:

Theory and Evidence ∗

Te Bao† and John Duffy‡

April 20, 2014

Abstract

Adaptive learning and eductive learning are two widely used ways of mod-

eling learning behavior in macroeconomics. Both approaches yield restrictions

on model parameters under which agents are able to learn a rational expec-

tation equilibrium (REE) but these restrictions do not always overlap with

one another. In this paper we report on an experiment where we exploit such

differences in stability conditions under adaptive and eductive learning to in-

vestigate which learning approach provides a better description of the learning

behavior of human subjects. Our results suggest that adaptive learning is a bet-

ter predictor of whether a system converges to REE, while the path by which

the system converges appears to be a mixture of both adaptive and eductive

learning model predictions.
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1 Introduction

How do agents learn a rational expectations equilibrium (REE) if they do not initially

find themselves in such an equilibrium? This important, foundational question has

generated a large literature in macroeconomics (see, e.g., surveys by Sargent (1993),

Grandmont (1998), Evans and Honkapohja (2001)). In this paper we focus on two

different but related approaches to addressing this question.

Perhaps the most widely used approach to modeling learning behavior (beginning,

e.g., with Bray (1982)) is to suppose that agents are boundedly rational adaptive

learners and to ask whether their use of a given real-time adaptive learning model

that allows for a REE as a possible solution converges in the limit to that REE. An

alternative, off-line approach advocated, e.g., by Guesnerie (1992, 2002), is to suppose

that learning is a mental process involving (possibly collective) introspection that

takes place in some notional time and that leads agents to understand and instantly

coordinate upon or “educe” the REE solution.1 Both approaches to learning place

restrictions on the model under which learning agents are able to learn the REE.

Our aim here is to test the validity of these restrictions for the “learnability” of REE

using controlled laboratory experiments. Further, in model parameterizations where

both approaches predict that the REE is stable under learning (“learnable”) the two

approach nevertheless predict different speeds of convergence by which agents should

be able to learn the REE. If agents are adaptive learners it should take more than a

single period for their price forecasts to converge to the REE value. By contrast, if

agents are eductive learners and understand the model, their price forecasts should

instantaneously convergence to the REE value.

Evans (2001) highlights the different restrictions of the two different approaches

to learning, and invites empirical and experimental testing of the different theoretical

predictions. Specifically he writes:

“Which is the appropriate way to model economic agents will ultimately

be a matter for empirical and experimental research. It is likely that

the answer depends on the circumstances, for example, in experiments,

on the details of the setting and the types of information provided to

1These two approaches are also considered as two broad classes for belief formation in a recent

survey of expectations in macroeconomics by Woodford (2013).
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the subjects. A plausible conjecture is that when a model is simple and

transparent as well as eductively stable, agents will coordinate rapidly on

the REE....If a model has no eductively stable REE, but has an REE

that is adaptively stable, then a plausible conjecture is that there will still

be convergence to the REE, at a rate governed by the accumulation of

data....The eductive results provide a caution, however, that coordination

in such cases may not be robust.” (Evans 2001, p. 581 emphasis added).

In this paper we follow up on Evans’s invitation to compare adaptive versus eductive

learning approaches. Indeed, the manner in which agents might go about learning

a rational expectations equilibrium is an important, but unresolved issue; there are

many ways to model this learning process and it would be useful to have a consen-

sus on which approach (or combination of approaches) are more empirically valid

than others.2 Understanding the manner in which agents learn is also important for

policy purposes. For instance, if agents can educe REE prior to making decisions

via the mental, collective introspective process described by eductive learning, then

policy ineffectiveness propositions that arise under rational expectations may have

full standing. However, if agents learn REE only adaptively in real-time, then policy

interventions are likely to be effective in the short-run in the determination of eco-

nomic variables. Thus, the manner in which agents learn is an important empirical

question.

Ideally, one would like to address the question of how agents form expectations

using non-experimental field data, but unfortunately, properly incentivized field data

on individual-level expectations are not generally available. Survey evidence, e.g., on

inflationary expectations, consumer confidence, etc. are available, but these data are

not properly incentivized in that constant rewards or, more typically, no reward at

all for participation in such surveys, yield poor incentives to report truthful beliefs.

Even setting such incentive problems aside, to use survey data on expectations one

would have to know precise properties of the model or data generating process in

which agents were forming their expectations, knowledge that is typically unavailable

and/or subject to some dispute. For these reasons, a laboratory experiment offers the

better means of collecting data on expectations as truthful revelation can be properly

incentivized (using quadratic loss scoring rules) and the control of the laboratory

2Here we focus on just two approaches, but there are several other approaches including Bayesian

learning, evolutionary learning and near-rational (calculation-cost) learning.
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allows for precise implementation of the model environment (data generating process)

in which agents’ expectations matter for the realizations of economic variables.

The organization of the remainder of paper is as follows: section 2 discusses

related literature, section 3 presents the theoretical model, section 4 discusses the

experimental design and hypotheses, section 5 reports the experimental results, and

section 6 concludes.

2 Related Literature

In terms of experimental design, our work is related to “learning–to–forecast” ex-

periments (as pioneered by Marimon and Sunder (1993)), that involve versions of

the cobweb market model with negative feedback (or strategic substitutes). Hommes

et al. (2000) provides the first experimental test of such a cobweb economy, and

this study has been followed by Sonnemans et al. (2004), Hommes et al. (2007),

Heemeijer et al. (2009), Sonnemans and Tuinstra (2010), Bao et al. (2012, 2013)

and Beshears et al. (2013). Hommes (2011) surveys the literature. The differences

between the present study and those earlier papers are as follows. First, subjects

in all of these prior studies do not precisely know the model of the economy (data

generating process) which makes it impossible for them to apply eductive learning as

that type of learning (as demonstrated below) requires full knowledge of the model

thereby enabling introspective reasoning about the proper forecast. By contrast, sub-

jects in our experiment are informed about the model economy and so they can in

principle apply eductive learning, or even directly solve for the REE using the perfect

foresight condition. Second, all prior experiments using the cobweb model employ a

group design, where both learning and strategic uncertainty can influence the speed

of the convergence to the REE. By contrast, we have both a group (“oligopoly mar-

ket”) treatment and an individual-decision making (“monopoly” market) treatment

where subjects face a situation that rules out strategic uncertainty as a factor that

may influence the results. Third, all prior learning–to–forecast experiments involving

the cobweb model use a data generating process for the market price equation that

has a coefficient on expected prices, α, that is smaller than 1 in absolute value. To

our knowledge, our experiment is the first one where a coefficient of |α| > 1 is used.

Finally, we explicitly test restrictions on the stability of REE under two different
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learning approaches. By contrast, most of the existing experimental literature on

whether and how agents learn a REE in cobweb economies has been concerned with

characterizing the type distribution of (adaptive) learning behaviors without regard

to any stability under learning criteria, and certainly not a comparison of different

learning criteria, as we present in this paper.

Since subjects in our experiment know how the price is determined as a function

of price forecasts, (i.e., they know the data generating process) our experiment is

also related to an experimental literature on “guessing” or “beauty contest” games

(see, e.g., Nagel (1995), Duffy and Nagel (1997), Grosskopf and Nagel (2008) among

others). In these guessing games, subjects are asked to guess a number. The winning

guess, (which is similar to a market price and which yields the winner a large prize),

is a known function of the average guess (or average opinion which is similar to the

mean price forecast). A main finding from this literature is that the winning number

is initially very far from the rational expectations equilibrium though it gets closer

to that prediction with experience. Grosskopf and Nagel (2008) report that, under

complete information feedback, convergence to the equilibrium is faster when the size

of the population is smaller. In our experiment we consider forecasting by a group

of three subjects (in our “oligopoly” setting) as well as an individual forecasting

treatment (our “monopoly” setting) and we also examine whether our results for

the monopoly treatment are closer to the REE relative to the oligopoly treatment.

The winning number in beauty contest games is typically a linear function, ρ × the

mean guess, where ρ ∈ (0, 1) which is similar to a learning–to–forecast experiment

with positive feedback (strategic complements). There are also some guessing game

experiments where ρ ∈ (−1, 0) such as Sutan and Willinger (2009). The difference

between our work and their paper is that we provide a more detailed description of

the model that generates the price that agents are seeking to forecast and we vary the

value of ρ (equivalently, our α) so as to explore the implications of differing stability

results under the adaptive and eductive approaches to learning. As in a typical

macroeconomic model, we also add a shock term in the price determination equation,

a setup that is not typically found in number guessing games. Our framework can also

be extended easily to a real intertemporal design where shocks are autocorrelated.

Finally, since we have both a monopoly (individual decision-making) and oligopoly

(group decision-making) design, our paper is related to experimental studies on

oligopoly markets, for example, Bosch-Doménech and Vriend (2003), Huck et al.
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(1999), and Offerman et al. (2002). These oligopoly market experiments use learning–

to–optimize designs where subjects submit a quantity choice directly and price fore-

casts are not elicited. By contrast, we ignore quantity choices and focus on price

forecasts using a learning-to-forecast design.3 The oligopoly design also relates our

study to the theoretical paper by Gaballo (2013) who studies the condition for con-

vergence to REE to happen under eductive learning in a oligopoly market with a

small number of producers. But the individual supply function of the oligopoly pro-

ducers in that paper is based on best response function in Cournot game (that takes

each player’s market power into account), while the individual supply in our paper is

defined as maximization of expected profit under “price taker” assumption. We use

this design to limit the player’s strategic thinking in terms of market power, to make

a better approximation to the original version of eductive learning in competitive

market as in Guesnerie (1992, 2002). Our monopoly vs. oligopoly design is helpful in

investigating the role of common knowledge of rationality. This relates our paper to

experimental studies on the role common knowledge of rationality in different market

settings, for example, the “money illusion” experiments by Fehr and Tyran (2005,

2007, 2008) and the asset market experiments by Akiyama et al. (2012, 2013).

