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Abstract

This experiment compares the price dynamics and bubble formation in
an asset market with a price adjustment rule in three treatments where
subjects (1) submit a price forecast only, (2) choose quantity to buy/sell
and (3) perform both tasks. We find that bubbles emerge in all these treat-
ments, but to a larger degree in learning to optimize treatments (2) and
(3). Bubble formation is therefore a robust finding in markets with positive
expectation feedback. Some repeated “super bubbles” arise, where the price
is 3 times larger than the fundamental value, which were not seen in former

experiments.
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1 Introduction

Financial bubbles are an economic phenomenon that may be as old as the history
of financial markets, but has not been investigated extensively by modern eco-
nomics and finance. One possible reason is that it contradicts the standard theory
of rational expectations (Muth, 1961; Lucas Jr, 1972) and efficient markets (Fama,
1970). Recent finance literature however has shown growing interest in studies on
bounded rationality (Farmer and Lo, 1999; Shiller, 2003) and ‘abnormal’ market
movement such as over- and under-reaction to changes in fundamental (Bondt and
Thaler, 2012) and excess volatility (Campbell and Shiller, 1989). The recent finan-
cial crisis and precedent boom and bust in the US housing market also highlight
the importance of studying the mechanism of fast price appreciation, ‘bubbles’,
and subsequent crashes in financial market. Without understanding the origins of
such bubbles, the policy makers will be unable to identify and counter potential
threats to stability of financial markets and national economies.

It is usually difficult to identify an empirical bubble on stock markets or housing
markets, since people may substantially disagree about the underlying fundamen-
tal price of the asset. Laboratory experiments can help studying bubble dynamics,
by taking full control over the underlying fundamental price. Smith et al. (1988)
are among the first authors to reliably reproduce price bubbles and crashes of
financial assets in a laboratory setting. They let the subjects trade an asset that
pays a random dividend with a positive expected value in each of the 15 periods.
Therefore the fundamental price at each period equals the sum of the remaining
expected dividends and follows a decreasing step function. The authors find the
price to go substantially above the fundamental level after some initial periods
before it crashes towards the end of the experiment. This approach has been fol-
lowed in many studies i.e. Lei et al. (2001); Noussair et al. (2001); Dufwenberg
et al. (2005); Haruvy and Noussair (2006).* A typical result of these papers is that
the bubbles are a robust finding despite several major changes in the experimental
environment.

Nevertheless, Kirchler et al. (2012); Huber and Kirchler (2012) argue that the
non-fundamental outcomes in this type of experiments are due to misunderstand-
ing, which is induced on the subjects by the declining fundamental price. They
support their argument by showing that no bubble appears when the fundamental
price is not declining or when the declining fundamental price is further illustrated
by an example of ‘a depletable gold mine’. Another problem relevant to policy

makers is that these experiments, due to typically short experimental sessions and

'For survey of the literature, see Sunder (1995); Noussair and Tucker (2013).



the declining fundamental, cannot test whether financial crashes are likely to be
followed by new bubbles. This is an important problem, given for instance the
evolution of the asset prices between the dot-com and the 2007 crises.

Besides the approach by Smith et al. (1988), a framework of ‘learning to fore-
cast’ (henceforth LtF) experimental studies was introduced by Marimon et al.
(1993) (see Hommes, 2011, for a comprehensive survey). In contrast to the LtF
experiments, the Smith et al. (1988) experiment belongs to a class called ‘learn-
ing to optimize’ (henceforth LtO) experiments (see Duffy, 2008, for an extensive
discussion). Hommes et al. (2005) design an experiment where subjects act as pro-
fessional advisers (forecasters) for a pension fund: they submit a price forecast,
which is transformed into a quantity decision of buying/selling by computing de-
mand /supply from optimizing a standard myopic mean variance utility function.
Subjects receive a payment based on the their forecasting accuracy. The funda-
mental price is defined as the discounted sum of expected future dividends over
infinite horizon and in their experimental set-up remains constant over time. The
result of this paper is twofold: (1) the asset price fails to converge to the funda-
mental, but rather oscillates and forms bubbles in several markets; (2) instead of
having rational expectations, in most groups subjects coordinate on a price trend
following strategies (cf. Bostian and Holt, 2009). Heemeijer et al. (2009) and Bao
et al. (2012) investigate whether the non-convergence result is driven by the pos-
itive expectation feedback nature of the experimental market in Hommes et al.
(2005). Positive/negative expectation feedback means that the realised market
price increases/decreases when the average price expectation increases/decreases.
The authors design two comparable treatments of positive and negative feedback.
They find that the negative feedback markets converge quickly to the fundamental
price, and also adjust fast to a new fundamental after a large shock to the system.
In contrast, positive feedback markets usually fail to converge, and under-react to
the shocks in the short run, while overreacting in the long run. This results in
repeated bubbles and crashes.

The subjects in Hommes et al. (2005) and other ‘learning to forecast’ exper-
iments do not directly trade, but are rather assisted by a computer program to
translate their forecasts into optimal trading decisions. A natural question is what
will happen if they submit explicit quantity decisions, i.e. if the experiment is based
on the ‘learning to optimize’ design. Are the observed bubbles robust against the
LtO design or are they just an artifact of the computerized trading in the LtF
design?

In this paper we design an experiment, in which the fundamental price is con-

stant over time (as in Hommes et al., 2005), but the subjects are asked to directly
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indicate the amount of asset they want to buy/sell. Different from the double auc-
tion mechanism in the Smith et al. (1988) design, the price in our experiment is
determined by a price adjustment rule based on excess supply/demand (Beja and
Goldman, 1980). There are many theoretical works on financial markets, where
the asset price adjustment depends on the total excess demand/supply of assets
(Beja and Goldman, 1980; Campbell et al., 1997; LeBaron, 2006). Our experi-
ment is helpful in testing financial theory based on such demand/supply market
mechanisms. Furthermore, our design allows us to have a longer time span of the
experimental sessions, which will enable a test for the recurrence of bubbles and
crashes.

We design three experimental treatments: (1) subjects make a forecast only,
and are paid according to forecasting accuracy; (2) subjects make a quantity deci-
sion only, and are paid according to the profitability of their decision; (3) subjects
make both a forecast and a quantity decision, and are paid by their performance of
either of the tasks with equal probability. The first treatment is the basic ‘learning
to forecast’ experimental economy, while the second and third form ‘learning to
optimize’ markets. Our experimental design enables us to address the fundamen-
tal question of what causes of bubbles: is it the failure to learn to forecast or the
failure to learn to optimize? We provide a rigorous proof that, when the subjects
consider themselves as price takers, the payoff based on the trading profit is a
monotonic transformation of the payoff based on the forecasting accuracy/error.
Therefore, the Rational Expectations framework predicts that the three treat-
ments are equivalent, and any differences between them directly show the effect
of the task specification.

The main finding of our experiment is that the slow adjustment and persistent
deviation from the fundamental price in Hommes et al. (2005) is a stylised fact
in all treatments. We measure the size of the bubbles based on Relative Absolute
Deviation (RAD) and Relative Deviation (RD) as defined by Stockl et al. (2010),
and find that the amplitude of the bubbles in treatment (2) and (3) is much
higher than in treatment (1). We also find that coordination of decisions is weaker
in treatment (2) and (3) than in treatment (1). In particular, coordination of
traded quantities is weaker than coordination of individual price forecasts. We
therefore argue that learning to optimize is even harder than learning to forecast
and generates even larger deviations from rationality and efficiency.

An important finding of our experiment is that in the mixed, LtO and LtF
designs we find some repeated ‘super bubbles’, where the price increases to more
than 3 times the fundamental price. This was not observed in the former exper-

imental literature. Considering that bubbles in stock and housing prices reached
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similar levels, our experimental design may provide a potentially better test bed
for policies that deal with large bubbles.

Another contribution is that, to our best knowledge, we are the first to perform
a formal statistical test on individual heterogeneity in forecasting and trading
strategies in an asset pricing experiment. We find that individual heterogeneity
does not diminish over the periods. Nevertheless, large bubble can emerge in
the presence of persistent individual heterogeneity, because the subjects are still
able to coordinate on buying or selling the asset (c.f. Heemeijer et al., 2009; Bao
et al., 2012). In particular, in some trading markets we observe a large degree of
heterogeneity in the quantity decision even when the price is rather stable. This
implies furthermore that many subjects trade inconsistently with their own price
predictions.

In order to study whether our results are (in)consistent with a perfectly rational
framework, in addition to the perfect competition price-takers RE equilibrium we
study the subjects’ rational strategic behaviour when they realise their market
power and (1) can collude on the trading quantity or (2) play a non-cooperative
game. We show that the fundamental equilibrium is unique under price-taking
assumption. When the subjects take their market power into account, they may
coordinate on alternating between buying and selling to some maximum amount
around the REE if they form (implicit) collusion. In addition, they can ride
bubbles/crashes by submitting the largest buying/selling amount when the price
is above/below the REE until the price hits the ceiling/floor when they play non-
cooperatively. Taking into account the heterogeneity in the data, and the fact
that the subjects seldom submit the maximum trading amount, we conclude that
the bubbles and crashes in our experimental data are not explained so much by
rational strategic thinking in non-cooperative games, but rather by boundedly
rational behavioural factors such as trend following behaviour.

Our paper is related to Bao et al. (2013) who run an experiment to compare
the LtF, LtO and Mixed designs in a cobweb economy. The main difference is
that they consider a negative expectation feedback system, for which all markets
converge to the RE fundamental price. Nevertheless, Bao et al. (2013) found, in
line with our results, that LtF converges faster than the LtO and Mixed design,
which results from different incentive schemes (forecasting accuracy vs. trading
profit). Our paper is also related to a study by Haruvy et al. (2013) who follow
the basic design of Smith et al. (1988), with an additional new issue or repurchase
of stocks in order to increase/decrease the supply of stock shares on the market.
Theoretically, since the fundamental price in this type of studies is based purely

on the dividend process, and irrespective of the size of the share supply, the new



issue and repurchase should generate no impact on the asset price. But the results
suggest that the price level is actually negative related to the supply of asset. This
outcome points in the same direction as the intuition behind the models based on
excess supply/demand, which we used in our experiments. The difference is that
we keep the asset supply constant in our experiment, and the price change is driven

instead by the asset excess demand of the investors (played by subjects).

The paper is organised as follows: Section 2 presents the experimental de-
sign, Section 3 reports the experimental result, Section 4 discusses alternative
rational benchmark solutions to the experimental economy and finally, Section 5

concludes.

