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Abstract

We investigate the empirical plausibility of different interpretations for the learning

gains of adaptive algorithms adopted in the learning literature to depict the evolution

of agents’ beliefs over time. We distinguish between two possible rationales to its de-

termination: as a choice of rationally optimizing agents, or as a primitive parameter

of bounded rational agents. Our results provide strong evidence in favor of the lat-

ter, thus suggesting that agents adaptive behavior may represent a misspecification in

the statistical adjustment of their learning algorithms. Our evidence also points to

some heterogeneity in the time evolution of this behavior with respect to the variable

forecasted and the algorithm adopted.
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1 Introduction

One recurrent issue in the application of adaptive learning algorithms in order to mimic

the process through which agents form their expectations refers to the calibration of these
∗Corresponding author. E-mail: galimberti@kof.ethz.ch.
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algorithms. The computational operation of these algorithms requires the pre-specification

of a sequence of learning gain values, or of a mechanism through which these gains are

determined in real-time. This paper is devoted to investigate this issue empirically, thus

producing renewed estimates of the learning gains. We hope these results will serve as

guidance for the calibration of the learning algorithms in applied macroeconomics.

We introduce an insightful distinction between two assumptions on the rationale given

to the learning gain. The first view is that the learning gain is determined as a choice by the

agents adopting a given learning algorithm to update their expectations. The second view,

in contrast, is to assume that the learning gain stands as a primitive parameter of agents

learning-to-forecast behavior. In spite of their evident dissimilarity, an understanding of the

effects of these different assumptions over the resulting gain calibrations seems to have been

neglected in the previous literature.

In order to shed some light on this point we propose an evaluation framework that

mimics the real-time process of expectation formation through what we define as learning-

to-forecast exercises. We focus on the use of the two algorithms that have received most of

the attention in the literature, namely, the Least Squares (LS) and the Stochastic Gradient

(SG), with a particular interest in applications to time-varying estimation environments.

Using such framework we evaluate empirically the performance of the distinct approaches to

the calibration of the learning gains. We analyze the quality of the forecasts produced by

each calibration along two dimensions: their forecasting accuracy, and their resemblance to

surveys.

We carry out these exercises using real-time quarterly data on US inflation and output

growth covering a broad post-WWII period of time, from 1947q2 to 2011q4. Our results

provide strong evidence in favor of the gain as a primitive approach, hence favoring the use of

surveys data for their calibration. Furthermore, the performances of particular calibrations

of the learning algorithms, applied to forecast different variables, are found to be rather

sensitive to the samples used for selection of the gains.
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The remainder of this paper proceeds as follows. In section 2 we begin with a description

of the methodological framework we adopt, encompassing the specifications of the standard

learning algorithms and their implementation details, the data we use, and the comparative

exercises we propose. In section 3 we discuss the issue of the determination of the learning

gains, relating our work to previous debates in the literature. We also provide a precise

specification of the different learning gain calibrations we evaluate, leaving the presentation

and discussion of their comparative results to section 4. Finally, we conclude this paper with

some remarks in section 5.

2 Methodological framework

Consider an estimation context faced by a real-time agent wishing to obtain inferences about

the law of motion of a variable of interest, say yt. From an economic perspective, these

inferences can be thought of as the middle step agents undertake in a process of learning-to-

forecast in order to form their expectations.

To narrow down our focus, we assume this agent attempts to construct such inferences

assuming that yt is statistically related to other observed variables, say a vector of (pre-

determined) variables xt = (x1,t, . . . , xK,t)
′, through a linear regression of the form1

yt = x′tθt + εt, (1)

where θt = (θ1,t, . . . , θK,t)
′ stands for a vector of (possibly time-varying) coefficients, and

εt denotes a white noise disturbance with variance given by σ2
t . Both coefficients and dis-

turbances are assumed not to be directly observable by the agent. Under this context, a

technique for estimation of θt is required to allow the agent to construct inferences for yt on

the basis of (1).
1This specification can be straightforwardly extended to a multivariate regressions context, an autore-

gressive context, or yet in both dimensions to a vector autoregression (VAR) specification.
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2.1 Learning algorithms

In the literature of learning and expectations in macroeconomics (see Evans and Honkapohja,

2001) recursive algorithms have been proposed for this task. Two of the main forms adopted

are the LS and the SG specifications.

Algorithm 1 (LS). Under the estimation context of (1), the LS algorithm assumes the form

of2

θ̂
LS

t = θ̂
LS

t−1 + γtR
−1
t xt

(
yt − x′tθ̂

LS

t−1

)
, (2)

Rt = Rt−1 + γt (xtx
′
t −Rt−1) , (3)

where γt is a learning gain parameter, and Rt stands for an estimate of regressors matrix of

second moments, E [xtx
′
t].

Algorithm 2 (SG). Under the estimation context of (1), the SG algorithm is given by3

θ̂
SG

t = θ̂
SG

t−1 + µtxt

(
yt − x′tθ̂

SG

t−1

)
, (4)

with µt standing for the learning gain parameter.

Notice the hats in θ̂
LS

t and θ̂
SG

t indicate that they stand for estimates of θt in (1), and

these estimates are based on period t information.

Since the seminal works of Bray (1982); Marcet and Sargent (1989) the LS algorithm has

been taken as the natural choice to represent agents mechanism of adaptive learning. This

choice is in general attributed to the widespread knowledge of its non-recursive counterpart,
2This form is closer to that used in the adaptive learning literature under the name of Recursive Least

Squares, for the case where the gain is decreasing with time, or Constant-Gain (Recursive) Least Squares,
for the case of a time-invariant gain. In the engineering literature other variations in the nomenclature can
be found and a computationally less demanding form is more common where the inversion of Rt in (3) is
avoided by the use of the matrix inversion lemma (see Haykin, 2001).

3This form is common to both the adaptive learning (see also Evans et al., 2010) and the engineering
literature. In the latter this algorithm is generally known as least mean squares, although commonly referring
to the constant gain case, while stochastic gradient is often referred to the case of a time-decreasing gain. In
some contexts, however, stochastic gradient is referred as a whole family of filters (see Macchi, 1995, p. 52).
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the so-called Ordinary Least Squares (OLS) estimator, between econometricians. The SG

algorithm, on the other hand, provides a computationally simpler alternative, a feature

clearly apparent in (4) for the absence of the LS “normalization” step given by the inverse of

the matrix of second moments. For this reason some authors have advocated for its use as

a more plausible learning device from a bounded rationality standpoint (Barucci and Landi,

1997; Evans and Honkapohja, 1998).

2.2 Data and implementation details

Our interest is on the comparative evaluation of the forecasts obtained from model estimates

provided by the different combinations of algorithms and gain calibrations applied to a

sample of data. With respect to the model, our focus is on unrestricted VAR specifications

applied to inflation and growth. We denote the time series for these variables by πt and gt,

respectively. For robustness we estimate VARs with lag orders from 1 to 4.

We use quarterly data on the US real GNP/GDP and its price index from 1947q2 to

2011q4, which sums up to 259 observations for each variable. Our data on these series

come from the Philadelphia’s Fed Real-Time Data Research Center4 and consists of vintages

from 1966q1 to 2012q1, i.e., a total of 185 snapshots of what was known on these variables

by a market participant in real-time (see Stark and Croushore, 2002). As our interest is

on forecasts for output growth and inflation, we obtain these rates from the above data on

levels computing their associated annual growth rates by compounding their simple quarterly

growth factors.