3 Theoretical Model

3.1 Cobweb economy

We consider a simple version of a cobweb model as presented in Evans and Honkapo-

hja (2001) that is based on Bray and Savin (1986). This cobweb model was originally

used by Muth (1961) to illustrate the notion of a REE. The model has the advantage

that it is simple enough to explain to subjects and has the critical feature that ex-

pectations matter for outcomes, here price realizations, while outcomes can in turn

matter for beliefs as subjects interact under the same model environment repeatedly.

The cobweb model is one of demand and supply for a single perishable good and

3In a learning-to-forecast design, subjects submit a price forecast and a computer program uses

that forecast to optimally determine the subject’s quantity decision. By contrast, in a learning–

to–optimize design, subjects submit a quantity choice directly; their price forecast is not elicited,

though it is implicit in their quantity decision. See Bao et al. (2013) for a comparison of these two

approaches.
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consists of the two equations:

Dt = a− bpt,

St = cpet + ηt.

Here, D represents demand, S supply, a, b, and c are parameters, which are usually

assumed to be positive, pt is the period t price of the good, pet = Et−1[pt], and ηt is a

mean zero supply shock.4

Assuming market clearing, the reduced form equation for prices is given by:

pt = µ+ αpet + νt, (1)

where µ = a
b
, α = − c

b
, and νt = ηt

b
.

The system has a unique rational expectation equilibrium given by everyone pre-

dicting pe,∗t = µ
1−α , and:

p∗t =
µ

1− α
+ νt. (2)

3.2 Theoretical Predictions

As Evans (2001) shows, the unique REE of this model is stable under adaptive learning

(i.e., it is “learnable”) if α < 1. However, under the eductive learning approach, the

REE is learnable only if |α| < 1 (See, e.g. Evans (2001) or Evans and Honkapohja

(2001, section 15.4). 5

To be more precise, adaptive learning consists of a general class of backward

looking learning rules that make use of past information and the specific type of

adaptive learning rule that we consider in this paper is “least squares learning.” In

4Bray and Savin and Evans and Honkapohja use a somewhat richer model in which the supply

equation, St = cpet + δwt−1 + ηt, where wt−1 is an observable exogenous variable affecting supply,

e.g., weather in period t − 1, that follows a know process (i.i.d. mean 0 or possibly AR(1)). For

simplicity we study the case where δ = 0, but we think it would also be interesting to study cases

with such exogenous forcing variables as well.
5We understand that other learning approaches may impose different restrictions on the param-

eters for the cobweb economy to converge to the REE. For example, Hommes and Wagener (2010)

find when the agents are users of the evolutionary learning model as in Brock and Hommes (1997),

the market price may converge to a locally stable two cycle when α ∈ [ 12 , 1].
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assuming that agents learn in this adaptive fashion, we suppose that they do not

know or they ignore any information about the price determination equations of the

economy. Instead, they start out by choosing a random prediction for the price in

period 1, pe1. Adaptive agents’ “perceived law of motion” for the price at time t is

that it is equal to some constant, a, plus noise, εt, i.e., pet = a + εt, which has the

same functional form as the REE solution. Given this perceived law of motion and

the assumption that agents are least squares learners, it follows that, in each period

t > 1, agents’ price forecast is equal to the sample average of all past prices given the

available history:

pet =
1

t− 1

t−1∑
s=1

ps. (3)

Evans and Honkapohja (2001, section 2.3 and 2.4 for a simple linear case with

an additional “weather” variable, and page 149 for more sophisticated non-stochastic

nonlinear negative feedback models with decreasing gain in the multivariate case

based on Evans and Honkapohja, 2000) provide a general proof, based on matrix

operations, as to why the REE in this simple cobweb system is learnable via adaptive,

least squares learning provided that α < 1. In this section we provide an alternative

proof for the non-stochastic version of this model (namely, ignoring the noise term νt

since it has zero and small variance) based on mathematical induction. Our proof is

mainly for readers without prior knowledge about adaptive learning to capture the

idea of this modeling approach.

Without loss of generality, let pe1 = p∗ + ∆, where ∆ is the difference between

the period 1 prediction and the REE. Substituting this forecast into equation (1) and

for simplicity, we obtain p1 = µ + α(p∗ + ∆). Since p∗ = µ + αp∗, this expression

simplifies to p1 = p∗ + α∆. In period 2: the prediction is the price in period 1,

pe2 = p1 = p∗ + α∆. Substituting this prediction into equation (1) and simplifying,

p2 = µ + αpe2 = p∗ + α2∆. In period 3, the prediction should be the average price

in periods 1 and 2, pe3 = p1+p2
2

= p∗ + 1
2
α(α + 1)∆. Substituting this prediction into

equation (1) and simplifying yields p3 = µ + αpe3 = p∗ + 1
2
α2(α + 1)∆. By iterating

in this fashion it is not difficult to find in that for period t, pet = 1
t−1

∑t−1
s=1 ps =

p∗ + α(α+1)(α+2)...(α+t−2)
1×2×3...(t−1)

∆ and so pt = µ+ αpet = p∗ + αα(α+1)(α+2)...(α+t−2)
1×2×3...(t−1)

∆.

Clearly this system converges to the REE when the ratio α(α+1)(α+2)...(α+t−2)
1×2×3...(t−1)

goes to
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0. This ratio consists of t−1 components in both the numerator and the denominator.

We can pair the components in the numerator and the denominator according to the

sequence, namely, let α be paired to 1, α+ 1 paired to 2, ..., α+ t− 2 paired to t− 1.

When α > 1, each component of the numerator is larger than its paired number in the

denominator. Therefore α(α+1)(α+2)...(α+t−2)
1×2×3...(t−1)

will increase over time with t, diverging

away from 0. When α = 1, the ratio is exactly equal to 1. When −1 < α < 1, each

component in the numerator has a smaller absolute value than its paired number, so

the ratio will decrease with t, and goes to 0 as t→∞.

When α < −1, we make a slightly different re-matching of the components in the

numerator and the denominator. First, let m be an integer such that α+m− 1 < 0

and α+m > 0. We re-state the ratio as α(α+1)(α+2)...(α+m−1)(α+m)(α+m+1)...(α+t−2)
1×2×3...(t−m−1)(t−m)(t−m+1)...(t−1)

. We

then “cut” the numerator into two parts, N1 = α(α + 1)(α + 2)...(α + m − 1) and

N2 = (α+m)(α+m+1)...(α+t−2), and we also cut the denominator into two parts,

D1 = 1× 2× 3...(t−m− 1) and D2 = (t−m)(t−m+ 1)...(t− 1). We pair N2 to D1,

namely, α+m to 1, α+m+ 1 to 2, ... α+ t− 2 to t−m− 1. It is not difficult to see

that each item in N2 is smaller than the paired item in D1 (α+m < 1, α+m+1 < 2,

... α+ t− 2 < t−m− 1), and therefore (α+m)(α+m+1)(α+m+2)...(α+t−2)
1×2×3...(t−m−1)

decreases with t,

and goes to 0 as t → ∞. There remain m extra components in both the numerator

and the denominator. In the numerator, |N1| = |α(α+1)(α+2)...(α+m−1)| < |αm|
is a finite number, while in the denominator, D2 = (t−m)(t + m + 1)...(t− 1) goes

to infinity as t→∞. Therefore, the remaining fraction α(α+1)(α+2)...(α+m−1)
(t−m)(t−m+1)...(t−1)

also goes

to 0 as t → ∞. It follows that, under adaptive (least squares) learning, the system

converges to the REE provided that α < 1 and diverges from the REE only if α > 1.

For the experiment we parameterized the cobweb model as follows: µ = 60 and

νt ∼ N(0, 1). We consider three different values for α which comprise our three

treatment values (T) for this variable: T1 : α = −0.5, T2 : α = −0.9 and T3 : α =

−2. The REE predictions associated with these three choices are T1 : pe,∗ = 40,

T2 : pe,∗ = 31.58 and T3 : pe,∗ = 20, respectively.

To illustrate the theoretical predictions for adaptive learning using the parame-

terization of our experiment, we simulate the market price for the case where agents

use the adaptive learning model starting from an initial guess of pe1 = 50, which is

rather far from the REE in all three α treatment cases. The simulated prices and the

REE for the three cases are shown in Figure 1. The simulation results reveal that all
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markets converge to the REE within a small number of periods.

Figure 1: Simulated price for the cases where α = −0.5 (left panel), −0.9 (mid panel)

and −2 (right panel).

Eductive learning has two versions, the basic version with a single product in

Guesnerie (1992) and a more general N-dimensional version in Guesnerie (2002).