2 Experimental design

2.1 Experimental economy

Our experiment is based on the same asset market as in Heemeijer et al. (2009).
We focus on the simple myopic mean-variance optimization model with I = 6
agents, who invest over time in a risky asset or a risk-free bond. Each agent i at
time t gains utility from her expected wealth in the next period Wz’,t+17 but derives
disutility from the perceived investment risk. The agent’s ¢ utility function takes
the form of
~ -~ a — ~

(1) Uit(zit) = Ei Wi i1 — §W,t(VVi,t+1)a
where a measures the relative risk aversion of the agent ¢ and EM and VM are
the individual perceived (and not necessarily perfectly rational) expectations and

variance operators. The wealth of agent ¢ evolves according to
(2) Wi,t+1 = Rm,t + 2it(De41 + Y1 — Rpe),

where R = 1+ r is the gross interest rate of the risk-free bond (assumed constant
over time), z;; is the amount of asset which the agent ¢ decides to buy or sell in
period t, p; and p, 1 are the prices of the asset from periods ¢ and ¢+ 1 respectively,
Y11 18 the assets dividend paid at the beginning of period ¢t 4+ 1 and a is the risk
aversion factor. For simplicity, the risk associated with one unit of the asset is

constant and homogeneous among agents, .e. ‘_/i,t(ptﬂ + Y1 — Rpy) = az.

Since in period ¢ RVVM is given, we have that V;’t(RWt) = 0 and we consider a
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linear transformation of the utility function (1),? given by

_ a —
(3) Ui+ = 800 + 40 (Ei,tvvi,t-i—l - 5‘/;,7& (Wi,t+1)> ;
where W;; denotes the total return on the risky asset

(4) Wit1 = 2it(Pes1 + Y1 — Bpi) = 2iapr.

Pt = Pre1+Yie1— Rpy can be interpreted as the net return of a unit of the risky asset
at time t. Utility functions (3) and (1) are equivalent for the sake of optimization,
and since (3) is time-invariant (it does not depend on the accumulated wealth), we
can directly use it as the profit for the experimental subjects. The maximization
problem over investments in 2z has a straightforward solution, conditional on price

expectations. The FOC with respect to the choice variable z;; yields

Ei,t{pt+1 + Y1} — Rpy
ac? '

(5) ZZt =

The market price is set by a market maker using a simple price adjustment

mechanism (Beja and Goldman, 1980),% given by
(6) Dt+1 Zpt—f'/\(ZtD—Z{g) + &,

where &, ~ NID(0,1) is a small idiosyncratic shock, A > 0 is a scaling factor, Z
is the exogenous supply and ZP is the total supply. This mechanism guarantees
that an excess demand/supply increases/decreases the price.

We choose the same parametrization for our experiment as in Heemeijer et al.
(2009). We specify both dividend y; = y and exogenous supply Z° = Z = 0 to
be fixed over time. We take RA = 1, specifically R = 1 +r = 1.05 = 21/20 and
A = 20/21, and also ac? = 6. In contrast to Heemeijer et al. (2009), we take
y = 3.3.% The price adjustment thus takes the form of

6

20
(7) Pre1 =pr + 21 Z Zit + &t

i=1
For an optimizing agent and the chosen parameters, the individual demand (5)

equals

« pit 1 + 33 — 105]9,5
(8) Z’i,t = - 6 )

2We introduce this linear transformation of the utility to ensure that the subjects can obtain

a positive profit 800 under RE equilibrium, in which 27, = 0. See following discussion for the

RE solution and Table 5 in Appendix B.
3See e.g. Chiarella et al. (2009) for a survey on the abundant literature about the price

adjustment market mechanisms.
4This gives us a slightly higher fundamental price p/ = 66, instead of 60.
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where pf,, ; = E; {pi+1} denotes the price forecast of the agent i. Given our

parametrization of the economy, the price adjustment equation conditional on

price expectations pg,,; simplifies to

(9)

0 D5 +y— Rpy
Pet1 = Pr + A <—Zt5 + Z Has > + &
i—1

aoc?
20

91 (pt—i-l + 3-3) + &
=66 + % (D1 — 66) + &4,

_ 6 . .. .
where pf = £ 377, pf,,, is the average prediction of price piy1.

Eq. (9) represents the price adjustment in terms of deviations from the funda-

mental price. One can easily see that p/ = 66 is the unique Rational Expectations

(RE) fundamental price (see Appendix E for a formal proof). If all the agents

have rational expectations, the realised price becomes p; = p/ + &, = 66 + ¢, i.e.

the fundamental price plus a white noise, and, on average, the price forecasts are
self-fulfilling.

2.2

Experimental treatments

We are interested in how individuals predict prices and trade in our experimental

economy. We focus on three treatments:

LtF Classical Learning-to-Forecast experiment. Subjects are asked for one-period

LtO

ahead price predictions pf, ,, based on which the realised price is generated
according to the price adjustment rule (9). The subjects’ reward depends

only on the prediction accuracy, defined by (see also Table 4 in Appendix B)

1300

(10) Payoffi’t = Imax {O, (1300 — 4—9 (pit-i-l — pt+l)2)} .

The law of motion of the treatment economy is given by (9).

Classical Learning-to-Optimise experiment, where the subjects are asked to
decide on the asset quantity z;;. They are not explicitly asked for a price
prediction, but use a calculator to compute the asset return p; as in equation

(4). Subjects are rewarded based on the realised (profit) utility (3) given by
(11) Uiy = maz {0,800 4 40(zi4(pes1 + 3.3 — 1.05p,) — 327,) }

that is on how close their choice was to the optimal choice regardless of their
individual prediction (see Appendix B, Table 5 for the payoff table presented
to the subjects). The law of motion of the LtO treatment is given by (7).
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Mixed Each subject is asked first for his or her price forecast and second for the
choice of the asset quantity (in that order). In order to avoid hedging, the
reward for the whole experiment is with equal probability either the predic-
tion performance (10) throughout the experiment or the (profit) utility (11)
achieved throughout the experiment. The law of motion of the treatment
economy is given by (7), the same as in LtO and does not depend on the

submitted price forecasts.

We emphasise that we use the same payoff scheme as in the previous LtF exper-
iments for the LtF and mixed treatments. The points achieved in each treatment

are exchanged into Euro with the conversion rate 3000 points = 1 Euro.

Variable Notation Parameter

Market parametrization

Subjects 1

Risk penalty ao?

Dividend Y 3.3
Interest rate r 0.05
Exogenous supply A 0
Price adjustment A %

Stationary RE equilibrium

Price p! 66
Excess demand z* (pf ) 0
Points per 1 Euro 3000

Table 1: Parametrization of the experiment.

Finally, we would like to emphasise that the LtF and LtO treatments are
equivalent under the assumption of perfect rationality and perfect competition.

For details, see Section 4.1.

2.3 Liquidity constraints

To limit the effect of extreme price forecasts or quantity decisions in the experi-
ment, we impose the following liquidity constraints on the subjects. For the LtF
treatment, price predictions such that pf,,; > p;+30 or pf,,; < p;—30 are treated
as pg, 1 = pe+30 and pf,, = p—30 respectively. For the LtO treatment, quantity

decisions greater than 5 or smaller than —5 are treated as 5 and —5 respectively.



These two liquidity constraints are roughly similar, since the optimal asset de-
mand (8) is close to one sixth of the expected price difference. Nevertheless, in
the sessions we observed that the liquidity constraint in the LtF treatment was
never binding, while under the LtO treatment subjects would sometimes trade at

the edges of the allowed quantity interval.’

2.4 Number of observations

Experimental instructions with the computer screen presented to the subjects are
shown in Appendix A. Our experiment was run December 14, 17, 18 and 20,
2012 at the CREED Laboratory, University of Amsterdam. 108 subjects were
recruited. We used a group design with 6 subjects per the experimental market.
We had 18 markets in total: 4 markets in LtF treatment, 6 markets for LtO and
8 markets for Mixed. No subject participates in more than one session. We have
fewer observations for treatment 1 because a similar experiment has been already
run by Hommes et al. (2005) and Heemeijer et al. (2009). The duration of the
experiment is typically about 1 hour for the LtF treatment, 1 hour and 15 minutes
for the LtO treatment, and 1 hour 45 minutes for the Mixed treatment.

3 Experimental results

3.1 Overview

We report the experimental results in Figure 1 (LtF treatment, 4 groups), Figure 2
(LtO treatment, 6 groups) and Figure 3 (Mixed treatment, 8 groups). For most
of the groups, the prices and predictions remained in the interval [0,100]. The
exceptions are the mixed treatment groups 1, 4 and 8 (Figures 3a, 3d and 3h). In
the first two of these three groups, prices peaked at almost 150 (more than twice
the fundamental price p/ = 66) and for the last group, the prices reached 225,
almost 3.5 times the fundamental price.

It is clear that the price in most markets is far from the fundamental price.
If we define convergence as the price moving into a small neighbourhood of the
REE, i.e. [61,71],% and staying within it forever after, none of the markets, except

market 2 in the Mixed treatment, satisfies this criterion.”

5We also imposed additional constraint that p; has to be non-negative and not greater than

300. In the experiment, this constraint never had to be implemented.
5Note that the standard error of the small shock in the price determination function is only 1,

which implies that the interval is £5 SD wide. In relative terms it is £7.6% of the fundamental.
"Furthermore, this market actually converged after period 44.
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Figure 1: Groups 1-4 for the Learning to Forecast treatment. Straight line shows the
fundamental price p/ = 66, solid black line denotes the realised price, while

green dashed lines denote individual forecasts.

The LtF treatment has results similar to Heemeijer et al. (2009): individual
forecasts in all four groups start below the fundamental price, quickly coordinate
and hence smoothly move towards the fundamental. In groups 1, 3 and 4, predic-
tions seemingly stabilise close to the fundamental for some time, but eventually
overshoot it. In contrast to Heemeijer et al. (2009), we do not observe large oscil-
lations. This may be due to fact that the fundamental price is higher (p/ = 66)
in our experiment than in theirs (p/ = 60). Since the market price usually starts
below 50, a higher p/ leads to a longer initial price growth. This may lead subjects
to think that the asset price just follows some constant slow growth path, and the
price overshoots only towards the end of the experiment, leaving no time for a

market crash.

In the LtO treatment, the results are more diverse. Coordination between
the agents does arise, but it requires time to emerge. Group 1 took around 15
periods to coordinate, while groups 3, 4, and 6 took more than 20 periods, and
still with a relatively large degree of heterogeneity persisting towards the end of all
six sessions. None of the groups converged to the RE equilibrium. Interestingly,
group 2 (maybe with the exception of the last five periods) seems to have converged
to a price which is around two thirds of the fundamental price. In this group, the

subjects on average traded little, which resulted in a stable price. In group 5,
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Figure 2: Groups 1-6 for the Learning to Optimize treatment. Each group is presented
in two panels. The upper panel displays the fundamental price pf = 66
(straight line) and the realised prices (solid black line), while the lower panel
displays individual trades (dashed blue lines) and average trade (solid red

line).

subjects were on average buying a small amount of the asset, which generated a
small but persistent upward trend, that gradually lead the price to overshoot the
fundamental by around 25%. Groups 1, 3 and 4 exhibited large price oscillations.
Groups 1 and 4 over- and under-shot the fundamental three times, but the price
usually stayed in interval [40,90] (between 60% and 150% of the fundamental).
The oscillations in group 3 were slower, but of higher amplitude, with the smallest

price close to 20 (less than 1/3 of the fundamental price). Finally, group 6 first
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oscillated, but later on stabilised on a small growth path similarly to group 5.