For the purpose of comparing the algorithms’ forecasts to those provided by survey

respondents, we use data from the Survey of Professional Forecasters (SPF)5, which are

made available by the Philadelphia’s Fed as well. Each quarter, this survey asks professional

economists to give their forecasts for several macroeconomic variables, including those we
4See http://www.philadelphiafed.org/research-and-data/real-time-center/. We have done some specific

adjustments to the original dataset, as detailed in Appendix A.1.
5See http://www.philadelphiafed.org/research-and-data/real-time-center/survey-of-professional-

forecasters/.
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Figure 1: Data series on US inflation, output growth, and survey forecasts.

The series of actual observations refer to those we have available at the latest vintage in the real-time
dataset we are using, i.e. 2012q1. The SPF’s forecasts refer to those made for the pointed period from
the information set of the corresponding forecasting horizon. The shaded area indicates the observations
left aside for the initialization procedure of the algorithms.

indicated above, and also over different forecasting horizons. Here we use the median of the

individual forecasts for output growth and inflation made for a total of five horizons, namely

from t (nowcast) to t+4. The SPF data is available from 1968q4 onwards, and, consistent to

our data on actuals, the last survey data we use is that of 2010q4, which contains forecasts

up to 2011q4. An overview of these data series is presented in Figure 1.

The implementation of the LS and the SG learning algorithms involves two main stages.

The first step in the process of obtaining forecasts from these algorithms is to set their

initializations, i.e., estimates for θ̂0. Here we follow the smoothing approach of Berardi

and Galimberti (2012a): first, set aside an initial portion of the available sample of data
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to serve as a training sample, for which we use the first 75 observations of our sample

(1947q2-1965q4, shaded area in Figure 1); and second, repeat a smoothing routine within

the training sample until the smoothed initial estimates converge to values consistent with

the algorithm’s steady state operation. The simulation evidence reported in Berardi and

Galimberti (2012a) indicates that this method provides the most consistent estimates of

initials within our estimation framework.

With the initials given, the second implementation stage is the estimation of the VAR

model specifications with the series of data on inflation and growth. Estimation and fore-

casting are carried out by vintage as follows:

1. The recursions for each algorithm/gain calibration are computed departing from the

vintage/algorithm/gain initials until exhaustion of the vintage sample.

2. The t, . . . , t+ 4 forecasts for each vintage/algorithm/gain are computed using the last

estimates of the model specification, where t stands for the vintage quarter.

We repeat these computations for each vintage of data from 1966q1 to 2010q4, which results

in a total of 180 forecasts for each algorithm/gain/horizon both for inflation and growth.

2.3 Learning-to-forecast exercises

We propose two comparative exercises in order to assess the different approaches to the

determination of the learning gains. In the first we take the point of view of an economic

agent, who has to build forecasts of variables relevant for economic decisions. What matters

for this agent is the accuracy of such forecasts, and so our first evaluation criterion is given

by the forecasting accuracy of the algorithms/gain calibrations6. In the second exercise we

assume the point of view of the researcher whose interest, in contrast, is in uncovering which

mechanism better represents the learning-to-forecast behavior of the economic agents being
6We use the first-available observations in our real-time dataset to compute the average forecasting errors.
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modeled. Taking survey forecasts as proxy measures for that behavior, our second evaluation

criterion is given by the resemblance to surveys of the algorithms/gain calibrations forecasts.

To further substantiate our comparative analysis, we also make use of tests common

to the literature on forecast evaluation. Namely, we adopt both the Diebold and Mariano

(1995) (DM) test for equal (unconditional) predictive ability, and its more recently developed

conditional counterpart test of Giacomini and White (2006) (GW)7. Other than for robust-

ness purposes, our choice for these two tests can also be well justified: while the first stands

as a classical test, whose properties have been long studied in the literature (see Diebold,

2013), the second clearly represents a more appropriate test for our purposes of comparison

of different estimation methods8.

3 Determination of the learning gains

Both the LS and the SG algorithms require the specification of a sequence of learning gains.

The learning gain stands for a parameter determining how quickly a given information is

incorporated into the algorithm’s coefficients estimates. Three of the main alternatives for

the specification of this learning gain are those of a time-decreasing, a time-constant, and

a time-varying (not restricted to be decreasing) sequence of values, and their suitability

depends on the time-varying nature of the environment.

A decreasing-gain LS was the seminal choice in the learning literature, so as to match

the recursive form of the OLS estimator. For the case of linear models with time-invariant

parameters, this estimator is known to possess some well desired properties, such as consis-

tency and efficiency, though these properties do not extend to a time-varying context. This

latter fact implies the intriguing observation that a decreasing-gain LS learning mechanism

is appropriate only along the time-invariant path of a RE equilibrium, where learning itself
7We summarize the calculations involved in each of these tests in Appendix A.2.
8Although the GW test is not suitable for the comparison of recursively estimated model-based forecasts,

our focus on constant gain specifications attach geometrically decaying weights to past observations, hence
approximating a rolling window estimation scheme.
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is indeed pointless (see Bray and Savin, 1986, and the discussion below).

Extensive evidence (see Stock and Watson, 2003; Cogley and Sargent, 2005; Sims and

Zha, 2006; Sargent et al., 2006) favoring time-varying parameter models of the economy has,

nevertheless, challenged this paradigm, and the departure from the parameter constancy

assumption (see Margaritis, 1990; Bullard, 1992; McGough, 2003) has naturally led to the

requirement of adjustments to the learning rules as well. The constant gain specification

has been in the spotlight of most applied research since (Sargent, 1999), given its tracking

capabilities and its suitability for time-varying environments. We will also assess the case of

time-varying gains, determined according to an outer adaptive mechanism.

3.1 Theoretical background

Applied research requires going beyond the incipient debate between the use of a decreasing

or a constant sequence of learning gains, and at this point the researcher is usually left with

a decision between two calibration approaches. The first is to assume that the learning

gain is determined as a choice by the agents adopting a given learning algorithm to update

their expectations. The second, in contrast, is to assume that the learning gain stands as a

primitive parameter of agents learning-to-forecast behavior.

Gain as a choice

One important debate related to the traditional assumption of decreasing gains was initiated

by an intriguing observation made by Bray and Savin (1986). Adaptive learning attempts to

capture agents expectations off the equilibrium path, which implies that until convergence is

reached the agents’ perceived law of motion (PLM) is changing. Thus, even if the structural

model is assumed to be time-invariant, learning itself introduces time-variation in the econ-

omy’s actual law of motion (ALM). Statistical theory, however, indicates that decreasing

gains estimators are not appropriate for estimation of models with time-varying parameters.

Therefore, it would be reasonable to expect that even if agents commence learning with
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decreasing gains, they would eventually have collected enough evidence to prompt a change

towards tracking-consistent gain calibrations.

The natural follow up to this compelling argument by Bray and Savin (1986) was the

incorporation of more sophisticated mechanisms into the analysis of learning convergence.

Assuming agents learn using Kalman filtering techniques Margaritis (1990) was able to show

convergence to RE in a model with time-varying parameters, though still requiring that the

gains tend to zero. Relaxing this latter assumption, however, Bullard (1992) found that

convergence results are lost if agents’ PLMs are not restricted to become (asymptotically)

time-invariant; hence there would be no reason, on rationality grounds, to expect vanishing

learning gains. Finally, a reconcilement between these results was proposed by McGough

(2003, p.120): “for convergence to a RE equilibrium to occur, the agents must believe that

the conditional variance of the time-varying parameters decreases to zero.” If the only source

of time-variation comes from learning, convergence to RE will indeed lead the estimates of

this conditional variance to zero9.