Eductive learning is based iteratively elimination of unlikely prices. It happens in

a competitive market, where each individual producer has no market power (there-

fore, the rational expectation equilibrium means the Competitive Equilibrium). Each

producer has perfect individual rationality, namely, they have no problem solving the

rational expectation equilibrium of the system, but they face strategic uncertainty

from others.6 The edutive learning model describes the learning process via which

they agents iteratively exclude non-rationalizable strategies from their strategy space.

When this process leads to elimination of all other strategies except predicting the

rational expectation equilibrium, the rational expectation equilibrium in this case is

edutively stable. We would like to emphasis that in this sense, eductive learning is

a social learning process (Vriend, 2000) that takes place when there agents’ learning

behavior is also influenced by others’ decisions and learning process, while adaptive

learning is mostly an individual learning process where agents learn from the history

of realized market price, and interact with others only indirectly.

In this paper, we put more focus on the version of eductive learning in Guesnerie

(1992) because our cobweb model is a simple, one product market. The learning

process works in the following way: in notional period 0, each agent knows making

6We acknowledge that the ability of solving the REE from equation (1) is not explicitly included

as a part of individual rationality defined by Guesnerie (1992) on page 1257. But immediately

after that, on page 1258, Guesnerie made the comment that the rational expectation equilibrium is

also the unique Nash Equilibrium of the game. Therefore, the subjects should be able to find the

REE/Nash Equilibrium by solving the game if they are rational.
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rational expectations means to predict pt = µ
1−α , but do not know whether the other

agents think in the same way. Since agents know that pt = µ+ αpet , the price should

be non-negative, and since α = c
b
< 0, agents can logically rule out the possibility

that any agent making predictions that are greater than µ7, and all agents should

form common knowledge that no one is going to predict pt > µ; in notional period

1, knowing that no one is going to make a prediction that is larger than µ, and

substituting this constraint into the price equation, pt = µ + αpet , agents should

infer that no one will predict prices lower than µ + αµ = (1 + α)µ; in notional

period 2, using the same reasoning, agents can rule out price predictions greater than

µ + α(µ + αµ) = (1 + α + α2)µ, etc. More generally, in notional period t, the new

prediction boundary created by this iterative process will be (1+α+α2 + ...+αt)µ. If

|α| < 1, this process will tighten the interval range of possible predictions to a single

point, the REE. When |α| < 1, in the limit, the two boundaries becomes one point,

limt→∞
∑t

s=1 α
sµ = µ

1−α . This iterative, notional time eductive learning process is

illustrated in Figure 2. On the other hand, when α < −1, the agents cannot rule out

any numbers starting from notional period 1, because µ+ αµ < 0.
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The Iterative Process of Eductive Learning in Notional Periods 

Figure 2: An illustration of the iterative process in notional time under eductive

learning. The process creates a boundary, Bt, in notional time period t, and excludes

numbers that are larger/smaller than this boundary in even/odd notional periods.

When |α| < 1 the boundaries move closer to each other with each iteration so that

the interval eventually tightens to a single point, i.e., limt→∞
∑t

s=1 α
sµ = µ

1−α .

In our experiment we keep all parameterizations of the model constant across

7Since the literature on eductive learning typically assumes that α < 0 as the starting point,

when we prove that the REE is not eductively stable when |α| > 1, we only focus on α < −1,

because α > 1 is already ruled out by the assumption that α < 0.
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treatments varying only the value of α, T1: α = −0.5, T2: α = −0.9 and T3: α = −2,

and differentiate between monopoly vs. oligopoly designs. Since eductive learning is

a social learning process, only the oligopoly design provides an environment where

both adaptive learning and eductive learning can work. In this case, both learning

theories predict that subjects will learn the REE in treatments T1 and T2, but under

T3, the REE is “learnable” only if agents are adaptive learners; according to the

educative learning approach, the REE should not be stable under learning in T3

where |α| > 1. This is our main hypothesis to be tested. In addition, we explore

in our monopoly treatment where there is no strategic uncertainty. Finally, we also

consider differences in speeds of convergence; when an REE is stable under eductive

learning, convergence should, in principle, be instantaneous while under adaptive

learning, it can take several periods for the economy to converge to a REE depending

on initial price forecasts.

4 Experimental Design

4.1 Treatments

We employ a 3 × 2 design where the treatment variables are (1) the three different

values of the slope coefficient, α, and (2) the number of subjects in one experi-

mental market: either just one subject–the “monopoly” case or three subjects–the

“oligopoly” case. The monopoly vs. oligopoly design is helpful in investigating the

role of individual vs. common knowledge of rationality, as emphasized by Guesnerie

(2002). Eductive learning assumes agents have perfect individual rationality, i.e. the

ability to solve the REE when provided the model of the economy, and common

knowledge of rationality, namely, each of them is rational, each of them knows the

others are rational, and each of them knows the others know that they are rational

and they know the others are rational, ...... and so on. In monopoly markets, common

knowledge of rationality is not an issue since the single agent faces no uncertainty

about his own level of rationality. Therefore, if we see deviate from the REE, it is

most likely driven a violation of the assumption of individual rationality. By contrast,

in oligopoly markets agents may need to consider whether the other market partic-

ipants are able to form rational expectations; if not, then predicting the REE price
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may no longer be a best response. If we see no difference between in price dynamics

in a monopoly and a oligopoly market with the same value of α, it is supportive to the

notion that agents are able to form common knowledge of rationality. Otherwise, if

the price is more unstable in a oligopoly market, it is probability due to the difficulty

to achieve common knowledge of rationality.

A noted earlier, our three treatment values for α are given by:

Treatment 1 (T1): weak negative feedback treatment, α = −0.5.

Treatment 2 (T2): medium level negative feedback treatment, α = −0.9.

Treatment 3 (T3): strong negative treatment, α = −2.

As shown in the prior section, the REE should be learnable under adaptive ex-

pectations for all three values of α. Generally negative feedback systems converge

much faster than positive feedback systems (Heemeijer et al. 2009, Bao et al. 2012).

In the oligopoly design, the REE should be learnable under eductive learning only

in treatments T1 and T2, but not in T3. While in the monopoly design, the REE

is learnable under eductive learning in all treatments, since eductive learning assume

that agents have no difficulty to solve the rational expectations for themselves.

Our experiment makes use of a learning to forecast (“LtFE”) experimental design.

Subjects play the role of an advisor who makes price forecasts. Subjects are paid

according to the accuracy of their own price forecast and so are incentivized to provide

good price forecasts. In the monopoly treatment, the time t price forecast of the one

subject, i, associated with each monopoly market, pei,t determines the price forecast for

that market, i.e., pet = pei,t which is then used to determine the actual price, pt, for that

monopoly market according to equation (1). By contrast, in the oligopoly treatment,

we use the mean of the three subjects’ individual price forecasts for period t as the

market price forecast, i.e., pet = 1
3

∑3
i=1 p

e
i,t, which is then used to determine the actual

price, pt, for each oligopoly market, again according to equation (1). One important

advantage of using the LtFE design is that when the subjects are paid according

to their forecasting accuracy instead of profit of the production decision, they have

no incentive to take their market power into consideration. When they are paid

purely based on forecasting accuracy, predicting the REE (competitive equilibrium)

will be the only Nash Equilibrium of this prediction game, where the forecasting
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error is minimized, and payoff is maximized for every subject in the same market. If

the subjects are paid according to the profit of the firm instead, they may have an

incentive to play the Cournot Nash Equilibrium, or Collusive equilibrium, which is

different from the market setting in either adaptive or eductive learning literature.

An important issue is how to allow for eductive learning. This is an off–line,

notional time concept so it is not so clear how to capture or measure this kind of

learning in real time. Here we focus on the stability differences as pointed out by

Evans (2001) as our main test of whether agents are eductive or adaptive learners.

Still, an important issue is whether subjects understand the model and have sufficient

time for introspection. Under adaptive learning, agents are not assumed to know

the model while under eductive learning they do know the model. What we have

chosen to do is to fully educate subjects about the model, in particular about the

price determination equation, (1) – see the written experimental instructions in the

Appendix for the details on how this information was presented to subjects. Thus the

agents in our model have more information than is typically assumed under adaptive

learning specifications, but at the same time, they have all the information they need

to be eductive learners. We felt that, in order to put the two learning approaches on an

equal footing for comparison purposes we would have to eliminate any informational

differences, which could serve as a confounding factor, and provide subjects with

complete and common information about the model across all of our six treatments.

Further, we note that we did not impose any time limits on subjects’ decision-making

so as not to limit the type of introspective reasoning associated with the eductive

approach. Indeed, we captured subjects’ decision time as a variable in order to

understand whether there are differences in decision time across treatments T1-T3,

or between individuals and groups in our monopoly and oligopoly treatments.

Based on the theoretical analysis of the last section, we formulate the following

testable hypotheses:

Hypothesis 1. The market price in all treatments converges to the rational expecta-

tion equilibrium.

As in section 2, both adaptive and eductive learning theories predict the market

price will converge to the REE in treatments 1 and 2. In treatment 3, the REE is

learnable under adaptive learning, but not under eductive learning. If Hypothesis 1

is rejected, and the market price does not converge to the REE in treatment 3, the
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experimental result favors eductive learning over adaptive learning.

Hypothesis 2. Given that the market price converges to the REE, convergence takes

place in the first period of the experiment.

Since convergence under adaptive learning takes place more gradually and in real

time while eductive learning happens in notional time, the convergence should take

place in the first real period that is incentivized for monetary payment if agents are

eductive learners, or after a few periods if agents use adaptive learning. If Hypothesis

2 is rejected, the experimental result favors adaptive learning over eductive learning.