A surprising result is that the price oscillations do not really depend on the
level of coordination in terms of the traded quantities. For example in groups
1 and 4, the magnitude of the oscillations does not change in the experiment,
even though the subjects are clearly more coordinated in the second half of the
sessions. However, during bubbles (crashes) subjects typically coordinate well on
buying (selling), i.e. on the sign of the traded quantities, which is visible in the
average demand in all markets.

The Mixed treatment shows similar results. As was the case in the LtF treat-
ment, subjects are able to quickly coordinate their price forecasts, and perform
this task with a high degree of success, even in the markets with large oscillations.
The coordination of the quantity decisions is weaker than that of the price pre-
dictions, and occurs only after about 20 periods in groups 1, 4, 5, 6 and to some
extent 7. For three groups (2, 3 and 8) there is no coordination at all even towards
the end of the experiment. However, as in the LtO treatment, subjects coordinate
on buying or selling, and the average quantity is persistently positive or negative
as seen in the case of group 8.

The behaviour of the prices is similar to that in the LtO treatment. In some
of the groups (group 2, 6 and, until period 42, group 3), the market is stable, but
the price is systematically different from the fundamental price. The behaviour of
groups 5 and 7 is unruly — there are periods of stabilization of the price, which
are interrupted by a sudden switch to a different price level or a smooth transition
path.

Super-bubbles appeared in three markets (groups 1, 4 and 8). Despite relative
heterogeneity of the traded quantity, subjects coordinated well on buying (sell-
ing), which made the average demand persistently high (negative) during bubbles
(crashes). Market 4 exhibited oscillations common under the LtO treatment, but
the amplitude of the market bubbles is significantly larger, with the maximum
price slightly below 150. In fact, we observe three bubbles in this market. The
first bubble reached almost 250% of the fundamental price, the second was only
slightly smaller (twice the fundamental) and the third started to build up in the
last periods of the session. Different behaviour was observed in group 1. Here there
was a super-bubble with the peak price equal to about 250% of the fundamental.
However, once the bubble crashed, the price did not fall below the fundamental,
but instead exhibited mild oscillations in the interval [80, 100].

The largest bubble was observed in group 8, where the price was growing for
around twenty periods until it reached a level around 215 (which is 3.5 times the

fundamental!). Then it was plummeting for about 15 periods, when it reached a
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Groups 1-8 for the Mixed treatment with subject forecasting and trading.

Each group is presented in a picture with two panels. The upper panel

displays the fundamental price pf = 66 (straight line), the realised prices

(solid black line) and individual predictions (green dashed lines), while the

lower panel displays individual trades (dashed blue lines) and average trade

(solid red line). Notice the different y-axis scale for groups 1, 4 and 8 (pictures

a, d and h respectively).
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level of 5 (which is less than 10% of the fundamental) and bounced back. The
new bubble steadily grew until period 48, when the price reached 220, a level even
larger than 30 periods before. The last few rounds of this session saw the bubble

starting to crash.

3.2 Quantifying the bubbles

We follow Stockl et al. (2010) to evaluate the mispricing inefficiency and the size
of the experimental asset price bubbles, using the Relative Absolute Deviation
(RAD) and Relative Deviation (RD). These two quantities measure respectively

the typical absolute and relative deviation from the fundamental and are given by

L o= [pf — 1]
(12) RAD, = = =—— x 100%,
50 — P
50
1 7 —p/
(13) RD, = =3 b pfp x 100%,
t=1

where p/ = 66 is the fundamental price and p{ is the realised asset price at period
t in the session of group g. (12) shows the typical distance between the realised
prices and the fundamental, while (13) focuses more on the sign of this relationship.
Groups with RD close to zero could either converge to the fundamental (in which
case RAD is also close to zero) or oscillate evenly around the fundamental (with
high RAD), while positive or negative RD signals that the group typically over-

or under-priced the asset.

Treatment LtF LtO Mixed
Group RAD RD RAD RD RAD RD
#1 10.03 —7.011 18.26 —8.148 38.65 36.84
#2 1798 —16.94 34.52 —34.52 7.27 —5.657
#3 8.019 —-6.048 30.2 —-12.95 8.025 4.014
#4 7.285 —5.196 20.63 3.844 42.86 35.46
#5 16.55 5.256 14.98 3.341
#6 17.51 7.056 23.08 —23.08
#7 32.14 —18.71
#8 120.7 96.5
Average 10.83 —8.798 2295 —6.577 35.97 16.09

Table 2: Relative Absolute Deviation (RAD) and Relative Deviation (RD) of the ex-

perimental prices for the three treatments, in percentages.

The results are presented in Table 2. They confirm that the LtF groups were
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the closest to the fundamental (with an average RAD of about 10%), while Mixed
groups exhibited largest bubbles with an average RAD of 35%. Interestingly, LtO
groups had significant oscillations (on average high RAD of 23%), but centred
close to the fundamental price (average RD of —6.5%, compared to average RD of
—8.8% and 16.1% for the LtF and Mixed treatments respectively). LtF groups on
average are below the fundamental price and Mixed groups typically overshoot it.
Furthermore, the LtF groups are almost the same with the exception of group 2,
LtO are varied but comparable to each other and the Mixed groups are diversified,
ranging from rather stable (group 2) to super bubbles (groups 1, 4 and 8). We will
argue that this is closely related to the observed individual heterogeneity. Under
the LtF treatment, the subjects could easily coordinate, which implies that the
price dynamics are relatively simple. On the other extreme, the Mixed treatment
prices can ‘be anything’, and therefore the subjects have coordination problems.

Our experiment is comparable with the data investigated by Stockl et al. (2010)
(see specifically their Table 4 for the RAD/RD measures) in terms of the typical
RAD values. Nevertheless, there are some important differences. First, group
8 from the mixed treatment (with RAD equal to 120.7%) exhibits the highest
relative price bubble among the experimental data. Second, the four experiments
investigated by Stockl et al. (2010) have shorter spans (with sessions of either
10 or 25 periods) and so typically witness one bubble. Our data shows that the
experimental bubbles are a robust and repeated finding. The crash of a bubble
does not enforce the subjects to converge to the fundamental, but instead marks
the beginning of a ‘crisis’ until the market turns around and a new bubble emerges.
Thus even in the long-run prices oscillate around the fundamental and do not settle
on it. This succession of over- and under-pricing of the asset is reflected in our
RD measures, which are smaller than the typical ones reported by Stockl et al.
(2010), and can even be negative, despite high RAD.

3.3 Earnings

We compare subjects’ earnings in the experiment to the hypothetical case where
all subjects play according to the REE in all 50 periods. Subjects can earn 1300
points per period for the forecasting task when they play according to REE because
they make no prediction errors, and 800 points for the trading task when they play
according to the REE because the asset return is 0 and they should not buy or
sell. We use the ratio of actual to hypothetical REE payoffs as a measure of payoff
efficiency. This measure can be larger than 100% in treatments with the trading

decision, because the subjects can profit if they buy and the price increases and
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vice versa. These earnings efficiency ratios, as reported in Table 3, are generally
high (more than 75%).

The earnings efficiency for the forecasting task is higher in the LtF treat-
ment than in the Mixed treatment (difference is significant at 5% level according
to Mann-Whitney-Wilcoxon test), which suggests the high cognitive load in the
Mixed treatment makes it difficult for the subjects to give an accurate forecast.
At the same time, the earnings efficiency for the trading task is very similar in the
LtO treatment and the Mixed treatment. This may be because in our experiment
the trading task is easier than the forecasting task, and moreover, the high profit
from speculative transaction in some markets in the Mixed treatment (such as
Market 8) drives the average efficiency ratio up. Indeed, in several markets the
trading efficiency is higher than 100%. Moreover, in the Mixed market 8 with the
super bubble (price goes above 200), the subjects earn the most (with earnings

efficiency more than 130%).

3.4 Conditional optimality of forecast and quantity deci-

sion in mixed treatment

Under the Mixed treatment of our experiment, each subject makes both a forecast
and a quantity decision. It is therefore possible to investigate whether these two
are consistent, namely, whether the subjects’ quantity choices are close the optimal
demand conditional on the price forecast (8), which is 1/6 of the corresponding
expected asset return. Figure 4 shows the scatter plot of the quantity decision
against the implied predicted return, which we constructed based on the price
predictions of each subject, for each period separately.® If all individuals made
consistent decisions, these points should lie on the (blue) line with slope 1/6.

Figure 4 brings two interesting observations. First, subjects focus on ‘round
levels’, in the sense of trading quantities with typically no or only one digit after
the decimal. Second, the quantity choices are far from being consistent with the
price expectations. In fact, the subjects sometimes sold (bought) the asset even
though they believed its return will be substantially positive (negative).

To further evaluate this finding, we run a series of Maximum Likelihood (ML)

regressions based on

(14) Qi = Ci + Qipyy + it

8Sometimes the subjects would pass extremely high price predictions, which in many cases
seem to be typos. We exclude from our analysis outliers, which we define as predicted returns

on the asset greater than 60 in absolute terms.
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Treatment Payoff Payoff REE Earnings efficiency

LtF
Market 1 25.69 26.67 96.35%
Market 2 25.19 26.67 94.47%
Market 3 25.61 26.67 96.03%
Market 4 25.65 26.67 96.18%
Average 25.54 26.67 95.76%

LtO
Market 1 18.80 18.33 102.54%
Market 2 17.46 18.33 95.25%
Market 3 18.00 18.33 98.21%
Market 4 18.41 18.33 100.43%
Market 5 17.85 18.33 97.39%
Market 6 18.27 18.33 99.64%
Average 18.13 18.33 98.91%

Mixed Forecasting

Market 1 23.36 26.67 87.62%
Market 2 17.94 26.67 67.27%
Market 3 20.17 26.67 75.63%
Market 4 20.64 26.67 77.41%
Market 5 23.22 26.67 87.07%
Market 6 24.52 26.67 91.94%
Market 7 21.65 26.67 81.20%
Market 8 16.21 26.67 60.80%
Average 20.96 26.67 78.62%

Mixed Trading

Market 1 18.50 18.33 100.89%
Market 2 16.01 18.33 87.33%
Market 3 14.60 18.33 79.61%
Market 4 21.02 18.33 114.63%
Market 5 18.15 18.33 99.03%
Market 6 17.83 18.33 97.24%
Market 7 17.33 18.33 94.55%
Market 8 24.20 18.33 132.01%
Average 18.45 18.33 100.66%