This seemingly circular reasoning actually reflects much deeper implications on the in-

ternal consistency between adaptive learning and convergence to RE: either that agents

initially believe in such a convergence, thus not abandoning the decreasing gain during out-

of-equilibrium learning for its poor performance; or that agents are aware of this trade-off

between tracking and convergence, and attempt to guarantee the latter at the same time that

tuning their gain calibration to improve on the former during transient dynamics. Clearly,

this last upshot from this debate provides a rationale for the view that the learning gains

are determined as a choice by the agents.

Finally, we can also relate the approach of gain calibration as a choice with alternative

approaches to bounded rationality. One popular alternative has been the adaptively rational

expectations approach of Brock and Hommes (1997), where agents are assumed to select

between a set of predictors to form their expectations. The selection is determined according
9As McGough (2003) appropriately recognizes, the conditional variance of the system’s time-varying

coefficients has to decrease at a sufficiently high rate for this argument to hold.
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to a discrete-choice model, which is microfounded in a random utility framework, depending

on fitness measures associated to each predictor’s past performance. One appealing feature

of this approach is that a diversity of predictors may be jointly in use at a given period

depending on how the intensity of choice is regulated.

Another related approach is the “expectation calculation” approach of Evans and Ramey

(1998), where agents are assumed to face a calculation decision pondering between the ben-

efits and the costs of extra cognitive efforts to form expectations. Then, in a similar vein

to the optimizing behavior we assume to impose discipline on agents choice of gains, their

agents are assumed to optimize on their choice of calculation intensity. More in line with our

above discussion about internal consistency, Marcet and Nicolini (2003) propose a threshold

rule under which agents learn with decreasing gains during stable periods, but switch to a

constant gain when some instability is detected through large prediction errors.

Gain as a primitive

From a theoretical point of view, the learning gain is determinant both of whether conver-

gence to a RE equilibrium takes place and of its transitional dynamic properties. In order to

obtain positive convergence results, the traditional analysis of learning usually places strong

restrictions in the sequence of gains. Examples of these restrictions include the requirement

of decreasing gains or that of a “small” constant gain to guarantee weaker (in distribution)

convergence results (see Evans and Honkapohja, 2001, Ch.7). Furthermore, under the con-

stant gain specification a phenomenon known as “escape dynamics,” recurrently pushing

the economy away from its equilibrium, has been found to have its frequency of occurrence

associated to the value of the learning gain (Cho et al., 2002).

An understanding of the interplay between these features is provided by Sargent and

Williams (2005), who establish a Bayesian interpretation to the LS algorithm, later extended

to the SG case by Evans et al. (2010). Such derivations are obtained along similar lines

to those explored in establishing an unified framework by Berardi and Galimberti (2013):
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assuming data is generated by a model with time-varying parameters governed by a random

walk, it is well known that the Kalman filter provides the Bayes optimal estimator; drawing

correspondences between the learning algorithms and the Kalman filter is, thus, equivalent

to finding the conditions under which the learning algorithms approximate the Bayesian

estimator.

Under the Bayesian interpretation, however, these correspondences define particular pri-

ors imputed as agents beliefs about the statistical properties of the data. Besides, other

than relating the learning algorithms to the Kalman filter, the priors also carry implications

about the specific calibrations of the learning gains within each algorithm. Given that in

the Bayesian tradition these priors are specified in advance to estimation, this interpreta-

tion provides an appealing rationale for the view that the learning gains stand as primitive

parameters of agents learning-to-forecast behavior.

Another useful interpretation given to the learning gains is that of determining the mem-

ory of the learning mechanism (see, e.g., Barucci, 1999; Honkapohja and Mitra, 2006). The

gains determine the weights the learning algorithms assign to each observation in updating

their estimates (see Berardi and Galimberti, 2013, p. 140, for the precise correspondence).

Namely, the higher the gain, the higher the emphasis given to more recent observations;

hence, higher gains imply a lesser memory of the past observations of the data in the current

estimates provided by the learning algorithms. Recognizing that it would be forcible to think

of an agent’s memory as a choice, this interpretation provides an alternative rationale to the

calibration of gains as a primitive.

3.2 Gain calibrations

To approach empirically the gain determination issue, we associate to the alternative assump-

tions distinct measures of gain selection. Under the first alternative, additional discipline is

required to model the decision problem by assuming that agents would be willing to opti-

mize on their choice of a gain. Given that the ultimate purpose of the learning algorithms
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is to represent agents process of learning-to-forecast, a natural measure to select the gain

calibrations under this assumption is the accuracy of their associated forecasts.

As for the second alternative, taking the learning gain as a primitive obviously does

not require any additional behavioral assumption. Nevertheless, an appropriate measure of

fit under this alternative requires the actual observation of agents behavior of learning-to-

forecast. Consistent to our previous analysis, we once again use data of survey forecasts as

a proxy. Therefore, in order to obtain a calibration of the learning gains as agents primitive

parameters we can adopt a measure of resemblance of their associated forecasts to those

forecasts observed from actual agents collected through surveys.

The main challenge to the calibration of the learning gains, however, is about how these

measures are evaluated in order for a particular gain to be selected for the algorithm’s

recursive computations. This issue clearly represents an important obstacle for the view of

the gains as an agent’s choice; namely, one has to be careful about the conciliation of this

choice with the real-time informational assumptions underlying the learning process.

Another related issue is about the specification of the range, or the options, of gain values

of interest. We follow two computational approaches to obtain the gain values. In the first we

begin by constructing a grid of admissible values, and then proceed imposing selection rules

that will represent our different assumptions on the role of the gains. The second approach

involves the use of an outer mechanism to adaptively adjust the gain in response to changes

in the recent performance of each algorithm.

Grid-based

We construct a grid of gain values by setting upper bounds on their admissible values so as

to ensure the algorithm’s stability. We use a grid of 100 values for this purpose, meaning

that our estimation routine is applied to each algorithm with 100 different constant gain

values10.
10We have also computed the algorithms with a decreasing gain on the form of γt = γ̄/t and µt = µ̄/t to

benchmark our results.
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When it comes to represent agents learning-to-forecast behavior, though, an unique gain

value is required for each time an iteration on the recursive algorithms is performed. Under

the gain as a choice assumption we are interested in finding the gain value that would be

representative of agents’ optimization of each algorithm’s forecasting accuracy. In other

words, we can uncover what would have been an agent’s choice of a gain by minimizing the

average (accuracy) loss associated to the gains available in our grid. Similarly, for the gain as

a primitive assumption we can also pick the gain following such an average loss minimization,

though here the forecasts losses need to be defined relative to their resemblance to the surveys.

It still remains to specify under which samples these losses are computed. We explore

three alternatives on this aspect. The first, denoted as full-sample, is to pick the gain yielding

the minimum average loss over the full sample of forecasts that we have computed. Clearly,

under the gain as a choice, this selection sample violates the restrictions of a “fair” out-

of-sample forecasting exercise that we are exploring in connection to the idea of real-time

learning. Nevertheless, this alternative has been adopted in some of the previous calibration

attempts in the literature (see, e.g., Milani, 2007, 2008, 2011). It does not present any conflict

under the gain as primitive, where it would just imply that agents hold immutable beliefs

about the system they are forecasting. This alternative has also found some applications

in the previous literature (see, e.g., Orphanides and Williams, 2005; Pfajfar and Santoro,

2010)11.