Hypothesis 3. Agents spend no more time in making their decisions in each period

of treatment 3 as compared with each period of treatments 1 or 2.

Since eductive learning can involve considerable introspective reasoning in notional

time, which we take to be the period prior to the first incentivized market forecasting

period, it may require more time for agents to reach a decision. In particular, the

REE is predicted to be impossible to learn under eductive learning in treatment 3 as

compared with treatments 1 and 2. Since decision time is a typical measure of the

cognitive cost to agents of making decisions, if Hypothesis 3 is rejected, it suggests

that making a decision in treatment 3 is indeed more difficult than in treatments 1

or 2.

4.2 Number of Observations

The experimental data was collected in a number of sessions run at the CREED Lab

of the University of Amsterdam. Subjects had no prior experience with our experi-

mental design and were not allowed to participate in more than a single session of our

experiment. Each session consisted of 50 periods over which the treatment parame-

ters for that session were held constant (i.e. we used a “between subjects” design).

Table 1 provides a summary of the number of subjects or markets (independent ob-

servations) for each of our six treatments. Note that in the monopoly treatment each

subject acted alone in a single market, so the number of subjects equals the number

of independent observations (markets) in that setting. By contrast, in the oligopoly

treatment, each market consisted of three firms (subjects), so while we have more
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Treatment Monopoly Oligopoly Total No.

Conditions No. Markets /Subjects No. Markets / Subjects Subjects

T1 14 / 14 6 / 18 32

T2 12 / 12 6 / 18 30

T3 13 / 13 7 / 21 34

Totals 39 / 39 19 / 57 96

Table 1: Number of Markets (Independent Observations) and Subjects in the Six

Treatments of the Experiment

subjects in the oligopoly treatments we nevertheless have fewer 3-firm markets (in-

dependent observations) for the oligopoly treatments. Each session averaged about 1

hour and 10 minutes in duration. The average payoff was 21.70 euros across all three

monopoly treatments and 20.68 euros across all three oligopoly treatments.

4.3 Computer Screen

Figure 3 shows the computer screen we developed for the experiment in the treatment

where α = −0.5. Subjects were asked to enter a forecast number in the box and then

to click “send” to submit their forecast in each period. Since the price and price

expectation were restricted to be non-negative, the range of possible prices should

be [0, 60] according to equation (1).8 However, restricting the price forecast range to

[0, 60] would be equivalent to directly imposing the first step in the eductive learning

process. Therefore, we restricted the price forecast range to [0, 100] in the experiment,

which is less suggestive and coincides with the range of the Y-axis in the graph of

historical information. Notice that the computer decision screen presented subjects

with information and graphs of past prices, their own prior predictions as well as

realizations of shocks. The screen was refreshed with updated information once all

subjects had submitted forecasts and the market price was determined. Notice further

that at the top of the decision screen, the price determination equation (1) with the

treatment specific value of α was always present to subjects just above the input box

where they were asked to submit their price prediction in each period.

8If pet > 0 and given that α < 0 it follows that pt = 60 + αpet < 60.
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Figure 3: The computer decision screen used in the experiment for the treatment

where α = −0.5 and the subject is a monopoly in the local market. Note: the price

and price expectations shown in this figure are random inputs by the authors for

illustration purposes, and are not taken from any experimental data.

4.4 Payoff Function

Subjects earned points (experimental currency) during the experiment that were con-

verted into euros at the end of the experiment according to a known and fixed rate.

The payoff function for subjects (in points) is a decreasing quadratic function of their

prediction error, and was given by:

Payoff for Forecasting Task for Subject (Firm) h = max

{
1300− 1300

49
(pt − peh,t)2, 0

}
.

(4)

Notice that subjects earn 0 if their own, individual price forecast error is greater than

7, and they earn a maximum of 1300 for a perfect forecast. Subjects’ point totals

from all 50 periods were converted into to euros at the end of each session at a known

and fixed rate of 1 euro for every 2600 points. Thus, over 50 periods, each subject’s

maximum earnings were (1300×50) / 2600 = 25 euros.
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5 Experimental Results

5.1 Price Dynamics

5.1.1 Monopoly Markets

Figure 4 plots the average market price against the respective REE price using data

from all markets of each of the three monopoly treatments. We observe that the

average market price in all three treatments appears to converges to the REE price,

although at different speeds (we will quantify this speed of convergence later in section

5.2). The adjustment towards REE is observed to be fastest in T1 and slowest in T3.

Figure 5 plots the disaggregated price path of each individual market for each of the

three monopoly treatments against the respective REE price. As this figure reveals,

it may take up to 25 periods for some markets to converge, e.g., in treatment T3, and

there are a lot of extreme outcomes, e.g., prices such as 0 and 60. From these results we

preliminarily conclude that adaptive learning is correct in predicting the convergence

outcome across all three treatments, however the time path of convergence for some

markets often resembles a real-time demonstration of the eductive learning process,

in particular, the dampened cycling of prices over time in some markets. If we look at

self-reported strategies from a questionnaire solicited from subjects following the end

of the experiment (as we do later in section 5.6), it seems that several subjects directly

solved for the REE using pe,∗ = µ
1−α , which is a sign of using eductive learning.

Table 2 reports the mean market price and the variance in market price across all

markets of each of the three monopoly treatments for the entire sample of 50 periods

as well as the first and last halves of the sample. Confirming the impression given

in Figures 4-5, we observe that, on average, market prices converged to the REE

prediction for each treatment and that the variance in market prices in treatment 1 is

the lowest at 4.62 over all 50 periods while the variance in market prices in treatment

3 is the greatest at 100.31 over all 50 periods.
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Figure 4: The average market price against the REE price in each of the three treat-

ments in the monopoly design.
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Figure 5: Disaggregated market prices against the REE price when α = −0.5,−0.9

and −2 (from top to bottom) in the monopoly design.
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Treatment REE Price Period 1-50 Period 1-25 Period 26-50

Mean Variance Mean Variance Mean Variance

α = −0.5 p∗ = 40 + νt 40.09 4.62 39.98 8.29 40.19 1.01

α = −0.9 p∗ = 31.58 + νt 31.36 9.68 31.27 15.33 31.51 4.34

α = −2.0 p∗ = 20 + νt 20.14 100.31 20.11 202.25 20.17 1.40

Table 2: Mean price and variance of price in each treatment (α = −0.5,−0.9,−2) in

the monopoly setting.

5.1.2 Oligopoly Markets

Figure 6 plots the average market price against the respective REE price using data

from all markets of each of the three oligopoly treatments. We see that the average

price in all three treatments converges to the REE price, although, again, at different

speeds. The adjustment towards REE is again observed to be fastest in T1 and

slowest in T3.

Figure 7 plots the disaggregated market prices for each of the three-firm markets

(independent observations) against the respective REE price for all three oligopoly

treatments. Compared with the monopoly treatment, the convergence to REE ap-

pears to be faster and more reliable in the eductively stable treatments, namely

markets with α = −0.5 and α = −0.9. By contrast, in the eductively unstable

oligopoly market treatment T3 (where α = −2), the volatility of market prices ap-

pears to be greater and more persistent as compared with monopoly T3 treatment.

Indeed, one oligopoly market (Market 4) in the T3 treatment fails to converge to the

REE within the 50 periods allowed (more on our convergence criterion below). This

finding may suggest that the oligopoly market setting facilitates learning when the

REE is eductively stable as this environment is more conducive to common knowledge

of rationality. While the REE is not eductively stable, although most markets still

converge, faced with the large uncertainty that other agents may not be able to learn

the REE, common knowledge of rationality is harder to achieve, and therefore the

oligopoly market setting makes convergence more difficult.

Table 3 reports the mean market price and the variance in market prices across

all markets of each of the three oligopoly treatments for the entire 50 period sample

and for th first and second halves of the experiment. Consistent with Figures 6-7,
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Figure 6: The average oligopoly market price against the REE price when α =

−0.5,−0.9 and −2 (from top to bottom) in the oligopoly design.
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Figure 7: Disaggregated oligopoly market prices against the REE price when α =

−0.5,−0.9 and −2 (from top to bottom) in the oligopoly design.
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we observe that, on average, market prices converged to the REE prediction for each

treatment and that the variance in market prices in treatment 1 is the lowest at 1.19

over all 50 periods while the variance in market prices in treatment 3 is the greatest

at 74.5 over all 50 periods.

Treatment REE Price Period 1-50 Period 1-25 Period 26-50

Mean Variance Mean Variance Mean Variance

α = −0.5 p∗ = 40 + νt 40.15 1.19 40.09 1.43 40.22 0.00

α = −0.9 p∗ = 31.58 + νt 31.65 2.82 31.49 4.20 31.81 1.47

α = −2.0 p∗ = 20 + νt 19.67 74.51 19.54 119.91 19.80 31.83

Table 3: Mean price and variance of price in each treatment (α = −0.5,−0.9,−2) in

the oligopoly setting.