Table 3: Average earnings (in Euro) and earnings efficiency for each market.

with 7;, ~ NID(0,07 ;). This model has a straightforward interpretation: it takes
the quantity choice of subject ¢ in period ¢ as a linear function of the implied
(by the price forecast) return on the asset. It has two important special cases:
homogeneity and optimality (nested in homogeneity). To be specific, subject ho-
mogeneity (heterogeneity) corresponds to an insignificant (significant) variation
in the slope ¢; = ¢; (¢; # ¢;) for any two subjects ¢ and j. Optimality of indi-
vidual quantity decisions implies homogeneity with an additional restriction that
¢i = ¢; = 1/6. The constant ¢; shows subject’s i ‘irrational” optimism/pessimism

bias. Optimality thus correspond to homogeneity such that ¢; = ¢; = 0 (no
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(a) Expected return vs trade (b) Trade rule (14): slope vs constant

Figure 4: ML estimation for trading rule (14) in the Mixed treatment. Panel (a) is
scatter plot of the traded quantity (vertical axis) against the implied expected
return (horizontal axis). Each point represents one decision of one subject in
one period from one group. Panel (b) is scatter plot of trading rule (14) slope
(reaction to expected return; horizontal axis) against constant (trading bias;
vertical axis). Each point represents one subject from one group. Solid line
(left panel)/triangle (right panel) denotes optimal trade rule (g;; = 1/6p5,).
Dashed line (left panel)/circle (right panel) denotes the estimated rule under
restriction of homogeneity (¢i+ = ¢+ ¢pf,). Expected returns greater than

60 excluded from the sample.

agent has a decision bias). Notice that under optimality, other factors should be
irrelevant, which motivates our choice for (14).

We can directly test the assumptions that the subjects are (1) homogeneous
and (2) perfect optimisers by estimating (14) with the above mentioned restrictions
on the homogeneity of parameters ¢; and ¢;.” These regressions can be compared
with an unrestricted regression (with ¢; # ¢; and ¢; # ¢;) via a Likelihood Ratio
test (LR).'” The detailed results can be found in Table 8 in Appendix C, but they
boil down to one observation: any model that imposes homogeneity, including
self-consistent trading strategies, is strongly rejected by the data.

This is a surprising result. The RE hypothesis is built on model consistent

expectations, which the agents in turn use to optimise their decisions. Many

9We use ML since the optimality constraint does not exclude heterogeneity of the idiosyncratic
shocks 7; + and so the model is non-linear. We exclude outliers defined as observations when a
subject would predict the asset to have its return higher than 60 in absolute terms. To account
for the initial learning, we exclude first ten periods from the sample. We also drop subjects 4
and 5 from group 6, since they would always pass ¢;; = 0 for ¢ > 10. Interestingly, these two

subjects had non-constant price predictions, which suggests that they were not optimisers.
1Tn our estimations we use F-test to check significance of a set of linear restrictions on a

model. For the sake of simplicity, we use LR test if the restrictions are non-linear or require data

transformation.
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economists find the first element of RE unrealistic: agents have problems in un-
derstanding the structure of the economy, in coordinating or predicting each others
behaviour. But the second part of RE is often taken as a good approximation:
agents should make an optimal decision conditional on what they think about the
economy, even if their forecast is wrong. Our subjects were endowed with as much
information as possible, including an asset return calculator, a table for profits
based on the predicted asset return and chosen quantity and the explicit formula
for profits; and yet many failed to behave optimally in a consistent fashion. The
design of the payoff excludes risk hedging as a potential reason. The simplest

explanation is that individuals, simply, are not perfect optimisers.

3.5 Estimation of individual behavioural rules

Prior experimental work (Heemeijer et al., 2009) suggests that in LtF experiments,
subjects use simple forecasting heuristics. Two that are often identified in positive

feedback markets are adaptive expectations

(15) p;t =api1 + (1 - C“)Pzt—la

with v € [0, 1]; and trend extrapolation rule

(16) Pit = Pe1 +7(Pe-1 — Di2).

We estimate these two types of rules for each individual subject in LtF treat-
ment, for the full sample of subjects and the last 40 periods. We call an estimation
successful if it generates coefficient estimates that are statistically significant at
the 5% level, and if there is no serial correlation in the errors.!' If both types
of estimation are successful for the same individual, we characterise her or him
as following the one with the higher R? value. It turns out about 50% of the
subjects (11 out of 24) can be categorised in this way for the LtF treatment. For
the successful estimations, the average of coefficient « is 0.8736 and the average of
coefficient ~y is 0.3833, which suggests the subjects were following a (weak) trend
extrapolation type of rules. This result is consistent with Heemeijer et al. (2009).

To explain the behaviour of the subjects from the LtO treatment, we look at
two simple quantity rules. First, a persistent demand is a simple AR process. We

focus on

(17) Qit = Xiqit—1,

UFor all the discussed estimations we use Durbin-Watson test to determine the appropriate
number of lags of the regressand in the unconstrained model, and use them in any (un-) con-
strained regression. We do not report their coeflicients, as we think of them only as auxiliary

variables without any economic interpretation.
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where x; is an AR(1) memory coefficient. Second rule is a simple asset return

extrapolation in the form of

(18) Qi = Gipr—1 = ¢i (P—1 + 3.3 — 1.05p; o) .

Notice that if the agents believe p, &~ p;_1, they should rely on ¢; = 1/6.
We test the importance of these two rules for our subjects by estimating indi-

vidual quantity decisions in the general form of
(19) ip = constant; + XiGi—1 + Gipr—1.

We will refer to the rule (19) as a mixed rule, since it is a combination of AR(1)
and return extrapolation rules (17) and (18). Also, a subject is generally an
optimist/pessimist if constant; is larger/smaller than 0. If y; memory and ¢;
return extrapolation coefficients are both zero (statistically insignificant), (19)
becomes a pure random rule with quantity decisions centred around the optimism
coefficient constant; (notice that by definition this rule is always stationary).

We estimate the mixed rule (19) separately for every individual in the LtO
treatment, for the last 40 periods. In the estimation procedure, we start with
full (19), but re-estimate it by dropping x; memory or ¢; return extrapolation
coefficients if either parameter is insignificant. The results are reported in Table 7
in Appendix C. We were able to identify a non-random rule for 26 (72%) of the
LtO treatment subjects, usually with a high R?. Around half of the subjects (19)
used the return extrapolation rule (18), 4 can be described by the full mixed rule
(19) and 3 by the AR(1) (17) rule. Only 3 subjects seem to have been pessimists
(with significant negative constant;) and none was an optimist.

Out of the 26 subjects with a non-random rule, 23 focused on the past asset
return, with the average coefficient ¢ equal to 0.135 (and all the estimated coef-
ficients positive). Demand of seven subjects was persistent, and here the average
coefficient of the previous quantity was 0.283 (despite two negative estimates).
One can show that using the rules AR1 (17) with y and asset extrapolation (18)
with ¢ coefficients in the LtO treatment effectively gives a behaviour as if using
the price trend rule (16) under the LtF treatment, with 5 ~ x and 8 ~ 6¢ coeffi-
cients respectively. This means that more than a half of the subjects from the LtO
treatment implicitly followed (or behaved as if following) the price trend, with the
average coefficient roughly equal to 0.683,'% a number almost twice as high as in
the case of LtF treatment, and the direct reason for the LtO markets to generate

stronger oscillations.

12Which is the appropriate weighted average of the average y and 6 times the average ¢.
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As established previously, under the mixed treatment the subjects would of-
ten choose suboptimal quantities conditional on their price predictions. It makes
therefore sense to estimate these two variables as a joint two-dimensional system.
We take the price expectations to follow the price First-Order rule, a mixture of

the adaptive (15) and trend extrapolation (16) rules in the form of

(20) Piy = ope1 + (1- O‘)pzt—l +(pi—1 — Pi—2)

with a € [0, 1] constraint. For the quantity choices we focus on a modified quantity

First-Order rule, which includes the observed expected return

(21) Gir = constant; + Xiig—1 + Gipi—1 + Cpj -

The estimation results are presented in Table 9 in Appendix B.'® For the
price expectations equation, we first estimate the full rule and check with LR test
whether either trend extrapolation or adaptive expectation constrained rule cannot
be rejected.!* In this case, only 3 out of 48 subjects use adaptive expectations, 12
use simple trend extrapolation, while the rest uses a full mixed rule.

Only 4 subjects exhibited a persistent optimism or pessimism in their trading
behaviour. We explicitly tested whether the subjects used a quantity rule that
cannot be statistically distinguished from the self-consistent rule ¢;; = p5,/6.
That is the case only for 11 subjects (around 23%). They appear in all groups
with the exception of group 8, and at most constitute half of the group (group 4).
Interestingly, many other subjects would still use the expected return to decide
upon the quantity, but with suboptimal coefficients. Few others would rely on the
past return and only 13 would use neither.

In total 26 out of 48 subjects followed the price trend in price forecasting,
with the average coefficient of 0.772. This is around 0.087 in absolute terms (or
12.7%) higher coefficient then the one implied by the quantity rules in the LtO
treatment, without considering further effects of quantity rules (suboptimal use of
the expected asset, further extrapolation of asset return or persistence in demand).

It means that out of the three treatments the subjects under the mixed treatments

13The subjects have to report their price expectation and hence the quantity choice sequen-
tially. However, it is unclear whether they also decided sequentially on these two variables,
which means that the contemporary idiosyncratic errors in (20) and (21) are potentially corre-
lated. This results in potential endogeneity for the heuristic (21), as the quantity choice depends
on the contemporary predicted price. To rule out this problem, we use a simple instrumental
variable approach. First we estimate the exogenous price expectations equation, which gives us
the fitted price expectations of the subjects. We use these as instruments for the reported price

expectations whenever the Hausman test indicates to do so.
4We use LR, since we impose a € [0, 1], which makes the estimation non-linear.
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were the most likely to extrapolate the price trend, which reinforced it and caused
the super-bubbles.

This result shows that the subjects are able to identify the variables that are
relevant to their economic problem, and are not a subject to a systematic bias
(like optimism/pessimism). Nevertheless, they miss the mathematically optimal
solution, despite the instructions and the asset return calculator. We speculate
that instead of optimizing in the mathematical sense, the subjects follows simple

rules of thumb, in which a good solution has only to be ‘good enough’.

4 Rational strategic behaviour

Our experimental results are clearly different from the predictions of the rational
expectation equilibrium (REE). In the previous section we discussed some evidence
that non-fundamental prices and oscillations are caused by bounded rationality
and simple individual heuristics of our subjects. However, we also found that they
would typically earn high payoffs, implying some sort of profit seeking behaviour.