The second selection sample we adopt, denoted as in-sample, involves splitting the whole

sample of forecasts in two parts: the first part is used as an in-sample period on which

the minimization of the average loss is applied in order to pick a gain for each algorithm;

the second part is then used for the evaluation, keeping fixed the gain calibration. This

alternative goes in line with traditional exercises of forecast evaluation and has also been

used by Branch and Evans (2006); Weber (2010) for purposes similar to ours.

The last selection sample we explore is to allow the choice of the gain to be recursive,
11We note that in all these papers the calibration has been made within a structural model and solely

focusing on the LS.
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through a minimization of the average loss over a rolling window sample of forecasts. From

the real-time learning and forecasting perspective, the sequence of gains selected using this

recursive approach is the extreme opposite to that proposed in the first alternative; partic-

ularly, it does not allow the use of information on the future quality of the forecasts for the

calibration of the algorithms in real-time. Moreover, there is no reason to restrict the gains

to be fixed throughout the whole forecasting sample.

To make our comparative between these different selection samples conformable we set

the length of the rolling window equal to the amount of data set aside for the in-sample

calibration. Namely, we will adopt an in-sample/window length of 60 observations (1966q1-

1980q4)12. These selection samples determine what is left as our evaluation sample: from

1981q1 to 2010q4. Moreover, given our interest in multi-horizons forecasts, we also need to

specify which horizon is used in the loss evaluations. Here we allow the gain selections to

differ by forecasting horizon, hence evaluating the above selection criteria for each forecasting

horizon.

Adaptive gain

An alternative approach to the selection of the learning gains in real-time is to turn the gain

calibration itself into an adaptive estimation problem. The idea is to plug each learning

algorithm with an outer mechanism to adjust the gain in response to changes in estimates of

the algorithm’s recent performance. Such an automatic tuning of the recursive algorithms

was first suggested in Benveniste et al. (1990), and later analyzed by Kushner and Yang

(1995) who presented evidence favoring this approach. In economics, a recent application

has been presented in Kostyshyna (2012), evidencing some quantitative improvements to

model hyperinflation episodes.

The derivation of the adaptive gain learning algorithms departs from the specification of

an objective function, which in our context is related to the loss functions we associate with
12Recall the learning-to-forecasts exercises take the first 75 observations (1947q2-1965q4) of our sample

for the initialization of the algorithms.
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the two alternative roles given to the learning gains. Hence, the adaptive gain approach

is also split in two, with the gain as a choice represented by a mechanism responding to

the algorithm’s accuracy, whereas under the gain as a primitive the adaptation is driven

by the algorithm’s resemblance. To be concise, we adopt the following notation in the

derivation that follows: zt stands for the forecast’s target (either the actuals, yt, or the

survey forecasts, st); xt continues to represent a vector of regressors, i.e., an unity constant

and lags of inflation and growth under our VAR specification; and θ̂t is a vector of estimates

of our model’s parameters13. Moreover, we also assume a squared loss function.

Let the objective be to select the gain so as to minimize the expected loss of forecast

(comparison) errors

Jt =
1

2
E

[(
zt − x′tθ̂t−1

)2]
. (5)

If the true properties of the data generating process (DGP) in (1) were known beforehand,

one could ideally pick each algorithm’s gain so as to optimize the above criterion. In the

lack of this information, as it is the case in the learning-to-forecast situation, one alternative

is to superimpose an outer adaptive scheme for the purpose of automatic tuning the gain

parameter.

The general idea is to use a recursive updating scheme that corrects the gain parameter in

the direction opposite to a stochastic approximation of the loss function gradient. Deriving14

these gradients and plugging their stochastic approximation into each algorithm’s recursion

we obtain the LS and SG algorithms with adaptive gains (LSA and SGA, respectively).

Algorithm 3 (LSA). Under the estimation context of (1), the LSA algorithm assumes the
13Without loss of generality, our presentation focus in a single equation.
14See appendix A.3.
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form of

θ̂
LSA

t = θ̂
LSA

t−1 + γtR
−1
t xt

(
yt − x′tθ̂

LSA

t−1

)
, (6)

Rt = Rt−1 + γt (xtx
′
t −Rt−1) , (7)

γt =
[
γt−1 + αγx

′
tΨ̂

LSA

t−1

(
zt − x′tθ̂

LSA

t−1

)]γmax

γmin

, (8)

Ψ̂
LSA

t =
(
I− γtR−1t xtx

′
t

)
Ψ̂
LSA

t−1 . . .

+
(
I− γtR−1t Ŝt

)
R−1t xt

(
yt − x′tθ̂

LSA

t−1

)
, (9)

Ŝt = (1− γt) Ŝt−1 + xtx
′
t −Rt−1, (10)

where αγ is an adaptation constant, Ψ̂
LSA

t stands for an estimate of ∂θ̂
LSA

t /∂γ, Ŝt stands

for an estimate of ∂Rt/∂γ, and [•]γmax
γmin

is a truncation operator setting γt to γmin if it falls

below this value, or to γmax if it rises above this value. The remaining components follow

from the definition of the LS algorithm.

Algorithm 4 (SGA). Under the estimation context of (1), the SGA algorithm assumes the

form of

θ̂
SGA

t = θ̂
SGA

t−1 + µtxt

(
yt − x′tθ̂

SGA

t−1

)
, (11)

µt =
[
µt−1 + αµx

′
tΨ̂

SGA

t−1

(
zt − x′tθ̂

SGA

t−1

)]µmax

µmin

, (12)

Ψ̂
SGA

t = (I− µtxtx′t) Ψ̂
SGA

t−1 + xt

(
yt − x′tθ̂

SGA

t−1

)
, (13)

where αµ is an adaptation constant, Ψ̂
SGA

t stands for an estimate of ∂θ̂
SGA

t /∂µ, and [•]µmax
µmin

is a truncation operator setting µt to µmin if it falls below this value, or to µmax if it rises

above this value. The remaining components follow from the definition of the SG algorithm.

An intuition for this gain adaptation mechanism follows directly from its interpretation

as a numerical optimization method, browsing along the error-performance curve, (5), in

search for an optimal gain. Here Ψ̂t keeps track of the algorithm’s past estimation perfor-

17



mance, accumulating its past gradients discounted according to each algorithm’s forgetting

factors. This synthetic measure of past performance is taken as a reference in the gain

update equations, (8) and (12): when the latest gradient points towards the same (a dif-

ferent) direction as of Ψ̂t, the adaptive mechanism interprets this as evidence of systematic

(contradictory) mistakes; hence the gain is increased (decreased) to intensify (lessen) the

algorithm’s response to last period error15.

Nevertheless, the above interpretation becomes less compelling under the gain as a prim-

itive approach, where zt ≡ st. In this case the gain adaptation mechanism has to bear

with two distinct estimation objectives: the algorithm’s accuracy performance, and its re-

semblance to the surveys. Following the above interpretation, that means the adaptation

mechanism has to browse along two error-performance curves at the same time. Whereas

the latest gradient estimates is drawn from the resemblance to surveys objective, the past

gradients synthesized in Ψ̂t refer to the algorithm’s accuracy performance. Hence, the gain

is increased to intensify the algorithm’s response to last period error if its recent performance

indicates systematic mistakes on both dimensions, and vice versa.