5.2 Convergence to REE

We shall declare that convergence to the REE occurs in the first period for which the

absolute difference between the market price and the REE price is less than 3 and

stays below 3 forever after that period. We choose a threshold 3 for two reasons: (1)

the standard deviation of νt is 1 so we need a threshold value that is large enough

to distinguish between deviations caused by random noise and deviations caused by

subjects’ choices; (2) the threshold should not be so large that it allows for systematic

deviations from REE. We choose the two sided range [−3,+3] because it is 10% of the

rationalizable price range, [0, 60], and one-sided deviations from REE larger than 3

(5%) of this range may be regarded as substantial. We further categorize the markets

according to whether convergence happens in the first period, between periods 2 and

5, between periods 6 and 10, between periods 11 and 20, between period 21 and 50,

and those markets that never satisfied our convergence criterion. The results from

applying our convergence criterion to each market of each treatment are reported in

Table 4. In the final rows of the same table we also report the mean number of periods

required for convergence (according to our criterion) in each treatment as well as the

variance.

On average, it takes fewer periods for the market price to converge to the REE

in treatment T1 as compared with treatments T2 and T3 in both the monopoly and

oligopoly settings. Somewhat surprisingly, in the monopoly market treatment, the
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average number of periods before convergence obtains is slightly larger in treatment

T2 than in treatment T3. However, it turns out that this finding is due to just three

subjects in treatment T2 who inexplicably began to experiment with very high/low

numbers after they had converged to the REE for more than 10 periods. For the

oligopoly treatment, the mean number of periods to convergence is increasing with

the absolute value of α. A Wilcoxon Mann-Whitney test on market-level data suggests

that the differences in the mean time to convergence between treatments 1 and each

of the other two treatments is significant at the 5% level for both the monopoly and

oligopoly markets, while the differences in the mean time to convergence between

treatments 2 and 3 are not significant at the 5% level for both the monopoly or

oligopoly markets.

For both the monopoly and oligopoly markets, the variance in the number of

periods before convergence is smallest in treatment 1. In the monopoly market treat-

ment, the variance in the number of periods required for convergence is larger in

treatment 2 than in treatment 3, which is again due to the random behavior of a few

subjects. For the oligopoly treatment the variance in the number of periods required

for convergence is again increasing with the absolute value of α. If we were to ignore

the random behavior by the three subjects in monopoly treatment T2, our results

would generally support the notion that convergence is more difficult as the absolute

value of the coefficient α becomes larger, as larger values of α make the market more

unstable.

Table 4 also reveals that for treatments T1 and T2 of both the monopoly and

oligopoly settings, there is at least 1 market (and often more) that converges to the

REE beginning with the very first period. The fact that a market converges to the

REE in the very first period may be regarded as support for the eductive learning

approach. If this eductive learning criteria is relaxed to allow for convergence within

the first 5 periods then about 70% of the markets in treatments T1 and T2 of our

experiment can be said to be consistent with eductive learning. By contrast, in

treatment T3 of the monopoly treatment, 5 of 13 (38.5 percent) of markets take more

than 20 periods to satisfy the convergence criterion, the largest frequency of such late

convergence observed across all of our treatments. In treatment T3 of the oligopoly

treatment, there are no instances of convergence to the REE in the very first period of

a session and one market in this treatment failed to satisfy our convergence criterion

within the 50 periods allowed by our experiment. These differences in outcomes
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between the eductively stable treatments T1 and T2 and the eductively unstable

treatment T3 suggest that the eductive stability criterion is useful in understanding

differences in the behavior of subjects in our experiment.

Convergence Monopoly Oligopoly

in period(s) α = −0.5 α = −0.9 α = −2 α = −0.5 α = −0.9 α = −2

1 42.9% (6) 16.7% (2) 15.4% (2) 83.3% (5) 16.7%(1) 0.0% (0)

[2, 5] 42.9% (6) 50.0% (6) 15.4% (2) 16.7% (1) 50.0%(3) 14.3% (1)

[6, 10] 7.1% (1) 8.3% (1) 15.4% (2) 0.0% (0) 16.7%(1) 42.9% (3)

[11, 20] 0.0% (0) 0.0% (0) 15.4% (2) 0.0% (0) 0.0%(0) 14.3% (1)

[21, 50] 7.1% (1) 25.0% (3) 38.5% (5) 0.0% (0) 16.7%(1) 14.3% (1)

Never 0.0% (0) 0.0% (0) 0.0% (0) 0.0% (0) 0.0%(0) 14.3% (1)

Total 100.0% (14) 100.0% (12) 100.0% (13) 100.0% (6) 100.0%(6) 100.0% (7)

Average 3.6 10.9 10.0 1.2 10.0 20.0

Variance 31.6 226.8 90.5 0.2 315.6 427.7

Table 4: Frequency distribution of the number of periods it takes for convergence to

REE in each treatment.

Figure 8 shows the empirical cumulative distribution function (CDF) of the num-

ber of periods before convergence obtains using data from all markets of each treat-

ment. For the oligopoly markets, it is clear that treatment 3 takes the greater number

of periods while treatment 1 requires the fewest periods. For the monopoly markets,

although the CDF of treatment 3 starts below the other two treatments, it crosses

treatment 2 due to the very high/low numbers submitted by those few subjects in

treatment 2 after prices had converged to the REE for some time.
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Figure 8: The empirical cdf of the number of periods before convergence in different

treatment. The horizontal axis measures the number of periods.

We summarize the findings in the above sections as Results 1-3:
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Result 1. We (partly) reject Hypothesis 1 as convergence to the REE obtains in

all three treatments but it is not very robust in treatment 3 where α = −2. This

finding suggests, as Evans (2001) observes, that the learning process may be a mixture

of adaptive and eductive approaches when the REE is not learnable under eductive

learning.

Result 2. We (partly) reject Hypothesis 2, when the REE is learnable under eductive

learning, convergence can occur immediately but often requires more than a single

period. This finding again suggests that the learning path across all agents may be a

mixture of real time and notional time learning.

5.3 Fit of the Two Learning Models to the Experimental

Data

We next consider the fit of the two different approaches to learning to our experimental

data. Table 5 reports on the mean squared error between the experimental data and

market prices simulated according to the two different learning models in all six

treatments.

For the adaptive learning model, we assume that the model’s predictions coincide

with the actual (average) price prediction in the experimental data. To initialize a

simulation of the adaptive learning model we set the initial price prediction pe1 equal

to the individual (monopoly) or average (oligopoly) predictions made by subjects in

period 1 (and period 1 only). Thereafter, the adaptive learning model specifies how

all subsequent simulated prices and predictions are determined. That is, given pe1, the

price for period 1, p1, is determined by equation (1). Given p1 the adaptive learning

model predicts the price for period 2 according to equation (3), and thus generates a

simulated actual price for period 2 again via equation (1). In period 3, the adaptive

model take the average of the simulated prices for periods 1 and 2 and make a price

prediction for period 3, which is then used to generate the simulated price for period

3 via equation (1), etc. Thus, to sum up, the model uses its own simulated prices

as input to generate simulated market price predictions in each period. Therefore

the simulation only loads the experimental data from period 1, and makes simulated

prices and predictions for the remaining 49 periods, so there is no degrees of freedom

in the predictions of the adaptive learning model for each market observation.
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For the eductive learning model, we just assume that in each period, the simulated

price prediction is peedc,t = µ
1−α and the actual market price equal the REE price,

µ
1−α +νt in the treatments where eductive learning predicts that the REE is learnable,

namely, all treatments in the monopoly setting, and treatment 1 and 2 in the oligopoly

setting. In treatment 3 under oligopoly setting, the eductive learning model does not

exclude any combinations of price predictions and market prices. Therefore, the

MSE of the model is undefined, or 0 if we consider that the model predicts “anything

happens”. Therefore there is again no degrees of freedom in the predictions of the

eductive learning model.

The mean squared errors (MSE) between the simulated data and experimental

data as presented in Table 5, suggest that in general, the fit of the adaptive learning

model to the experimental data results in a smaller MSE than does the eductive

learning model; the mean MSE for the adaptive learning model is lower than for

eductive learning model in 5 of our 6 treatments. A Wilcoxon signed rank test suggests

that the difference between the MSE by adaptive and eductive learning models is

significant at 5% level for α = −0.5 with both monopoly and oligopoly settings (in

both cases the adaptive learning model generates smaller MSE on average), and not

significant in other treatments. However, there is also some heterogeneity across the

different markets/observations. For example, for the oligopoly market with α = −0.9,

the adaptive learning model generates a lower MSE relative to the eductive learning

model in markets 1, 2 and 5, but a higher MSE relative to the eductive learning

model in markets 3, 4 and 6. This finding suggests that it is very likely that some

oligopoly markets are dominated by subjects using adaptive learning, while others

are dominated by subjects using eductive learning. We will provide evidence for such

heterogeneity of types later in section 5.6.