In this section, we discuss whether rational strategic behaviour can explain
our experimental results. It turns out that different types of rational equilibria
may exist depending on subjects’ perception of the game structure. By rational we
mean that the subjects maximise their expected profit given their beliefs about the
economy. First, we evaluate more carefully the competitive equilibrium, in which
agents are price takers. Secondly, we discuss the collusive outcome, where the
agents coordinate on monopolistic behaviour. Thirdly, we examine the case where
agents behave strategically, but cooperation is not possible. We show that in the
price-taking case, LtF and LtO treatments are equivalent, with the same rational
fundamental solution. Next we show that, if the subjects behave strategically or
try to collude, the economy can have alternative rational equilibria, where the
subjects can collectively ‘ride a bubble’, or jump around the fundamental price.
Nevertheless, these equilibria predict different outcomes than the individual and
aggregate behaviour observed in the experiment.

Without loss of generality, we focus on the one-shot game version of the ex-
perimental market to derive our results. More precisely, we look at the optimal
decisions that the agents in period ¢ (knowing prices and individual traded quan-
tity until and including period t) have to formulate only for the next period t + 1.
This follows two observations. First, by definition agents are myopic and their
payoff in ¢ + 1 depends only on the realised profit from that period, and not on
the stream of future profits from period ¢ + 2 onward. Second, the experiment is

a repeated game with finitely many repetitions, and subjects knew it would end
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after 50 periods. Using the standard backward induction reasoning, one can easily
show that a sequence of one-period game equilibria forms a rational equilibrium

of the finitely repeated game as well.

4.1 Price takers

The realised utility of investors in the LtO treatment is given by (3) and is equiv-
alent to the following form:
ao?

(22) Uip(2iy) = zig (P41 +y — Rpy) — 5 Gt

where z;; is the traded quantity and U;; is a quadratic function of the traded
quantity. In Section 2 we already discussed that, assuming the agent is a price
taker, the optimal traded quantity conditional on the expected price pf,,, is given
by

Pir +y— Bpe
ac? '

(23) zftT = argmax U;; =
Zi,t

Note that this result relies on the assumption that the subjects do not know the

price determination function. We argue that the subjects also have an incentive

to minimise their forecasting error. To see that, suppose that the realised market

price in the next period is p;11, and the subject makes a prediction error of €, i.e.

her prediction is pf;,; = pi+1 + €. The payoff function can be rewritten as:

2

ao’;
Uit(zip) = zig (Ps1 +y — Rpy) — TZZQt
_ (Per1 +e+y = Bp)Per1 +y — Bp)  (pea +e+y — Rp,)?
ac? 2a0?
— R 2 2
(24) _ (Pev1+y — Rp)* € .
2a0? 2a0?

We can see that the utility is maximised when ¢ = 0. This means that, assuming
perfect rationality and price taking behaviour (perfect competition), the task of
finding the optimal trade coincides with the task of minimizing the forecast error.
Thus when all the agents have rational expectations and are price takers, the
market converges to the REE defined in Section 2 regardless of the task.'® One
could express that by saying that in a one-shot game, REE is the only Nash
Equilibrium. It follows that REE is also the unique NE for the finitely repeated

game. We summarise this finding below.

5The uniqueness of REE is straightforward and we prove it in the Appendix E. It also implies

that there are no so called ‘rational bubbles’ in this set-up.
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Finding 1. When the subjects act as price takers, the utility function in the Learn-
ing to Optimize treatment is a quadratic function of the prediction error, the same
(up to a monotonic transformation) as in the Learning to Forecast treatment. In
this situation, the Rational Expectation Equilibrium, i.e. the fundamental price,
1s the only Nash FEquilibrium throughout the 50 experimental periods, regardless
of the design: when subjects are price takers, LtF and LtO are equivalent under

rational expectations.

4.2 Collusive outcome

Consider now the case when the agents realise how their predictions/trading quan-
tities influence the price and are able to coordinate on a common strategy. This
resembles a collusive (oligopoly) market, e.g. in a cobweb economy in which the
sellers can coordinate their production.

We assume that in the collusive solution, all agents behave as a monopoly that
maximises joint (unweighed) utility; thus the solution is symmetric, that is for

each agent 4, z;; = 2. In our experiment the price determination function is:
(25) Dit1 = P + 6z,
and so the monopoly maximises

ao;

6 2
U= Z Uit(z) =6 |:Zt(pt+1 +y — Rp;) — TZ?}
i=1

(26) —6 [zf (6>\ - agg ) + 2y — Tpt)] .

Here we assume that the rational agent has perfect knowledge about the pricing
function (25). Notice that when A = 20/21,a0? = 6, as in the experiment, the

2
aos

2
shaped, instead of inversely U shaped.'® This means that a finite global maximum

coefficient before 27 is positive, 6\ — = 1—79 > 0, and thus the profit function is U
does not exist (utility goes to +o0o when z; goes to either +00 or —oo). The global
minimum is obtained when z;;, = o= (rp, — y) = 2 (p, — p¥).

In our experiment, the subjects are restricted to choose a quantity from [—5, 45|
and the price is bound to the interval [0,300]. Collusive equilibrium in the one-

shot game implies that the subjects coordinate on z;; = 5 or z;; = —5, depending

2
16Tf 6N — % < 0, this objective function is inversely U shaped. The maximum point is achieved

when z;; = 52=-%5. This means when p; = y/r, namely when the price is at the REE, the
optimal quantity under collusive equilibrium is still 0. When the price is higher or lower than
the REE, the optimal quantity increases with the difference between the price and the REE.

This means there is a continuum of equilibrium when the economy does not start at the REE.
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on which is further away from % (as (26) is a symmetric parabola). Since
% > 0 when the price is above the fundamental (p/ = y/r), we can see
that the agents coordinate on —5 if the price is higher than the REE (p; > y/r).
Similarly, rational agents coordinate on +5 if the price is lower than the REE
(pr < y/r). If the price is exactly at the fundamental, rational agents are indif-
ferent between —5 and 5. Notice that in such a case trading the REE quantity

(zi+ = 0) gives the global minimum for the monopoly.

As a consequence, the collusive outcome predicts that the subjects will ‘jump
up and down’ around the fundamental. When the price is just below the fun-
damental, rational agents will buy the asset, which brings the price above the
fundamental, and hence the agents in the next period will sell the asset, and so
forth. Notice that if the initial price is far below (over) from the fundamental,
the monopoly will buy (sell) the asset until the price overshoots (undershoots) the

fundamental. Then the subjects start to ‘jump up and down’ as described before.

Finding 2. When the subjects know the price determination function and can
coordinate their behaviour, the collusive profit function in the LtO treatment is U
shaped. Subjects would buy under-priced and sell an over-priced asset. In the long
run rational collusive subjects will alternate their trading quantities between —5

and 5 and so the price will alternate around the equilibrium.

Such alternating dynamics would resemble coordination on contrarian type of
behaviour, but has not been observed in any of the experimental groups. In-
stead, our subjects coordinated on trend-following trading rules, which resulted in

smooth, gradual price oscillations.

Notice also that the demand at the edge of the liquidity constraint (z;; = +5)
would generate rapid price changes, namely p, 1 = p,£(20/21)/(6%5) ~ p,+28.57,
that is the price would change in every period by around 28.57 in absolute terms.
This has not been observed even in the super-bubble group 8 from the Mixed
treatment. Indeed, quantity decisions equal to 5 or —5 happened only 7 times in
the LtO and 44 times in the Mixed treatment (i.e. 0.39% and 1.83% respectively).
Typical subject behaviour was much more conservative: 97% and 91% traded
quantities in the LtO and Mixed treatments respectively were confined in the
interval [—2.5,2.5]. A good example is group 4 from the Mixed treatment, in
which the price reached 150, but the individual trades were rarely outside the
interval [—3, 3] (see Fig. 3).
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4.3 Perfect information non-cooperative game

Consider a scenario, in which the subjects realise the experimental price determi-
nation mechanism, but cannot coordinate their actions and play a symmetric Nash
equilibrium (NE) instead of the collusive one. There is a positive externality of the
subjects’ decisions: when one subject buys the asset, it pushes up the price and
also the benefits of all the other subjects. The collusive equilibrium internalises
this externality, but could the same happen if the subjects in the experiment could
not coordinate? In other words, would they have an incentive to ‘free-ride’ on the
demand of others, and would that push the price back to the REE?

In the case of a non-cooperative one-shot game, we again focus on a symmetric
solution. Consider agent 7, who optimises her quantity choice believing that all

other agents will choose z7. This means that the price at ¢ + 1 becomes
(27) Pey1 = Pt + 5)\2}? + )\Zi,t-

Agent ¢ maximises therefore

ac
Uz‘,t = Zit ()\Zz‘,t + 5)\22? + Yy — Tpt) — 2z ZiZ,t
2\ — ac?
(28) =222+ 2 (BN +y — ).

2
Notice that 2\ — ac? = —86/21 < 0. This is an inversely U shaped parabola with

the unique maximum given by the reaction function

c /o N, +y —rpy
(29) zi4(2)) = ac? — 2\

A symmetric solution requires z;,(2f) = 27, which implies

— 3
e = 5t =)

(30) TN ac? 2

Furthermore the reaction function 27, (z7) is linear with respect to 27, with a slope

5A __ _ 100
ac?2-2\ ~ 86

words, if agent i believes that the other players will buy (sell) the asset, she has an

> 1. Thus, 27 > 2/ (< and =) implies 2}, > z{ (< and =), or in

incentive to buy (sell) even more. Then as a best response, the other agents should
further increase/decrease their demand, and this is limited only by the liquidity
constraints. The strategy (30) thus defines the threshold point between the two

corner strategies, i.e. the full NE strategy is defined as

5 it 27 > 2z
NE .
(31) Zip =Nz it =2z

=5 it 2} < 2},
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The boundary strategies can be infeasible if the previous price is too close to zero
or 300.1" To sum up, as long as the price p, is sufficiently far from the edges of
the allowed interval [0,300], there are three NE of the one-shot non-cooperative
game, which are defined by all players playing z;; = —5, z;; = 2/ and 2z;; = +5
for all i € {1,...,6}.

If the agents coordinate on the strategy z;; = 2/, the price evolves according

to the following law of motion:

10p; — 60y

(32) Pi+1 = 7

In contrast to the collusive game, in the non-cooperative game the fundamental
price is therefore a possible steady state, but only if it is an outcome in the initial
period. Additional equilibrium refinements may further exclude it as a rational
outcome, since it is the least profitable one. Recall that the subjects earn 0 when
they play z; with price at the fundamental (because there is no trade). On the
other hand, they may earn a positive profit by coordinating on —5 or 5. For
example, when all of them buy 5 units of asset, the utility for each of them will
be (pr1 +y + 6z — (14 7)pp1)zis — 2222, = (33.3 — 0.05p,_1) * 5 — 75. This
equals 76.5 when p,_; = 60, 16.5 when p;_; = 300 and 75 when the previous price
is equal to the fundamental, p,_; = 66. This explains why the payoff efficiency
(average experimental payoff divided by payoff under REE) is larger than 100% in
some markets in the LtO or Mixed treatments where prices have large oscillations.