Computation of the LSA and SGA algorithms still requires specification of their adapta-

tion constants, αγ and αµ. According to the analysis of Kushner and Yang (1995), stability

requires this parameter to be small, so as to satisfy 0 < αµ ≤ γmin and 0 < αµ ≤ µmin, to-

gether with an appropriate upper bound to the gains. For our purposes we take the extreme

gain values in the grids defined in the previous section as the bounds for the adaptive gains.

Most importantly, Kushner and Yang (1995) also present simulation evidence indicating that

the algorithm’s performance is not as sensitive to the calibration of α as it is to the learning

gain. Therefore, our calibration of these adaptation constants will precede any attempt of

performance optimization in favor of a calibration presenting a sequence of gains not too

jumpy, but neither constant.

We end this section with a word of caution in the use of the adaptive gains approach

15A similar intuition is given in Kostyshyna (2012), though Ψ̂t is interpreted as the discounted past errors
due to a simpler model specification where agents are learning only the value of a constant.
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within a learning context. In the derivation of the gradient of (5) we assumed that the

derivative of zt with respect to the gain is null, which may not be a realistic assumption

when zt ≡ yt (gain as a choice): self-referentiality implies that the determination of the

actuals are affected by agents expectations; if agents are learning, the gain would have an

indirect effect over yt by determining agents expectations, hence violating16 the assumption

above. However, relaxing this assumption requires the specification of a structural model,

which goes beyond our scope.

4 Results and discussion

In this section we present the comparative results on the different approaches to the calibra-

tion of the learning gains as outlined above. We first present the numerical results of the

calibrated gains. Our evaluation begins with an overview on the statistical properties of the

forecasts associated to the combinations of learning algorithms and their calibrations. We

then compare the different methods of gain selection, namely, the full-sample, the in-sample,

and the recursive grid-based methods, and the adaptive gains approach. Finally, we shift

our focus to our main issue on the determination of the learning gains, namely, we compare

the gain as a choice and the gain as a primitive assumptions.

4.1 Gain calibrations

In our approach a sequence of gain values is associated to each application of the learning

algorithms to forecast inflation and growth. These are determined according to the com-

binations of gain assumptions and selection methods. In Table 1 we present the resulting

numerical calibrations we obtained for the fixed gain calibrations, namely, the full-sample

and the in-sample methods.

We make three main observations regarding these fixed calibrations. First, it is clear that
16Agents would also be required to be aware of their expectation’s effects for this relationship to be manifest

in their loss function.
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the data scales substantially pushed the gain calibrations for the SG algorithm downwards

relative to those for the LS, even though there is no direct proportionality between them17.

Second, the primitive gain calibrations tended to be smaller (bigger) than those as a choice

for inflation (growth). Lastly, the gains displayed a decreasing trend in relation to the VAR

lag orders, but no clear relationship with the forecasting horizons.

In contrast to these fixed calibrations, the recursive and adaptive methods introduce

time-variation to the sequence of gains. Their evolution through time is presented in Figures

2 and 3, respectively. Overall, these figures point to an agreement between the choice and

primitive time-varying calibrations. However, little harmony is found comparing the gains

picked by the recursive and adaptive calibrations; one difference is observed in their scales,

with the adaptive gains presenting a wider range of variation. Distinct behaviors are also

observed on these calibrations with respect to the variable forecasted, and the algorithm. It

remains to see whether these differences have been relevant for their performances.

4.2 Comparative overview

We analyze the quality of the forecasts produced by each combination of algorithm/calibration

along the two evaluation dimensions of our learning-to-forecast exercises: their forecasting

accuracy, and their resemblance to surveys. Although we take these two criteria as mutually

desirable, it is not clear whether they are compatible with each other; recall that whilst

forecasting accuracy represents the goal of optimizing agents, resemblance to surveys is in-

dicative of actual agents behavior. In spite of this conflict, there is some overlap between

these criteria and their homonym measures used in this paper’s definitions of gain determi-

nation approaches. As such forecasting accuracy would tend to favor calibrations of the gain

as a choice, whereas resemblance to surveys would have a similar bias towards the gain as

a primitive. Therefore, their joint usage can be justified as an attempt to prevent favoring

any of these approaches.
17Their relative ratio (LS/SG) vary from as least as 12x (4x) up to 120x (335x) for inflation (growth).
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Figure 2: Evolution of recursive gain calibrations through time.

(a) LS on inflation.
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(b) LS on growth.
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(c) SG on inflation.
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(d) SG on growth.
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The recursive calibrations of the gains represent discrete values based on the grid of gains computed
for each algorithm.
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Figure 3: Evolution of adaptive gains through time.

(a) LS on inflation.

1980:4 1990:4 2000:4 2010:4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

γt

 

 

LS/Choice LS/Primitive

(b) LS on growth.
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(c) SG on inflation.
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(d) SG on growth.
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The series of adaptive gains were obtained using adaptation constants given by αγ = 0.01 and αγ =

0.001 for the LS on inflation and growth, respectively, and αµ = 1 × 10−6 and αµ = 1 × 10−7 for the
SG on inflation and growth, respectively.
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We start looking over the forecasts associated to each algorithm and gain value included in

the grid computations. In Figure 4 we average the performance of each algorithm’s forecasts

for the different grid gain values, also presenting the algorithms’ decreasing gain performances

as a benchmark. The evidence is clearly favoring the constant gain SG algorithm, but not so

remarkably for the LS case. This latter result appears to be at odds with that of Branch and

Evans (2006), who found that the LS with constant gain tends to outperform its decreasing

gain version.

An explanation for these results is due to our use of a different evaluation sample from

that used by those authors, particularly for the inclusion of data covering the recent (2007-

08) financial crisis. Intriguingly, the instabilities associated to this period seems to have

more negatively affected the constant gain LS than its decreasing gain version18. Hence, the

potential tracking benefits provided by the constant gain specifications seem to have been

overcome by the higher level of noise affecting the economy during this period.

It is also evident in this figure how the performance of each algorithm is affected as

the forecasting horizon varies. For the SG there is mainly a scale effect, whereas the LS

performance is found to be rather sensitive to the gain values at longer horizons.

Finally, before getting into the comparative of the gain calibrations, we present in Tables

2 and 3 statistics for each individual series of forecasts. These statistics point towards the

following observations: (i) the LS (SG) forecasts tend to be biased up(down)wards; (ii)

the forecasts fail to replicate growth rates variability, whereas for inflation the SG forecasts

presented variances closer to that of the actuals; (iii) between each algorithm’s calibrations

there is little variation in terms of their forecasts statistical properties.

The adaptive gain specifications seem to be the only escaping to these regularities. Fore-

casting growth, e.g., their variance were remarkably higher (lower) than the other calibra-

tions for the LS (SG) algorithm. The adaptive gains’ performances, here assessed through
18Inspection of results restricted to the Branch and Evans (2006) sample corroborate this point. Another

difference is that we use a real-time dataset both for the computation of forecasts and for their evaluation;
comparatively, this was found to make a bigger difference for the results on growth.
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Figure 4: Algorithms’ forecasting accuracy by gain aggregated over time.
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The MSFE plotted are computed for each gain over the evaluation sample of forecasts, 1981q1-2010q4.
The gain calibration used for the LS/SG algorithms are indicated into the lower/upper horizontal axes,
respectively, and correspond to those experimentally calibrated for algorithm’s stability. Notice the
minimums of these curves are not equivalent to the Full-sample gain calibrations presented in Table
1 due to the use of different sample periods. Similar figures corresponding to the Full-sample gain
calibration can be found in Berardi and Galimberti (2012b, Fig. 2).
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Table 2: Data and forecasts statistics by calibration - Inflation.