5.4 Payoff Efficiency

Table 5.4 shows the average payoffs and payoff efficiency (payoffs divided by 25 euros,

which was the maximum amount each subject could earn when they made no fore-

casting errors) for each treatment. Payoff efficiency is about 90% when α = −0.5 and

α = −0.9, and a little lower, between 70%-80% when α = −2. Efficiency is higher

in the oligopoly treatment than in the monopoly treatment when the REE is educ-

tively stable (T1 and T2), and lower in the oligopoly treatment than in the monopoly

27



Learning Monopoly Oligopoly

Model Market α = −0.5 α = −0.9 α = −2 α = −0.5 α = −0.9 α = −2

Adaptive 1 0.23 0.12 349.25 0.02 1.97 40.04

2 0.08 0.31 152.50 0.04 0.43 4.83

3 0.04 19.00 0.35 0.09 0.56 27.91

4 27.43 0.05 3.71 0.06 8.38 131.71

5 0.24 4.17 16.79 0.03 0.98 209.53

6 0.04 4.37 0.51 0.03 1.56 21.58

7 5.94 7.07 3.54 51.47

8 0.02 0.57 245.09

9 0.20 0.14 31.08

10 0.08 3.19 1.77

11 0.12 7.83 373.21

12 0.37 1.16 3.82

13 0.01 2.48

14 2.36

average 2.66 4.00 91.08 0.05 2.31 69.58

Eductive 1 0.63 0.00 356.76 0.22 1.95 -

2 0.23 0.07 105.85 0.26 0.51 -

3 0.54 42.24 46.42 0.17 0.34 -

4 35.29 0.05 4.08 0.51 5.14 -

5 0.82 24.42 28.23 0.05 1.31 -

6 0.51 4.66 0.00 0.17 1.05 -

7 5.51 18.98 33.53 -

8 0.05 0.56 258.49

9 0.76 1.37 10.81

10 1.18 4.48 0.71

11 1.16 9.11 387.83

12 1.64 2.22 4.00

13 1.97 2.05

14 4.35

average 3.90 9.01 95.29 0.23 1.72 -

Table 5: MSE between the experimental data and the two learning model predictions.

The last column for eductive model is filled with “-”s because the model does not

make a clear prediction when the REE is unstable under eductive learning.
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treatment when the REE is eductively unstable (T3). We performed a Wilcoxon

Mann-Whitney Test using individual earnings data (the number of observations is

the number of subjects in each treatment, which is equal to the number of markets in

the monopoly design). The results indicate that for the monopoly treatment, there

is no difference in payoff efficiency between the α = −0.5 and α = −0.9treatments

at the 5% level, but that payoff efficiency in the α = −0.5 or α = −0.9 treatments is

significantly greater than payoff efficiency in the α = −2 treatment at the 5% level,

suggesting that eductive stability matters for payoff efficiency. In the oligopoly treat-

ment, the average payoff is highest in treatment T1, and lowest in treatment T3. The

differences in payoff efficiency for each pairwise comparison of the three treatments

with different α’s are all significant at the 5% level where the number of observations

is equal to the number subjects in each treatment. If, in the oligopoly treatment, we

instead consider market-level payoff efficiency, then the difference between treatments

T1 and T2 becomes statistically insignificant, however the payoff efficiency in those

two treatments remains significantly greater than in treatment T3 at the 5% level.

Market Structure α Payoff Efficiency

Monopoly −0.5 22.9 91.6%

−0.9 22.7 90.8%

−2 20.1 80.4%

Oligopoly −0.5 23.8 95.2%

−0.9 22.8 91.2%

−2 16.5 66.0%

Table 6: Payoffs and payoff efficiency across the six treatments.

5.5 Decision Time

We collected data on the time it took subjects to make their decisions. Specifically, in

each period we measured the time, in seconds, from the start of each new period to the

time at which each subject clicked “send” to submit their price forecast for that same

period. Such data can be useful in understanding possible variation in the cognitive

difficulty of decision-making tasks. In particular, Rubinstein (2007) provides evidence

that choices requiring greater cognitive activity are positively correlated with longer

decision response time. In our experiment, subjects face a more difficult task in T3
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as compared with either T1 and T2 and so they may be expected to take more time

to make their decisions in treatment 3 than in treatments 1 or 2.

Figure 9 shows the empirical cumulative distribution function of decision time for

treatments T1, T2 and T3. We find that for the monopoly treatment, the average

decision time is 17.0 seconds in T1, 15.5 seconds in T2 and 17.9 seconds in T3. The

difference between T2 and each of the other two treatments is significant at the 5%

level according to the Wilcoxon Mann-Whitney test, while the difference between T1

and T3 is not significant.

In the oligopoly treatment, the results are more in line with our expectations.

The average decision time in T1 is 19.2 seconds, the average decision time in T2

is 19.0 seconds and the average decision time in T3 is considerably larger at 29.2

seconds. This finding supports the notion that subjects face a more difficult task in

treatment 3, and therefore require more time. Note further that mean decision time

in each of the three oligopoly treatments is greater than the mean decision time in

the corresponding monopoly version of those three treatments. A Mann-Whitney-

Wilcoxon test shows that difference between the oligopoly and monopoly design is

significant at 5% level for T2 and T3, but not for T1. This result suggests the subjects

on general face a more difficult task in the oligopoly design compared to the monopoly

design.
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Figure 9: The empirical cdf of the time taken to complete decision tasks in T1-T3 of

the monopoly (left panel) and oligopoly (right panel) treatments. The unit of time is

seconds, as measured on the horizontal axis.

The findings in this section are summarized by Result 4.

Result 3. We reject Hypothesis 4 for the oligopoly treatment, but not for the monopoly
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treatment. The cognitive cost of making decisions in treatment 3 is not a lot larger

than in the other two treatments if subjects do not have to consider problem of coordi-

nation and common knowledge of rationality. By contrast, when common knowledge

of rationality is an issue as in our oligopoly treatment, decision time is significantly

greater in treatment 3 relative to the other two treatments.

5.6 Categorization of Subjects into Adaptive or Eductive

Learners

Finally, we try to categorize each subject in our experiment into one of three types:

adaptive learner, eductive learner or neither. We do this using two different ap-

proaches and we compare the results from using each approach.

The first approach is to make categorizations based on the definition of the two

types of learning. This categorization is performed as follows:

1. We consider all subjects who predict the REE in the very first period to be

eductive learners. Since the REE in treatment T2 where α = −0.9 is 31.58,

and not an integer, taking into account that some subjects may use α = −1 as

a proxy, we consider all subjects making predictions in the range [30, 32] to be

eductive learners in T2. For the other two treatments, the REE is an integer

value so to be categorized as an eductive learner, subjects must correctly predict

a price of 40 in T1 and 20 in T3.

2. For each subject we use their first period forecast to initialize the adaptive

learning model as given in equation (3) and we then calculate the mean squared

error between the simulated predictions of that model and each individual sub-

ject’s actual price predictions.9 If the mean squared error between actual and

predicted price forecasts is smaller than 1, then the subject is classified as an

adaptive learner. We choose a threshold of 1 as we wanted the threshold to be

as low as possible, but at the same time allow for subjects to engage in some

rounding of numbers to integer values. Since adaptive learning does not make

9Note that the MSE in Table (5) compares the simulated and experimental market prices. There-

fore, from equation 1, we know the MSE on price expectations equals the MSE market price times

α.
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assumptions on the initial price prediction, the probability that one happens

to come up with the REE is infinitely close to 0 under adaptive learning. If

a subject meets our criteria for being categorized as both an adaptive and an

eductive learner, then we classify him/her as an eductive learner. If a subject

meets neither criteria, then he/she is classified as “neither”.

The second approach to type classification makes use of answers that subjects

gave to a post–experimental questionnaire (see the Appendix for details). The ques-

tionnaire asked subjects a number of restricted-form questions about the type of

prediction strategy they used during the experiment. We provided them with four

options, and we asked them to choose the option that best described how they made

their predictions in the experiment. Specifically, the four options were:

1. I refer to information about past prices.

2. I make calculations based on the value of α.

3. I eliminate unlikely numbers iteratively.

4. None of the above.

A subject is classified as an adaptive learner if he chooses option 1, and is classified

as an eductive learner if he chooses option 3. If the subject chooses option 2, it is

likely that he solves the REE directly, and we also classify this type as a an eductive

learner, because as discussed in section 3.2, the eductive learning model typically

starts with the assumption that agents solve the REE directly from equation (1).

Subjects choosing option 4 are classified as “neither”. Due to a technical problem,

we lost some data on self-reported strategies in the first, and relatively larger session

of our monopoly market treatments, (9 markets for treatment 1, 8 markets for each

of treatments 2 and 3). Nevertheless, we do have data on self-reported strategies for

many of our subjects and for all six treatments.

Table 9 and 10 in the Appendix show each subject’s type using both approaches

(where possible). Table 5.6 shows the number of participants who can be categorized

as adaptive or eductive learners in each treatment. In general, it seems that more

subjects can be categorized as adaptive and/or eductive learners when α = −0.5 than
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when α = −0.9 or −2. There are more subjects who can be categorized as adaptive

learners than as eductive learners (there are in total 30 adaptive learners and 22

eductive learners according to approach 1, and 38 adaptive learners and 25 eductive

learners according to approach 2). In particular, there is a good level of consistency

between the categorizations based on our two different approaches. For 31 subjects

for which both approaches yield a classification of either adaptive or eductive learners,

the two approaches agree on the type assignment in 21 cases, which means the two

approaches assign the same category with a probability of 21/31 = 67.7%.