Notice that the linear equation (32) is unstable, so the NE of the one-shot
game leads to unstable price dynamics in the repeated game even if the agents
coordinate on z;; = 2;, as long as the initial price is different from the fundamental
price. Indeed, if the initial price is 67 or 65 (fundamental price plus or minus
one), the price hits the upper cap of 300 or the lower cap of 0 in 16 and 12
periods respectively, and rational non-cooperative agents would be forced to use
appropriate corner strategies (—5 and 5 respectively). Furthermore the agents can
switch at any moment between the three one-shot game NE defined by (31). This
implies that in the repeated non-cooperative game, many price paths are possible.
This includes many price paths where agents will often coordinate on 5 or —5
strategies. Furthermore, notice that the up and down alternating price behaviour
around the fundamental, which was the solution for the collusive equilibrium, is a

NE as well, and hence this is the Pareto efficient equilibrium for this game.

"Notice that we can interpret z¢ as the average quantity traded by all other agents, besides
agent i, and the reasoning for NE strategy (31) remains intact. This implies that NE has to be

symmetric.
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Finding 3. In the non-cooperative game with perfect information, there are two
possible types of NE. The fundamental outcome is a possible outcome only if the
initial price is equal to the fundamental price. Otherwise, the agents will coordinate
on unstable, possibly oscillatory price dynamics, with traded quantities of —5 or
5. When they coordinate on a non-zero quantity, their payoff can be higher than

their payoff under the REE under price-taking beliefs.

Altogether, the perfectly rational agents can coordinate on price bubbles. How-
ever, this would require even stronger assumptions than the fundamental equilib-
rium, namely that the agents perfectly understand the underlying price determi-
nation mechanism. Furthermore, the cycle of bubbles and crashes is suboptimal in
comparison with the ‘jumping up and down around the fundamental’ equilibrium.
If the agents were rational enough to coordinate, then it remains a mystery why
they would coordinate on the less efficient path of bubbles and crashes.

Furthermore, such rational equilibria with price oscillations predict the sub-
jects to coordinate on homogeneous trades at the edge of the liquidity constraints
(traded quantities should often, or even always, be either 5 or —5). The subjects
from the LtO and Mixed treatments behaved differently. Their traded quantities
were highly heterogeneous (which implied the observed heterogeneity of the esti-
mated trading and forecasting rules), and rarely reached the liquidity constraints,
as discussed above.

We argue therefore that rational solutions, in particular the ones from the
perfect information, non-cooperative games provide some useful insights on why
subjects “ride the bubbles” in the LtO and Mixed treatment. However, since
the rational solution cannot explain the heterogeneity of the individual decisions
and the fact that the subjects shy away from the boundary solutions, the bubbles
and crashes we see from the data is probably a result of the joint forces of ratio-
nal (profit seeking) and boundedly rational behaviour with some coordination on

trend-following buy and hold and short sell strategies.

5 Conclusion

The origins of asset price bubbles is an important topic for both researchers and
policy makers. This paper investigates the price dynamics and bubble formation in
an experimental asset pricing market with a price adjustment rule. A fundamental
question about the origins of bubbles we address is: do bubbles arise because
agents fail to learn to forecast accurately or because they fail to optimize their

trading” We investigate the occurrence, the magnitude and the recurrence of
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bubbles in three treatments based on the tasks of the subjects: price forecasting,
quantity trading and both. Under perfect rationality and perfect competition,
these three tasks are equivalent and should lead the subjects to an equilibrium
with a constant fundamental price. In contrast, we find none of the experimental
markets to show a reliable convergence to the fundamental outcome, and recurring
bubbles and crashes occur with the highest frequency and magnitude when the
subjects submit both a price forecast and a trading quantity decision.

This result shows that the asset bubbles in former learning to forecast ex-
periments (Hommes et al, 2005) are a robust phenomenon. Moreover when the
subjects act in a learning to optimise environment or submit both a forecast and
a quantity, the bubbles become more severe. In contrast to the learning to fore-
cast experiments, the coordination of individual decisions is lower in the trading
treatment, which suggests that coordination of beliefs is not a necessary condition
for bubbles to occur in financial markets. In particular, we observe that our sub-
jects follow heterogeneous forecasting and trading rules: to our best knowledge,
our experiment is the first to explicitly test this result statistically. In the mixed
treatment, in which we directly observe both the trading decisions and price ex-
pectations, we also show that only a quarter of the subjects trade consistently
with their price forecasts, despite the design that encourages them to do so. This
heterogeneity fits the stylised features of real financial markets, in which different
traders may disagree substantially about the future price dynamics and trading
strategy, and often resort to simple ‘rules of thumb’ — especially during a built-up
of a bubble, of which further sustainability is uncertain.

The earnings efficiency (in comparison to rational expectations payoff) is high
in all of our treatments. Notably, we find that the payoff efficiency for the fore-
casting task is much lower in the Mixed treatment than in the learning to forecasts
treatment due to poorer forecasting accuracy, and the payoff for the trading task
is about the same as the learning to optimize treatment, and particularly high
in some markets in the Mixed treatment with super bubbles. By coordinating
on a strong trend following strategy (buy/sell a lot when the price is increas-
ing/decreasing), the subjects earn much from the capital gain. This can provide
some evidence of subjects “riding the bubble” during the boom periods, even if
they know that the boom is not sustainable in the long run.

Financial bubbles can cause serious market inefficiencies, and if left unmiti-
gated, become a threat to the overall economic stability, as shown by the 2007
financial and economic crisis. It is therefore crucial to study the origins of assets’
mispricing, before we devise policies regulating the financial sector. Proponents of

the rational expectations would often claim that the serious asset pricing bubbles
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cannot arise, because rational economic agents would efficiently arbitrage against
it and quickly push the ‘irrational’ (non-fundamental) investors away from the
market. Thus asset prices changes follow shocks to fundamentals more than any-
thing else. Our experiment suggests otherwise: people exhibit heterogeneous and
not necessarily optimal behaviour, but because they are trend-followers, their ‘irra-
tional” (non-fundamental) beliefs are correlated. This is reinforced by the positive
feedback between expectations and realised prices on the asset pricing markets, as
stressed e.g. in Hommes (2013). Therefore, price oscillations cannot be mitigated
by more rational market investors, and trading heterogeneity persists. As a result,
waves of optimism and pessimism can arise despite the fundamentals being rela-
tively stable. A strong policy implication is that the financial authorities should
remain sceptical about the moods of the investors: fast increase of asset prices
should be considered as a warning signal, instead of a reassuring signal of growth
of the economic fundamentals only.

The design of our experiment can be extended to study other topics related
to financial bubbles, such as markets with financial derivatives and the housing
market. The advantage of our framework is that we can define a constant funda-
mental with positive dividend process, and the price is easy to calculate, and the
same for all participants in the market.!® However, the subjects in our experiment
can short-sell the asset as much as they want in order to profit from the fall of
asset price during the market crash, which may not be feasible in real markets.
An interesting topic for future reasearch are experimental markets where agents
face short selling constraints (Anufriev and Tuinstra, 2013) or the role of financial
derivatives in (de)stabilising markets.

Another possible extension is to impose a network structure among the traders,
i.e. one trader can only trade with some, but not all the other traders; or traders
need to pay a cost in order to be connected to other traders. This design can help
us to examine the mechanism of bubble formation in financial networks (Gale
and Kariv, 2007), and network games (Galeotti et al., 2010) in general. There
has been a pioneering experimental literature by Gale and Kariv (2009) and Choi
et al. (2013) that study how network structure influence market efficiency when
subjects act as intermediaries between sellers and buyers. Our experimental setup
can be extended to study how network structure influences market efficiency and
stability when subjects act as traders of financial assets in the over the counter
(OTC) market.

8The asset price is usually defined for each transaction in a typical Smith et al. (1988) ex-
periment, but it can also be the same for the whole market if the trading mechanism is a call

market system, e.g. Akiyama et al. (2012)).
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A Instructions and computer screen

(not for publication)

A.1 LtF treatment

General information

In this experiment you participate in a market. Your role in the market is a profes-
sional Forecaster for a large firm, and the firm is a major trading company of an
asset in the market. In each period the firm asks you to make a prediction of the
market price of the asset. The price should be predicted one period ahead. Based
on your prediction, your firm makes a decision about the quantity of the asset the
firm should buy or sell in this market. Your forecast is the only information the
firm has on the future market price. The more accurate your prediction is, the
better the quality of your firm’s decision will be. You will get a payoff based on
the accuracy of your prediction. You are going to advise the firm for 50 successive

time periods.

About the price determination

The price is determined by the following price adjustment rule: when there is more
demand (firm’s willingness to buy) of the asset, the price goes up; when there is
more supply (firm’s willingness to sell), the price will go down.

There are several large trading companies on this market and each of them is ad-
vised by a forecaster like you. Usually, higher price predictions make a firm to buy
more or sell less, which increases the demand and vice versa. Total demand and
supply is largely determined by the sum of the individual demand of these firms.
About your job

Your only task in this experiment is to predict the market price in each time period
as accurately as possible. Your prediction in period 1 should lie between 0
and 100. At the beginning of the experiment you are asked to give a prediction
for the price in period 1. When all forecasters have submitted their predictions for
the first period, the firms will determine the quantity to demand, and the market
price for period 1 will be determined and made public to all forecasters. Based on
the accuracy of your prediction in period 1, your earnings will be calculated.
Subsequently, you are asked to enter your prediction for period 2. When all par-
ticipants have submitted their prediction and demand decisions for the second
period, the market price for that period, will be made public and your earnings
will be calculated, and so on, for all 50 consecutive periods. The information you

can refer to at period t consists of all past prices, your predictions and earnings.

35



Please note that due to liquidity constraint, your firm can only buy and sell up
to a maximum amount of assets in each period. This means although you can
submit any prediction for period 2 and all periods after period 2, if the price in
last period is p;—1, and you prediction is p§: the firm’s trading decision is con-
strained by p¢ € [pi—1 — 30, pi—1 + 30]. More precisely, the firm will trade as
if pf = p_1 +30if pf > p;_1 +30, and trade as if pf = p; 1 — 30 if pf < p;_; —30.

About your payoff

Your earnings depend only on the accuracy of your predictions. The earnings
shown on the computer screen will be in terms of points. If your prediction is pf
and the price turns out to be p; in period ¢, your earnings is determined by the

following equation:

Payof f = max [ 1300 — %80 (pS —p1)*, 0
The maximum possible points you can earn for each period (if you make no pre-
diction error) is 1300, and the larger your prediction error is, the fewer points you
can make. You will earn 0 points if your prediction error is larger than 7. There is
a Payoff Table on your table, which shows the points you can earn for different
prediction errors.