Series/Algorithm Mean Min Max Var AR(1) CorA CorS MSFE MSFCE

Actuals 2.67 -0.33 9.39 2.68 0.63 1.00 0.81 0.00 1.03
Surveys 2.93 0.62 9.49 2.46 0.94 0.81 1.00 1.03 0.00
Least Squares
-Full-smpl. /choice 2.99 -0.14 10.30 2.94 0.83 0.73 0.90 1.62 0.55
-In-smpl. /choice 2.98 -0.30 10.35 2.92 0.81 0.72 0.90 1.64 0.55
-Recur. /choice 3.07 0.13 10.35 2.80 0.81 0.72 0.90 1.69 0.56
-Adapt. /choice 2.99 0.71 10.80 3.30 0.85 0.71 0.88 1.86 0.74
-Full-smpl./primit. 2.97 -0.34 10.32 2.75 0.74 0.70 0.90 1.71 0.54
-In-smpl. /primit. 2.97 -0.40 10.39 2.83 0.76 0.71 0.90 1.70 0.55
-Recur. /primit. 3.06 0.01 10.39 2.57 0.78 0.72 0.89 1.62 0.55
-Adapt. /primit. 3.01 0.52 10.28 3.37 0.88 0.70 0.86 1.93 0.87
Stochastic Gradient
-Full-smpl. /choice 2.77 0.12 11.89 2.65 0.69 0.67 0.88 1.76 0.62
-In-smpl. /choice 2.77 0.12 11.89 2.65 0.69 0.67 0.88 1.76 0.62
-Recur. /choice 2.69 -0.83 11.89 2.79 0.74 0.69 0.89 1.69 0.63
-Adapt. /choice 2.98 0.23 10.89 2.79 0.76 0.69 0.89 1.76 0.58
-Full-smpl./primit. 2.77 0.12 11.89 2.65 0.69 0.67 0.88 1.76 0.62
-In-smpl. /primit. 2.77 0.11 11.84 2.65 0.69 0.67 0.88 1.77 0.62
-Recur. /primit. 2.78 -0.08 11.84 2.62 0.68 0.67 0.88 1.76 0.63
-Adapt. /primit. 2.97 0.19 11.53 2.79 0.74 0.69 0.89 1.79 0.56

The forecasts statistics refer to those obtained for the first forecasting horizon, h = 0, and over
the full evaluation sample from 1981q1 to 2010q4. The algorithms’ forecasts refer to those from
the VAR(1). Other than the usual descriptive statistics, AR(1) stands for the first order au-
tocorrelation of each series, CorA and CorS stands for the correlation with the series of actual
(real-time) and survey forecasts, respectively, and MSF(C)E stands for the mean squared forecast
(comparison) errors.
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Table 3: Data and forecasts statistics by calibration - Growth.

Series/Algorithm Mean Min Max Var AR(1) CorA CorS MSFE MSFCE

Actuals 2.54 -6.14 8.67 6.17 0.50 1.00 0.78 0.00 2.56
Surveys 2.24 -5.19 7.01 3.14 0.72 0.78 1.00 2.56 0.00
Least Squares
-Full-smpl. /choice 3.04 -3.66 6.58 1.58 0.60 0.39 0.58 5.55 2.74
-In-smpl. /choice 3.00 -4.15 6.87 1.90 0.59 0.37 0.57 5.72 2.85
-Recur. /choice 3.08 -0.95 6.70 1.18 0.53 0.38 0.63 5.55 2.61
-Adapt. /choice 2.80 -6.79 9.27 3.68 0.40 0.21 0.35 7.84 4.71
-Full-smpl./primit. 3.01 -2.02 5.46 1.07 0.58 0.47 0.64 5.03 2.46
-In-smpl. /primit. 3.04 -3.66 6.58 1.58 0.60 0.39 0.58 5.55 2.74
-Recur. /primit. 2.98 -0.95 6.00 1.10 0.52 0.42 0.66 5.24 2.34
-Adapt. /primit. 2.81 -5.48 7.43 3.47 0.57 0.30 0.50 6.90 3.60
Stochastic Gradient
-Full-smpl. /choice 1.88 -2.13 4.66 1.32 0.48 0.43 0.59 5.44 2.16
-In-smpl. /choice 1.82 -2.10 4.57 1.24 0.47 0.43 0.59 5.52 2.20
-Recur. /choice 2.10 -1.24 4.75 1.32 0.53 0.40 0.55 5.38 2.23
-Adapt. /choice 2.13 -0.54 4.74 0.90 0.68 0.14 0.30 6.51 3.02
-Full-smpl./primit. 1.88 -2.13 4.66 1.32 0.48 0.43 0.59 5.44 2.16
-In-smpl. /primit. 1.86 -2.13 4.64 1.29 0.48 0.43 0.59 5.47 2.17
-Recur. /primit. 2.07 -1.85 4.68 1.46 0.53 0.41 0.56 5.37 2.20
-Adapt. /primit. 2.09 -0.56 4.35 0.77 0.64 0.20 0.38 6.23 2.73

See footnotes to Table 2.
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the statistics in the last four columns, also stand out relative to the others, though negatively.

These results, however, are representative of only the first horizon of forecasts obtained with

the VAR(1) model specification. To achieve a more broad assessment of how the different

gain calibrations compare, we introduce a key synthetic evaluation statistic in what follows.

4.3 Gain selection

A relative assessment of the learning mechanisms and their calibrations may be obtained

by conducting paired comparisons of their forecasting performance. However, our coverage

of multiple forecasting horizons and VAR lag order specifications, for robustness, requires

performing a high quantity of such comparisons19. Hence, for the ease of exposition we now

adopt hit rate measures to synthesize these evaluations. The hit rate stands for the frequency

by which the forecasts associated to a given algorithm/calibration is found to outperform

those associate to its competitor(s) with respect to one of our evaluation criteria.

To illustrate the above definition consider the hit rates presented in Table 4 comparing

the different methods of gain selection. The first comparison focus on the LS algorithm

applied in forecasting inflation with gains determined as a choice; here the hit rate of 45%

associated to the Full-sample selection method, e.g., indicates that this method outperformed

the others in 9 out of the 20 comparisons conducted for each combination of VAR lag order

and forecasting horizon20. The DM-20% and GW-20% statistics associated to these hit rates

then represent the frequency by which the losses associated to the outperforming method is

found to be statistically different of the second-best method according to the corresponding

test at a 20% level of significance. So, in our example case of the LS/choice calibrations we

have that only 3 (15% of 20) of the 9 cases where the Full-sample was favored presented a

GW test p-value below 20% when compared to the second-best method of gain selection.

The comparative evaluations of the different methods of gain selection are presented in
19To be specific, 40 for each pair of algorithms/calibrations: 5 horizons × 4 VARs × 2 evaluation criteria.
20Draws are handled by counting for both tied competitors. These may occur when, e.g., different methods

of gain selection pick the same gain.
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Table 4 according to the variable forecasted, the algorithm, and the gain determination ap-

proach. There is notable sensitivity on the results presented along these dimensions, though

the combinations of variable/algorithm seem to be a main factor: in forecasting inflation,

the recursive method is favored both in terms of accuracy as in terms of resemblance for the

LS, whilst a similar result is found with the full-sample method for the SG algorithm; in

forecasting growth these patterns change place, with the full-sample gain specification being

favored for the LS, whilst under the SG the results favor time-varying gain specifications.