Approach 1

Treatment α = −0.5 α = −0.9 α = −2

Monopoly

Adaptive 8 57.14% 2 16.67% 2 15.38%

Eductive 3 21.43% 5 41.67% 3 23.08%

Neither 3 21.43% 5 41.67% 8 61.54%

Total 14 100.00% 12 100.00% 13 100.00%

Oligopoly

Adaptive 12 66.67% 6 33.33% 0 0.00%

Eductive 4 22.22% 3 16.67% 4 19.05%

Neither 2 11.11% 9 50.00% 17 80.95%

Total 18 100.00% 18 100.00% 21 100.00%

Approach 2

Treatment α = −0.5 α = −0.9 α = −2

Monopoly

Adaptive 1 7.14% 1 8.33% 2 15.38%

Eductive 3 21.43% 2 16.67% 3 23.08%

Neither 10 71.43% 9 75.00% 8 61.54%

Total 14 100.00% 12 100.00% 13 100.00%

Oligopoly

Adaptive 11 61.11% 15 83.33% 8 38.10%

Eductive 7 38.89% 2 11.11% 8 38.10%

Neither 0 0.00% 1 5.56% 5 23.81%

Total 18 100.00% 18 100.00% 21 100.00%

Table 7: Number and percentage of subjects who can be categorized as adaptive or

eductive learners or neither in each treatment. Approach 1 is the approach based

on first period predictions and the mean squared error of individual price predictions

from the adaptive learning model. Approach 2 is the approach based on self-reported

strategies.
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Theoretically, eductive learning could take a lot of time in period 1, as subjects

engage in the iterative eductive learning process to arrive at a price prediction while

adaptive learning should take relatively less time, as subjects are imagined to begin

their learning process by making a random guess. To explore this issue further, we

ran a simple linear regression exploring whether the different prediction strategies

were associated with different amounts of time in making period 1 decisions.10 For

simplicity, we use adp, edc to denote dummy variables for the adaptive or eductive

learners, respectively. The regression specification takes the form,

timei = constanti + β1adpi + β2edci + γ1Dα=−0.9,i + γ2Dα=−2,i, (5)

where timei denotes first period decision time and where we have also included dummy

variables for two of the three treatments conditions, α = −0.9 and α = −2 to control

for possible treatment effects. It turns out that neither of the β coefficients associated

with the adaptive or eductive learner dummy variables is significantly different from

zero at the 5% level, irrespective of whether we use the first or the second approach

to categorize our subjects. Hence, we do not find support for the notion that eductive

learners take more time in the first period than do other types of agents.

6 Conclusion

The process by which agents might learn a REE has been the subject of much theo-

retical work, but surprisingly there has been little empirical assessment of the leading

theories of this learning process. To address this gap, we have conducted a learning–

to–forecast experiment in the context of a simple cobweb economy with negative

feedback where expectations matter and where subjects are informed about the law

of motion for prices. We are particularly interested in knowing which approach, adap-

tive learning or eductive learning provides the better description of human learning

behavior in this setting. In particular, we vary the slope parameter of the price de-

termination equation, α, in such a way that in one of our treatments the REE should

not be learnable (stable under learning) if agents are eductive learners but should

always be learnable if agents are adaptive learners. Furthermore, our experimental

10Since we do not have enough observations for the monopoly markets, we do this exercise for the

oligopoly markets only.
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design includes both monopoly and oligopoly settings in order to better understand

the role played by common knowledge of rationality.

In all of our treatments, even the eductively unstable cases, we observe convergence

of prices to the REE, which provides evidence in support of adaptive learning and

against the eductive learning approach. However, the variance in market prices is

much greater in the eductively unstable treatments where α = −2 relative to the

other two eductively stable treatments where |α| < 1. Convergence to REE is also

slower in the eductively unstable case, especially in the oligopoly treatment where

prices often continue to deviate from the REE until the very end of the 50 period

horizon. Further, there are many instances of markets that satisfy our criteria for

convergence to the REE in the very first period, which is more in line with eductive

rather than adaptive learning. Indeed, our efforts to classify subjects as adaptive or

eductive learners reveals a mix of both learning types (as well as many subjects who

are unclassifiable). Perhaps, as Evans (2001) suggests, individuals use a mixture of

both adaptive and eductive learning approaches.

The cobweb economy that we study is a very simple economic model. Our exper-

imental examination of forecasting behavior in this model is the first study in which

subjects were given complete information about the economic model. In this sense,

our experiment provides the most favorable conditions for the rational expectation

hypothesis and for the eductive learning approach to work. Our findings confirm that

the rational expectation hypothesis and rational expectation equilibrium provide a

good characterization of the market outcome in this setting. Further experimen-

tal studies might be conducted where subjects are exposed to a more complicated,

forward-looking dynamic economic model where forecasts matter for realizations of

future state variables, as for example in a modern dynamic, stochastic general equi-

librium model. We leave that extension to future research.
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A Experimental Instructions

A.1 Experimental Instructions (Monopoly)

Experimental Instructions

Welcome to this experiment in economic decision-making. Please read these in-

structions carefully as they explain how you earn money from the decisions you make

in today’s experiment. There is no talking for the duration of this session. If you have

a question at any time, please raise your hand and your question will be answered in

private.

General information

Imagine you are an advisor to a farm that is the only supplier of a product in a

local market. In each time period the owner of the farm needs to decide how many

units of the product he will produce. To make an optimal decision each period, the

owner requires a good prediction of the market price of the product in each period.

As the advisor to the farm owner, you will be asked to predict the market price, pt

of the product during 50 successive time periods, t=1,2,,50. Your earnings from this

experiment will depend on the accuracy of your price predictions alone. The smaller

are your prediction errors, the greater will be your earnings.

About the determination of the market price pt

The actual market price for the product in each time period, t, is determined by a

market clearing condition, meaning that it will be the price such that demand equals

supply for that period.

The amount demanded for the product depends on the market price for the prod-

uct. When the market price goes up (down) the demand will go down (up). The

supply of the product on the market is determined by the production decision of the

farm owner. Usually, a higher (lower) price prediction by you causes the farm owner

to produce a larger (smaller) quantity of the product which increases (decreases) the

supply of the product on the market. Therefore, the actual market price pt in each

period depends upon your prediction, pet , of the product’s market price. More pre-

cisely, equating demand and supply, we have that the market price of the product is
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determined according to:

pt = max(60− αpet + ηt, 0)

This means that the price cannot be below 0. The parameter α is different for different

local markets. You will see the α value for your own local market on your decision page

during the experiment. This α parameter will remain the same for your local market

for all 50 periods of the experiment. ηt is a small random shock to the supply caused

by non-market (demand/supply) factors, for example, weather conditions. This small

shock is randomly drawn each period and is sometimes positive, sometimes negative

and sometimes zero. It is not correlated across periods. This small shock is normally

distributed. The long term mean value of this small shock is 0, and the standard

deviation is 1.

Here is an example: Suppose the parameter α is 0.8 in your local market. Suppose

further that you price prediction for the period is 35, and the realization of the shock

ηt is -0.2. Using the equation given above, the market price is then determined as:

pt = 60− 0.8 ∗ 35− 0.2 = 31.8

Note that in this case your forecast error, |pet − pt|, is 35-31.8=3.2. This forecast

error of 3.2 would determine your points for the period as discussed below.

Please also note that this example is for illustration purposes only. The value of

the parameter α in your local market may be different from 0.8. The precise value of

alpha and the equation for the determination of the market price in your local market

is given on your decision page.

About your task

Your only task in this experiment is to correctly predict the market price in each

time period as accurately as possible. The only constraint on your predicted price is

that it cannot be less than zero (negative), since the actual price itself can never be less

than zero. At the beginning of the experiment you are asked to give a prediction for

the price of your farm’s product in period 1. Note that, while there are several farms

being advised by a forecaster like you in each period, these different local markets

are totally separate from your own so what happens in other markets does not have

any influence on your market. After all forecasters have submitted their predictions
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for the first period, the local market price for period 1 will be determined and will

be revealed to you. Based the accuracy of your prediction in period 1, your earnings

will be calculated. Subsequently, you are asked to enter your prediction for period

2. When all forecasters have submitted their predictions for the second period, the

market price for that period in your local market will be revealed to you and your

earnings will be calculated, and so on, for all 50 consecutive periods.

Information

Following the first period, you will see information on your computer screen that

consists of 1) a plot of all past prices together with your market predictions and 2)

a table containing the history of your past forecasts and payoffs, as well as realized

market price and the shock term ηt.

About your payoff

Your payoff depends on the accuracy of your price forecast. The earnings shown

on the computer screen will be in terms of points. When your prediction is pet and

the market price is pt your payoff is a decreasing function in your prediction error,

namely the distance between your forecast and the realized price.

Payofft = max[1300− 1300

49
(pet − pt)2, 0]

Recalling the example above, if your forecast error for the period t, |pet − pt|,
was 3.2, then according to the payoff function you would earn 1028.33 points for the

period.

Notice that the maximum possible payoff in points you can earn from the fore-

casting task is 1300 for each period, and the larger is your prediction error, |pet − pt|,
the fewer points you earn. You will earn 0 points if your prediction error is larger

than 7. There is a Payoff Table on your desk, which shows the points you can earn

for various different prediction errors.

At the end of the experiment your total points earned from all 50 periods will be

converted into Euros at the rate of 1 Euro for every 2600 points that you earned.

Thus, the more points you earn, the greater are your Euro earnings.

Questions?
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If you have questions about any part of these instructions at any time, please raise

your hand and an experimenter will come to you and answer your question in private.

A.2 Experimental Instructions (Oligopoly)

Welcome to this experiment in economic decision-making. Please read these instruc-

tions carefully as they explain how you earn money from the decisions you make in

today’s experiment. There is no talking for the duration of this session. If you have

a question at any time, please raise your hand and your question will be answered in

private.