We will pay you in cash at the end of the experiment based on the points you

earned. You earn 1 euro for each 2600 points you make.

A.2 LtO treatment

General information

In this experiment you participate in a market. Your role in the market is a Trader
of a large firm, and the firm is a major trading company of an asset. In each period
the firm asks you to make a trading decision on the quantity D, your firm will
BUY to the market. (You can also decide to sell, in that case you just submit a
negative quantity.) You are going to play this role for 50 successive time periods.
The better the quality of your decision is, the better your firm can achieve her
target. The target of your firm is to maximize the expected asset value minus the
variance of the asset value, which is also the measure by the firm concerning your

performance:

1
(1) Ty = Wt — §VG7" (Wt)2

The total asset value W; equals the return of the per unit asset multiplied by the
number of unit you buy D;. The return of the asset is p; +y — Rp;_1, where
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R is the gross interest rate which equals 1.05, p; is the asset price at period ¢,
therefore p, — Rp;_1 is the capital gain of the asset, and y = 3.3 is the dividend
paid by the asset. We assume the variance of the price of a unit of the asset is
0% = 6, therefore the expected variance of the asset value is 6D?. Therefore we

can rewrite the performance measure in the following way
(2) m=(p+y— Rp1)Dy — 3D}

The asset price in the next period p;y; is not observable in the current period.
You can make a forecast py on it. There is an asset return calculator in the
experimental interface that gives the asset return for each price forecast pj you

make. Your own payoff is a function of the value of target function of the firm:
(3)  Payof f, = 800 + 40 * m;

This function means you get 800 points (experimental currency) as basic salary,
and 40 points for each 1 unit of performance (target function of the firm) you
make. If your trades will be unsuccessful, you may lose points and earn less than
your basic salary, down to (0. Based on the asset return, you can look up your
payoff for each quantity decision you make in the payoff table.

You can of course also calculate your payoff for each given forecast and quantity

using equation (2) and (3) directly. In that situation you can ask us for a calculator.

About the price determination

The price is determined by the following price adjustment rule: when there is more
demand than supply of the asset (namely, more traders want to buy), the price
will go up; and when there is more supply than demand of the asset (namely, more

people want to sell), the price will go down.

About your job

Your only task in this experiment is to decide the quantity the firm will buy/sell.
At the beginning of period 1 you determine the quantity to buy or sell (submitting
a positive number means you want to buy, and negative number means you want
to sell) for period 1. After all traders submit their quantity decisions, the market
price for period 1 will be determined and made public to all traders. Based on
the value of the target function of your firm in period 1, your earnings in the first
period will be calculated.

Subsequently, you make trading decisions for the second period, the market price
for that period will be made public and your earnings will be calculated, and so

on, for all 50 consecutive periods. The information you can refer to at period t
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consists of all previous prices, your quantity decisions and earnings.

Please notice that due to the liquidity constraint of the firm, the amount of asset
you buy or sell cannot be more than 5 units. Which means you quantity decision
should be between —5 and 5. The numbers on the payoff table are just examples.
You can use any other number such as 0.01, —1.3, 2.15 etc., as long as they are
within [—5,5]. if When you want to submit numbers with a decimal point, please
write a “.”, NOT a “”.

About your payoff

In each period you are paid according to equation (3). The earnings shown on the
computer screen will be in terms of points. We will pay you in cash at the end
of the experiment based on the points you earned. You earn 1 euro for each 2600

points you make.

A.3 Mixed treatment

General information

In this experiment you participate in a market. Your role in the market is a Trader
of a large firm, and the firm is a major trading company of an asset. In each period
the firm asks you to make a trading decision on the quantity D, your firm will
BUY to the market. (You can also decide to sell, in that case you just submit a
negative quantity.) You are going to play this role for 50 successive time periods.
The better the quality of your decision is, the better your firm can achieve her
target. The target of your firm is to maximize the expected asset value minus the
variance of the asset value, which is also the measure by the firm concerning your
performance:

1
(1) Ty = Wt — 5‘/@7" (Wt)2

The total asset value W; equals the return of the per unit asset multiplied by the
number of unit you buy D;. The return of the asset is p; + y — Rp;_1, where
R is the gross interest rate which equals 1.05, p; is the asset price at period ¢,
therefore p; — Rp;_1 is the capital gain of the asset, and y = 3.3 is the dividend
paid by the asset. We assume the variance of the price of a unit of the asset is
0% = 6, therefore the expected variance of the asset value is 6D?. Therefore we

can rewrite the performance measure in the following way
(2) m=(p+y—Rp1)D, — 3D}

The asset price in the next period p;.; is not observable in the current period.

You can make a forecast py on it. There is an asset return calculator in the
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experimental interface that gives the asset return for each price forecast pj you

make. Your own payoff is a function of the value of target function of the firm:
(3)  Payof fi = 800 + 40 * 7,

This function means you get 800 points (experimental currency) as basic salary,
and 40 points for each 1 unit of performance (target function of the firm) you
make. If your trades will be unsuccessful, you may lose points and earn less than
your basic salary, down to 0. Based on the asset return, you can look up your
payoff for each quantity decision you make in the payoff table.

You can of course also calculate your payoff for each given forecast and quantity
using equation (2) and (3) directly. In that situation you can ask us for a calcu-
lator.

The payoff for the forecasting task is simply a decreasing function of your fore-
casting error (the distance between your forecast and the realized price). When

your forecasting error is larger than 7, you earn 0 points.

1300

(4) Payof frorccasting = max | 1300 — === (pf - p)*,0

About the price determination

The price is determined by the following price adjustment rule: when there is more
demand than supply of the asset (namely, more traders want to buy), the price
will go up; and when there is more supply than demand of the asset (namely, more

people want to sell), the price will go down.

About your job

Your task in this experiment consists of two parts: (1) to make a price forecast;
(2) to decide the quantity the firm will buy/sell. At the beginning of period
1 you submit your price forecast between 0 and 100, and then determine
the quantity to buy or sell (submitting a positive number means you want to buy,
and negative number means you want to sell) for period 1, and the market price
for period 1 will be determined and made public to all traders. Based on your
forecasting error and performance measure for the trading task, in period 1, your
earnings in the first period will be calculated.

Subsequently, you make forecasting and trading decisions for the second period,
the market price for that period will be made public and your earnings will be
calculated, and so on, for all 50 consecutive periods. The information you can
refer to at period t consists of all previous prices, your past forecasts, quantity

decisions and earnings.
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Please notice that due to the liquidity constraint of the firm, the amount of asset
you buy or sell cannot be more than 5 units. Which means you quantity decision
should always be between —5 and 5. The numbers on the payoff table are just
examples. You can use any other numbers such as 0.01, —1.3, 2.15 etc. as long

as they are within [—5, 5].

About your payoff

In each period you are paid for the forecasting task according to equation (4)
and trading task according to equation (3). The earnings shown on the computer
screen will be in terms of points. We will pay you in cash at the end of the experi-
ment based on the points you earned for either the forecasting task or the trading
task. Which task will be paid will be determined randomly (we will invite one of
the participants to toss a coin). That is, depending on the coin toss, your
earnings will be calculated either based on equation (3) or equation (4).

You earn 1 euro for each 2600 points you make.

A.4 Computer screen

An illustration of the computer screens seen by the subjects is shown on Figure 5.
The screen was divided into 3 mini pages. In the top mini page, subjects were
prompted to submit their decisions, i.e., their price forecast or the amount they
want to trade. After submitting their decisions, they go to a waiting page until
all the subjects have made their decisions for this period, and then the price and
payoff of this period is calculated, the program goes to next period and the screen
is reloaded to show the updated information. In the bottom left mini page there
was a graph plotting past market prices (the “Real Price”) and, if they were a
forecaster, they also saw their own past price forecast history (“Your Prediction”).
Finally, in the bottom right mini page they saw a table reporting the history of
realized prices, as well as their own prior decisions and cumulative payoffs. If the
subject was a quantity decision maker, he/she was also helped by an imbedded
calculator. In each period, the subjects could type in their price forecast and press
“calculate”, and the calculator will tell them the asset return for this forecast in
this period.

Subjects in LtF/LtO treatment seen the screen for a forecaster/trader only. In
a Mixed treatment, the subjects first see the screen of the forecast, and then go

to the trading page.
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Your decision for period 5

What is your prediction for-the price in period 5?

Send

Your The realized || The points you earned | The points you have
Period prediction price in the period earned so far
100 4 26 27.64 1228.64 3793.06
50| 3 49 49.69 1287.37 2564.42
o |- 2 80 62.31 0 1277.05
1 35 34.07 1277.05 1277.05

(a) Screen for a forecaster.

Your decision for period 4

What is the quantity you want to produce in period 4?

price is 9

The return to one unit of asset is 4.24 if the

Use another forecast to calculate the return.

a0 | Your The The points you The points you
Period| quantity | realized earned in the P ¥y
30 - . . . have earned so far
decision price period

@ 3 6 8.45 975 2618

Iy z'\o 2 11 11.48 550 1643

o L L L L L L L L ! 1 5 5.21 1084 1084

o 5 10 13 20 feaal 30 33 40 43 50

(b) Screen for a quantity decision maker.

Figure 5: Computer screen for subjects in LtF treatment (upper panel) and LtO panel

(lower panel).