Thus, where the evidence is favorable to a fixed gain calibration for one algorithm, it is

favorable for time-varying gains for the other21.

In spite of some evidence favoring fixed gains, the in-sample method has found scarce

evidence in its favor. This indicates the relevance of the information contained in the post

in-sample observations (after 1980q4) for the calibration of the algorithms, which is not

surprising given the evidence of structural breaks around this period (see, e.g., Stock and

Watson, 2003). Statistical significance was also scarce in most of the comparisons presented,

with some exceptions under the resemblance criterion, e.g., the LS recursive wins in forecast-

ing inflation. This result does not come at surprise neither; our previous inspection of the

forecasts statistics already indicated these calibrations presented similar properties, which

probably hindered the potential of the statistical tests to distinguish between these series.

Regarding the time-varying gain specifications the most remarkable result relates to the

poorer performance of the adaptive method under the LS algorithm. An explanation for

this result may be drawn looking back into how the recursive selections evolved compared

to the adaptive gains, in the top panels of figures 2 and 3, respectively; clearly the adaptive

gain values are generally higher than those picked by the recursive method. Hence, our

results indicate that the upper bound for the LS adaptive gains may have been too loose,

which is also consistent with the observation by Kushner and Yang (1995) on the relevance
21One might have mistakenly expected that the recursive method, for its flexibility, should have picked

the same gain as the full-sample, giving the superiority of this latter; notice, however, that the recursive
method does not have access to the same information set as that given to the full-sample method.
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of this parameter for the algorithm’s performance. Clearly, this was not a problem for the

SG algorithm.

4.4 Gain determination and implications

We now get to the issue on the determination of the learning gains. The hit rates comparing

the gain as a choice and the gain as a primitive assumptions are presented in Table 5.

The calculations adopted to obtain these hit rates follow in similar lines as those for Table

4, as explained above. The only difference is that here there are only two “competitors”.

Take the case of the LS applied to forecast inflation using the Full-sample gain selection

method: the 90% hit rate associated to the gain determined as a primitive indicates that

this assumption outperformed the alternative determination of the gain as a choice in 18 out

of the 20 comparisons combining the VAR lag orders and forecasting horizons we consider.

Furthermore, we can see that in 5 (9) of these victories the DM (GW) test indicated that the

series of losses associated the two methods of gain determination are statistically different

at a significance level below 20%.

In contrast to our previous results, here the evidence is crystal clear: the gain as a

primitive is overwhelmingly favored on both evaluation criteria. The few threats to the

primitive gain dominance can be easily disqualified: (i) the LS with adaptive gains, we

recall, was found to have a poor performance relative to its alternatives; (ii) under the

other few calibrations where the gain as choice prevailed, i.e., the LS fixed gains for growth,

statistical significance is still favoring the primitive gain.

From an applied perspective, our findings provide some important guidance on how the

learning gain can be appropriately calibrated. The gain as a primitive is associated to a min-

imization of the distance between the algorithm’s forecasts and their survey’s counterparts.

To select a particular sequence of gains on the basis of this measure, one needs to take into

account the algorithm and variable of interest. For inflation, flexibility in the time-variations

of the gain is required by the LS algorithm; the SG, on the other hand, is more appropriately
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Table 5: Hit rates comparing gain determination assumptions.

(a) Forecast accuracy.

Variables Gain as a choice wins Gain as a primitive wins

- Alg./Gain Select. Hit rate DM-20% GW-20% Hit rate DM-20% GW-20%

Inflation
- LS/Full-sample 10% 0% 0% 90% 25% 45%
- LS/In-sample 5% 0% 0% 95% 35% 45%
- LS/Recursive 5% 0% 0% 95% 50% 35%
- LS/Adaptive 40% 5% 15% 60% 15% 5%
- SG/Full-sample 17.5% 0% 0% 82.5% 0% 20%
- SG/In-sample 22.5% 0% 0% 77.5% 0% 15%
- SG/Recursive 40% 5% 25% 60% 0% 15%
- SG/Adaptive 15% 0% 5% 85% 40% 20%
Growth
- LS/Full-sample 50% 0% 5% 50% 10% 10%
- LS/In-sample 55% 10% 15% 45% 25% 0%
- LS/Recursive 15% 5% 5% 85% 35% 10%
- LS/Adaptive 75% 30% 15% 25% 0% 5%
- SG/Full-sample 27.5% 0% 5% 72.5% 5% 10%
- SG/In-sample 25% 0% 0% 75% 15% 15%
- SG/Recursive 0% 0% 0% 100% 35% 55%
- SG/Adaptive 20% 0% 0% 80% 40% 10%

(b) Forecast resemblance.

Variables Gain as a choice wins Gain as a primitive wins

- Alg./Gain Select. Hit rate DM-20% GW-20% Hit rate DM-20% GW-20%

Inflation
- LS/Full-sample 15% 0% 0% 85% 50% 30%
- LS/In-sample 15% 0% 0% 85% 55% 35%
- LS/Recursive 40% 25% 15% 60% 20% 15%
- LS/Adaptive 35% 10% 10% 65% 15% 5%
- SG/Full-sample 17.5% 0% 0% 82.5% 65% 20%
- SG/In-sample 22.5% 0% 0% 77.5% 60% 25%
- SG/Recursive 5% 0% 5% 95% 65% 15%
- SG/Adaptive 20% 0% 5% 80% 75% 45%
Growth
- LS/Full-sample 45% 5% 20% 55% 20% 20%
- LS/In-sample 55% 25% 45% 45% 30% 25%
- LS/Recursive 10% 5% 5% 90% 30% 30%
- LS/Adaptive 65% 10% 5% 35% 0% 10%
- SG/Full-sample 2.5% 0% 0% 97.5% 60% 85%
- SG/In-sample 5% 0% 0% 95% 70% 80%
- SG/Recursive 0% 0% 0% 100% 75% 80%
- SG/Adaptive 5% 0% 5% 95% 50% 45%

See footnotes to Table 4.
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calibrated with a fixed gain value. For growth, these specifications change place: the SG is

the one requiring time-varying gains, whilst a fixed gain does the job with the LS.

Finally, our evidence favoring the interpretation of the learning gains as primitive pa-

rameters of agents learning-to-forecast behavior also has important implications within the

context of the theoretical literature, as we outlined in section 3. Our results contribute to the

debate on the internal (in)consistency between the adaptive learning approach and the ratio-

nality of mechanisms of expectations formation. Namely, by favoring the gain as a primitive,

we provide support to the view that agents are essentially characterized as bounded rational;

when their expectations formation process is represented by adaptive learning algorithms,

even if this process is likely to converge to a RE equilibrium, it does not imply that these

agents will rationally optimize on their calibration. Agents simply do not seem to take it as

a choice.

5 Concluding remarks

In this paper we have studied empirically the issue of what is the most appropriate interpre-

tation of the learning gains in adaptive algorithms, and how can a calibration strategy be

developed so as to reflect it. Our main insight relates to a distinction on the rationale given

to the determination of the learning gains: as a choice of rationally optimizing agents, or as

a primitive parameter of bounded rational agents.