General information

Imagine you are an advisor to a farm that is one of the three main suppliers of a

product in a local market. In each time period the owner of the farm needs to decide

how many units of the product he will produce. To make an optimal decision, the

owner requires a good prediction of the market price of the product in each period.

As the advisor to the farm owner, you will be asked to predict the local market price,

pt of the product during 50 successive time periods, t = 1, 2, 3, ...50. Your earnings

from this experiment will depend on the accuracy of your price predictions alone.

The smaller are your prediction errors, the greater will be your earnings.

About the determination of the market price pt

The actual market price for the product in each time period,t, is determined by a

market clearing condition, meaning that it will be the price such that demand equals

supply for that period.

The amount demanded for the product depends on the market price for the prod-

uct. When the market price goes up (down) the demand will go down (up). The

supply of the product on the market is determined by the production decision of the

farm owners. Usually, a higher (lower) price prediction by the advisors causes the

farm owners to produce a larger (smaller) quantity of the product which increases

(decreases) the supply of the product on the market. Therefore the actual market

price pt in each period depends upon the average prediction, pet of the product’s mar-

ket price. For example, if the predictions made by the advisors are pe1,t, p
e
2,t and pe3,t

respectively, pet = 1
3
(pe1,t + pe2,t + pe3,t). Equating demand and supply, we have that the
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market price of the product is determined according to:

P (t) = 60− αpet + ηt

This means that the price cannot be below 0. The parameter α will be shown

on your decision page during the experiment. This α parameter will be the same for

all three farms in your local market and for all 50 periods. Note also that ηt is a

small random shock to the supply caused by non-market (demand/supply) factors,

for example, weather conditions. This small shock is randomly drawn each period and

is sometimes positive, sometimes negative and sometimes zero. It is not correlated

across periods. This small shock is normally distributed. The long term mean value

of this small shock is 0, and the standard deviation is 1.

Here is an example: Suppose the parameter α is 0.8 for all three farms in your

market. Suppose further that you prediction for the price is 30 and the predictions

by the other two advisors in your market are 35 and 40 respectively. Finally, suppose

that the realization of the shock, η, is -0.2. The market price is in your three farm

local market is then determined as follows:

pt = 60− 0.8× 1

3
(30 + 35 + 40)− 0.2 = 31.8

Note that in this case your forecast error (the distance between your forecast and

the market price), |pet − pt|, is |30− 31.8| = 1.8. This forecast error would be used to

determine your points for the period as discussed below.

Please also note that this example is for illustration purposes only. The value of

the parameter may be different from 0.8. The precise value of α and the equation for

the determination of the market price in your local market are given on your decision

page.

About your task

Your only task in this experiment is to correctly predict the market price in each

time period as accurately as possible. The only constraint on your predicted price is

that it cannot be less than zero (negative), since the actual price itself can never be

less than zero. At the beginning of the experiment you are asked to give a prediction
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for the price in period 1. There are several markets of various products and each

of them consists of 3 farms, and each of the farms is advised by a forecaster like

you. These different local markets are totally separate from your own market so

what happens in other markets does not have any influence on your market. After all

forecasters have submitted their predictions for the first period, the local market price

for period 1 will be determined and will be revealed to you. Based on the accuracy

of your prediction in period 1, your earnings will be calculated. Subsequently, you

are asked to enter your prediction for period 2. When all forecasters have submitted

their predictions for the second period, the market price for that period in your local

market will be revealed to you and your earnings will be calculated, and so on, for

all 50 consecutive periods.

Information

Following the first period, you will see information on your computer screen that

consists of 1) a plot of all past market prices together with your market price forecasts

and 2) a table containing the history of your past forecasts and payoffs, as well as

realized market prices and the shock term, ηt.

About your payoff

Your payoff depends on the accuracy of your price forecast. The earnings shown

on the computer screen will be in terms of points. When your prediction is and the

market price is your payoff is a decreasing function of your prediction error, namely

the distance between your forecast and the realized price. Specifically:

payoff = max[1300(1− (pet − pt)2

49
), 0]

Notice that the maximum possible payoff in points you can earn from the fore-

casting task is 1300 for each period, and the larger is your prediction error, the fewer

points you earn. You will earn 0 points if your prediction error is larger than 7.

There is a Payoff Table on your desk, which shows the points you can earn for various

different prediction errors.

At the end of the experiment your total points earned from all 50 periods will

be converted into Euros at the rate of 1 Euro for every 2600 points that you earned.

Thus, the more points you earn, the greater are your Euro earnings.
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Questions?

If you have questions about any part of these instructions at any time, please raise

your hand and an experimenter will come to you and answer your question in private.
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B Payoff Table

Table 8 is the payoff table used in this experiment.

Payoff Table for Forecasting Task

Your Payoff=max[1300− 1300
49

(Your Prediction Error)2, 0]

2600 points equal 1 euro

error points error points error points error points

0 1300 1.85 1209 3.7 937 5.55 483

0.05 1300 1.9 1204 3.75 927 5.6 468

0.1 1300 1.95 1199 3.8 917 5.65 453

0.15 1299 2 1194 3.85 907 5.7 438

0.2 1299 2.05 1189 3.9 896 5.75 423

0.25 1298 2.1 1183 3.95 886 5.8 408

0.3 1298 2.15 1177 4 876 5.85 392

0.35 1297 2.2 1172 4.05 865 5.9 376

0.4 1296 2.25 1166 4.1 854 5.95 361

0.45 1295 2.3 1160 4.15 843 6 345

0.5 1293 2.35 1153 4.2 832 6.05 329

0.55 1292 2.4 1147 4.25 821 6.1 313

0.6 1290 2.45 1141 4.3 809 6.15 297

0.65 1289 2.5 1134 4.35 798 6.2 280

0.7 1287 2.55 1127 4.4 786 6.25 264

0.75 1285 2.6 1121 4.45 775 6.3 247

0.8 1283 2.65 1114 4.5 763 6.35 230

0.85 1281 2.7 1107 4.55 751 6.4 213

0.9 1279 2.75 1099 4.6 739 6.45 196

0.95 1276 2.8 1092 4.65 726 6.5 179

1 1273 2.85 1085 4.7 714 6.55 162

1.05 1271 2.9 1077 4.75 701 6.6 144

1.1 1268 2.95 1069 4.8 689 6.65 127

1.15 1265 3 1061 4.85 676 6.7 109

1.2 1262 3.05 1053 4.9 663 6.75 91

1.25 1259 3.1 1045 4.95 650 6.8 73

1.3 1255 3.15 1037 5 637 6.85 55

1.35 1252 3.2 1028 5.05 623 6.9 37

1.4 1248 3.25 1020 5.1 610 6.95 19

1.45 1244 3.3 1011 5.15 596 error ≥ 0

1.5 1240 3.35 1002 5.2 583

1.55 1236 3.4 993 5.25 569

1.6 1232 3.45 984 5.3 555

1.65 1228 3.5 975 5.35 541

1.7 1223 3.55 966 5.4 526

1.75 1219 3.6 956 5.45 512

1.8 1214 3.65 947 5.5 497

Table 8: Payoff Table for Forecasters
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C Categorization of Subjects

α = −0.5 Categorized Reported α = −0.9 Categorized Reported α = −2 Categorized Reported

exp1 A exp1 E exp1

exp2 A exp2 A exp2

exp3 A exp3 exp3 A

exp4 exp4 E exp4 E

exp5 A exp5 exp5

exp6 A exp6 exp6 E

exp7 exp7 exp7

exp8 E exp8 A exp8

exp9 A exp9 E E exp9 A

exp10 E E exp10 E E exp10 A

exp11 E exp11 E exp11 E

exp12 A A exp12 A exp12 E

exp13 A E exp13 E E

exp14 E

Table 9: Categorization of subjects into adaptive and eductive learners in the

monopoly setting. “A” means adaptive learner. “E” means eductive learner. We

leave the cell blank for subjects we can not categorize into either of the two types.

“Categorized” means categorization according to the first approach where we use the

definition of the learning rules. “Reported” means categorization is done according

to the second approach based on self-reported strategies.
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α = −0.5 Categorized Reported α = −0.9 Categorized Reported α = −2 Categorized Reported

exp11 E E exp11 E exp11

exp12 A A exp12 A exp12 E

exp13 A A exp13 A exp13 E

exp21 A E exp21 A A exp21 E

exp22 E E exp22 A A exp22 E

exp23 A A exp23 A A exp23 A

exp31 A E exp31 A A exp31 A

exp32 A A exp32 E A exp32 E E

exp33 A exp33 A exp33 A

exp41 A A exp41 A exp41 E E

exp42 A exp42 A exp42 A

exp43 A E exp43 A exp43 E

exp51 E E exp51 A A exp51 A

exp52 A A exp52 A exp52 E A

exp53 A A exp53 E E exp53

exp61 E A exp61 A exp63 E

exp62 A A exp62 A exp64 E

exp63 A E exp63 A E exp65

exp71 A

exp72 A

exp73 E

Table 10: Categorization of subjects into adaptive and eductive learners in the

oligopoly setting. “A” means adaptive learner. “E” means eductive learner. We

leave the cell blank for subjects we can not categorize into either of the two types.

“Categorized” means categorization according to the first approach where we use the

definition of the learning rules. “Reported” means categorization is done according

to the second approach based on self-reported strategies.
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