B Payoff tables

(not for publication)
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Your Payoff=max[1300 — %(Your Prediction Error)2, 0]

Payoft Table for Forecasting Task

3000 points equal 1 euro

error points error points error points error points
0 1300 1.85 1209 3.7 937 5.55 483
0.05 1300 1.9 1204 3.75 927 5.6 468
0.1 1300 1.95 1199 3.8 917 5.65 453
0.15 1299 2 1194 3.85 907 5.7 438
0.2 1299 2.05 1189 3.9 896 5.75 423
0.25 1298 2.1 1183 3.95 886 5.8 408
0.3 1298 2.15 1177 4 876 5.85 392
0.35 1297 2.2 1172 4.05 865 5.9 376
0.4 1296 2.25 1166 4.1 854 5.95 361
0.45 1295 2.3 1160 4.15 843 6 345
0.5 1293 2.35 1153 4.2 832 6.05 329
0.55 1292 2.4 1147 4.25 821 6.1 313
0.6 1290 2.45 1141 4.3 809 6.15 297
0.65 1289 2.5 1134 4.35 798 6.2 280
0.7 1287 2.55 1127 4.4 786 6.25 264
0.75 1285 2.6 1121 4.45 775 6.3 247
0.8 1283 2.65 1114 4.5 763 6.35 230
0.85 1281 2.7 1107 4.55 751 6.4 213
0.9 1279 2.75 1099 4.6 739 6.45 196
0.95 1276 2.8 1092 4.65 726 6.5 179
1 1273 2.85 1085 4.7 714 6.55 162
1.05 1271 2.9 1077 4.75 701 6.6 144
1.1 1268 2.95 1069 4.8 689 6.65 127
1.15 1265 3 1061 4.85 676 6.7 109
1.2 1262 3.05 1053 4.9 663 6.75 91
1.25 1259 3.1 1045 4.95 650 6.8 73
1.3 1255 3.15 1037 5 637 6.85 55
1.35 1252 3.2 1028 5.05 623 6.9 37
1.4 1248 3.25 1020 5.1 610 6.95 19
1.45 1244 3.3 1011 5.15 596 error > 0
1.5 1240 3.35 1002 5.2 583
1.55 1236 3.4 993 5.25 569
1.6 1232 3.45 984 5.3 555
1.65 1228 3.5 975 5.35 541
1.7 1223 3.55 966 5.4 526
1.75 1219 3.6 956 5.45 512
1.8 1214 3.65 947 5.5 497

Table 4: Payoff table for forecasters.
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C Estimation of individual forecasting rules

(not for publication)

Adaptive Rule

Subject Coefficient p —value R? MSE

sub23 0.4723 0.0000 0.9937 0.7060
sub24 0.9196 0.0000 0.9910 0.7981
sub25 1.1253 0.0000 0.9960 0.3592
sub43 1.0770 0.0000 0.9910 0.3224
sub44 0.7736 0.0000 0.9898 0.3650

Trend Following Rule

Subject Coefficient p — value R?2 MSE

subl4 0.3807 0.0000 0.9964 0.2207
sub34 0.3053 0.0000 0.9955 0.1815
sub35 0.3482 0.0000 0.9931 0.2672
sub42 0.6733 0.0000 0.9578 1.2695
sub45 0.2451 0.0000 0.9949 0.1601
sub46 0.3472 0.0000 0.9938 0.1985

Table 6: Estimation results for subjects in treatment 1 who could be successfully cat-

egorized by one of the two forecasting rules.
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Rule coefficients R? rule stability

Subject cons. AR(1l) past return

Group 1
1 —0.447 0.203 0.904 mixed S
2 0.175 0.819 return U
3 0.167 0.804 return U
4 0.111 0.856 return S
5 —0.125 0.168 0.833 return U
6 0.159 0.854 return S
Group 2
1 0.0451 random S
2 0.168 random S
3 0.00997 random S
4 0.106 random S
5 0478 —0.0473 0.24 mixed U
6 0.0473 random S
Group 3
1 —0.188 —0.291 0.221 0.836 mixed U
2 0.16 0.272 return S
3 —0.26 0.16 0.645 return S
4 0.0781 0.124 return S
5 0.283 0.105 0.676 mixed S
6 0.152 0.879 return S
Group 4
1 0.811 0.677 AR(1) N
2 0.174 0.549 return U
3 0.113 0.69 return S
4 0.14 0.824 return S
5 0.174 0.798 return U
6 0.119 0.346 return S

Table 7: Estimated individual rules for the LtO treatment. S, N and U denote respec-
tively stable, neutrally stable and unstable rule if all six subjects would use

this rule.
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Rule coefficients R? rule stability

Subject cons. AR(1l) past return

Group 5
1 0.0975 random S
2 0.0695 random S
3 0.579 0.333  AR(1) N
4 0.00356 random S
5 0.0238 random S
6 0.0487 0.183 return S

Group 6
1 0.0496 random S
2 0.135 0.588 return S
3 0.125 0.854 return S
4 0.566 0.663  AR(1) N
5 0.108 0.468 return S
6 0.148 0.595 return S

Table 7: (continued) Estimated individual rules for the LtO treatment.
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Sample restriction

None piy <60 pfy <30

Type of bias Parameters LogLikelihood

Heterogeneous return
Heterogeneous 138 —2843.06 —2787.24 —2737.28
(unrestricted) — — —
Common 93 —2926.99 —2872.52 —2825.44
(c;=c¢) (0.00000)  (0.00000) (0.00000)
No 92 —2927.43 —2873.08 —2825.99
(¢; =0) (0.00000)  (0.00000) (0.00000)
Common return
Heterogeneous 93 —3460.58 —3169.44 —3075.8
(¢i = 9) (0.00000)  (0.00000) (0.00000)
Common 48 —3496.66 —3262.95 —3177.11
(pi =, ci =c¢) (0.00000)  (0.00000) (0.00000)
No 47 —3497.7  —3265.54 —3179.06
(pi = ¢, ¢; =0) (0.00000)  (0.00000) (0.00000)
Perfect return
Heterogeneous 92 —3666.97 —3242.27 —3129.37
(¢i =1/6) (0.00000)  (0.00000) (0.00000)
Common 47 —3795.54 —3371.24 —3259.28
(s =1/6, c; =c¢) (0.00000)  (0.00000) (0.00000)
No 46 —3796.43 —3371.48 —3259.48
(ps =1/6, ¢; =0) (0.00000)  (0.00000) (0.00000)
No return
Heterogeneous 92 —3461 —3443.13 —3415.29
(¢i =0) (0.00000)  (0.00000)  (0.00000)
Common 47 —3496.99 —3479.39 —3451.83
(i =0, ¢c; =c) (0.00000)  (0.00000) (0.00000)
No 46 —3498.1  —3480.5 —3452.93
(i =0, ¢; =0) (0.00000)  (0.00000) (0.00000)
Observations 1840 1840 1840

Table 8: Mixed treatment: quantities chosen by individuals explained by their con-

temporary expected asset returns. Log-likelihhod measures for models with

various restrictions on the parameters and parameter heterogeneity. In paren-

thesis, likelihood ratio test p-values for the restrictions imposed in the esti-

mation on the unrestricted model (reported in first row). Estimation for 46

individuals, unrestricted sample and sample restricted for observations with

expected asset return above 60 and 30.
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D Decision time

(not for publication)

Rubinstein (2007) provides evidence that choices requiring greater cognitive ac-
tivity are associated with longer decision times. While there was no decision time
limit in our experiment, the computer program takes record of the time taken
for each decision (in the Mixed treatment, we take separate record for the fore-
casting and the trading tasks) in unit of seconds. Figure 6 plots the empirical
CDF of decision time for the forecasting task in the LtF and Mixed treatment,
as well as the trading task for the LtO and the Mixed treatment. Recall that
under the Mixed treatments, subjects first submitted forecast and only then the
trading decision. It can be seen that it takes longer time for a subject to make a
forecast in the Mixed treatment than in the LtF treatment, and shorter time for
a subject to make a trading decision only in the Mixed treatment than in the LtO
treatment. The difference in the time taken for a forecasting task suggests that
the subjects have higher cognitive load in the Mixed treatment than in the other
treatments. The difference in the time taken for a trading decision implies that
making a quantity decision for a given forecast is very fast, and the subjects in
the LtO treatment take longer time probably because they also make an implicit
price forecast. Nevertheless, the subjects in the Mixed treatment take more time
in total than in the LtO treatment, which could also mean that they pay more

attention to the price forecast itself.

Indeed, the average decision time is 22.92 seconds in the LtF treatment, 21.48
in the LtO treatment, 31.40 seconds for making a price forecast in the Mixed
treatment, and 9.54 seconds for making a trading decision in the Mixed treatment.
The difference between the time taken for the forecasting/trading tasks across
treatments is significant at 5% level according to Mann-Whitney-Wilcoxon test.
There is no significant difference between the time taken in the LtF and the LtO
treatment, and the total time taken for completing the forecasting and trading
task in the Mixed treatment is significantly longer than the decision time in the
LtF and LtO treatments.
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Decision Time for Forecasting Task Decision Time for Trading Task

[——uF  —me-- MixedF | | U0 ===—- WiredT |

(a) Forecasting decisions (b) Trade decisions

Figure 6: The empirical cumulative distribution functions of the time taken to com-
plete decision tasks. The unit of time is seconds, as measured on the hori-

zontal axis.

E Uniqueness of the equilibrium for price takers

(not for publication)

As explained in the Section 2, if the agents are price-takers, their optimal demand

is given by

Piti1 +y— Bp
(33) ziy =

2 )
ac:

whereas the price adjustment equation is

6
(34) Dit1 = Dr + A Z Zit + &t
i=1

Recall the following assumptions of the model: R\ = 1 and ac? = 6 and &; ~
NID(0,1) and r = R —1 = 5. Notice that the demand function is perfectly
symmetric between the agents in respect to all the variables with the exception of

the price prediction pf, ;.

Proposition 1. Price-taking economy defined by (33) and (34) has a unique Ra-

tional Expectations (RE) solution pfF = Y in terms of prices for period t + 1,

regardless of the price p;.

Proof. The equations (33) and (34), together with the assumptions about the
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parameters, give

6
6 pe R
(35) Div1 =Pt + )\—Zz_l Z; AL 6)\—3/ 2pt + &
ao? ao?
6 e
i=1D;
Zpt+>\—z : 2’t+1 + Ay —pr + &
ao?
6 e
= )\—Zi;;;z,tﬂ + Ay + &4

Notice that the equation (35) shows already the second part of the proposition.
Rational agents will optimize their demand to the form (33), which depends on
p:. However, the parametrization of the economy implies that this p; cancels out
in the price adjustment equation (34).

The symmetry of the agents and the definition of RE imply that for any two
agents i # j, their price predictions pf,,, and p§,., are equal and fulfill the

necessary condition

(36) Epi} = pi0, Vi€ {l,... 6}

Denote pf,,; = p§,,1 = pfy,. Substituting this into (35) gives

(37) Pey1 = APiy1 +Y) + &

RE condition (36) implies therefore that pj,, = A(pf,; +y). Because A # 0, this
equation has ezactly one solution such that pR¥ = p¢, | = 2,y = £, where the
last follows from (1 + )\ = 1. O

Proposition 2. Under the economy as in Proposition 1 and RE, in period t and
given p; the agents trade in such a way that the next price p,1 in expectation equals

to the fundamental price, regardless of p;. Moreover, if p, = p¥ then z;, = 0.

Proof. The first part of the proposition follows directly from Proposition 1. Notice
that one can also prove it indirectly. Assume that all the agents expect p;11 to be

equal to the fundamental price p™” = £, Then their demand z/}" is given by

Y4y—R ya+r) _ p ¥ _
(38) ZZf;T:r Y pt: T pter Pi

2 2 2’
ao? ac’ ao

Vie{l,...,6}.

Substituting in the price adjustment mechanism (34) and taking its expected value

yields
Yy
P &
(39) E{p1} = p + 6AR—~
ao’
=P+ g_ Dt
T
=p"*,
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where the equalities follow since ac? = 6 and R\ = 1. Equation (39) shows that
predicting the fundamental price pf*¥ is always self-consistent, regardless of the
initial price p; which only determines the necessary trading with which the agents
move to the fundamental equilibrium. Moreover, substituting p;, = p*¥ into the

optimal demand (38) yields

(40) z =R———

which is trivial since p¥ = ¥, O
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