We have also produced some renewed numerical calibrations of the learning gains for ap-

plications on real-time US data of inflation and output growth. Consistent to our analysis,

our gain calibrations are segmented by the different methods and assumptions in the deter-

mination of these gains, and according to the lag orders of VAR models and the forecasting

horizons. Significant heterogeneity was found with respect to these dimensions as well.

Our results provide strong evidence in favor of the interpretation of the learning gains

as primitive parameters of agents learning-to-forecast behavior. Furthermore, our evidence
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also points to some heterogeneity in the time evolution of this behavior with respect to the

variable forecasted and the algorithm adopted.

Therefore, the main implication of our results is that agents’ adaptive behavior in the

adjustment of their learning algorithms is better represented from a bounded rationality

point of view rather than from a rationally optimizing interpretation. This finding turns

out to be relevant to a long established debate on the internal (in)consistency between the

adaptive learning approach and the rationality of expectations. Namely, there is no reason to

expect, or question, a rational agent to optimize on the choice of a learning gain, given that

our evidence suggest that it stands as a primitive parameter of agents bounded rationality.

A Appendix

A.1 Details on data

Short time series history : some vintages lack of earlier observations due to delays into BEA

revisions (see Philadelphia’s Fed documentations). This was the case of the vin-

tages of 1992q1-1992q4 (missing data from 1947-1958), 1996q1-1997q1 (missing

data from 1947-1959q2), and 1999q4-2000q1 (missing data from 1947-1958). We

circumvent this problem (to turn the dataset vintages-balanced) by reproducing

observations from the last available vintage while rescaling in accordance to the

ratio between the first observation available in the missing observation vintage

and the value observed for the same period in the vintage being used as source

for the missing observations.

Missing observation for 1995q4 in vintage 1996q1 : as a result of the US federal government

shutdown in late 1995, the observation for 1995q4 was missing in the 1996q1

vintage. Fortunately, this is the only point in this dataset that this happens.

We fulfill this gap by using the observation available in the March 1996 monthly
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vintage for the same series. Incidentally, the SPF 1996q1 median backcast for

1995q4 is identical to the value later observed in March 1996, thence, our sim-

plifying procedure is not favoring any method.

Caveat on SPF’s forecasts for Real GDP : forecasts for real GDP were not asked in the sur-

veys prior to 1981q3. To extend this series of forecast back to 1968q4, real GDP

prior to 1981q3 is computed by using the formula (nominal GDP / GDP prices)

* 100.

A.2 Review of statistical tests for equal predictive ability

We want to determine whether two series of forecasts are statistically different from each

other. Let f1,t,h and f2,t,h stand for these forecasts, where h (going from 0 to 4 in our

case) denotes the horizon at which these forecasts were made, and yt stand for the series of

targets of these forecasts. Let the losses associated to each of these forecasts be given by

L (f1,t,h, yt) and L (f2,t,h, yt). Letting dt,h = L (f1,t,h, yt) − L (f2,t,h, yt) denote the series of

loss differentials between the two forecasts at horizon h, the Diebold and Mariano (1995)

test evaluates whether their average loss differences,

dh =
1

T

T∑
i=1

di,h, (14)

is significantly different from zero. Under the null hypothesis of equal predictive ability the

DM statistic,

DMh =
dh√
σ̂2
d/T

, (15)

has a t-distribution with T − 1 degrees of freedom, where σ̂2
d is an estimate of the long-run

variance of dt,h. For the estimation of σ̂2
d we adopt the heteroskedasticity and autocorrelation

consistent (HAC) estimator proposed by Newey and West (1987).

The Giacomini and White (2006) test, in contrast, evaluates the null hypothesis of equal
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conditional predictive ability. The main caveat on this test relates to the specification of a

test function, qt,h containing q instruments, which attempts to control for the informational

conditioning required by the null hypothesis. To test the conditional moment restriction

E [qt,hdt,h] = 0, a Wald-type test statistic is proposed having the form of

GWh = T

(
T−1

T∑
i=1

qi,hdi,h

)′
Ω̂
−1
h

(
T−1

T∑
i=1

qi,hdi,h

)
, (16)

where Ω̂h is a q × q consistent estimate of the covariance matrix of qt,hdt,h. Under the null

hypothesis of equal conditional predictive ability GWh has a χ2
q distribution.

Apart from the first horizon, Ω̂h is again estimated using the HAC estimator of Newey

and West (1987), with h determining the truncated kernel bandwidth. For the case of the

first horizon, Giacomini and White (2006) simplify the computation of (16) to be given

by TR2, where R2 is the uncentered squared multiple correlation coefficient obtained by

regressing a constant unity on qt,hdt,h. Finally, regarding the specification of qt,h, in the lack

of better alternatives, the recommendation is for the use of h-lagged loss differentials. Thus,

in our calculations we set qt,h = dt−h,h.

A.3 Derivation of adaptive gain algorithms

To derive the LSA and the SGA expressions in (6)-(10) and (11)-(13), we start by defining

the gains adaptation recursions, as given by

γt = γt−1 − αγ∇̂γ
t , (17)

µt = µt−1 − αµ∇̂µ
t , (18)

where αγ and αµ represent small adaptation constants, and ∇̂γ
t and ∇̂µ

t stand for estimates

of the gradients ∇γ
t =

∂Jt
∂γ

and ∇µ
t = ∂Jt

∂µ
, for the LS and the SG, respectively. The key step

then is to find the relevant gradients and plug their stochastic approximation in the above
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recursions.

We first derive the LSA. Taking the first derivative of Jt with respect to γ we obtain the

gradient

∇γ
t =

∂JLSAt

∂γ
= −E

[
x′t
∂θ̂

LSA

t−1

∂γ

(
zt − x′tθ̂

LSA

t−1

)]
, (19)

which is stochastically approximated as

∇̂γ
t = −x′tΨ̂

LSA

t−1

(
zt − x′tθ̂

LSA

t−1

)
, (20)

where Ψ̂
LSA

t stands for a recursive estimate of ∂θ̂
LSA

t /∂γ. Differentiating (2) and (3) we

obtain

∂θ̂
LSA

t

∂γ
=

∂θ̂
LSA

t−1

∂γ
+ R−1t xt

(
yt − x′tθ̂

LSA

t−1

)
. . .

−γtR−1t
∂Rt

∂γ
R−1t xt

(
yt − x′tθ̂

LSA

t−1

)
− γtR−1t xtx

′
t

∂θ̂
LSA

t−1

∂γ
, (21)

∂Rt

∂γ
=
∂Rt−1

∂γ
+ xtx

′
t −Rt−1 − γt

∂Rt−1

∂γ
. (22)

Letting Ŝt stand for the recursive estimate of ∂Rt/∂γ, and subsituting (20), (21), and (22)

into (17) we obtain the LSA algorithm.

We follow similar steps for the SGA. Particularly, as estimate of the loss gradient is given

by

∇̂µ
t = −x′tΨ̂

SGA

t−1

(
zt − x′tθ̂

SGA

t−1

)
, (23)

with Ψ̂
SGA

t = ∂θ̂
SGA

t /∂µ obtained differentiating (4),

∂θ̂
SGA

t

∂µ
=
∂θ̂

SGA

t−1

∂µ
+ xt

(
yt − x′tθ̂

SGA

t−1

)
− µtxtx′t

∂θ̂
SGA

t−1

∂µ
, (24)

which together with (18), reduces to the SGA algorithm.
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