
Learning to Optimize

George W. Evans
University of Oregon

Bruce McGough
Oregon State University

January 12th, 2012

Preliminary

Abstract

How does a boundedly rational agent make decisions? Can such an agent
learn to behave optimally? We address these questions in a standard regulator
environment. Our behavioral primitive is anchored to the shadow price of the
state vector. The regulator forecasts the value of an additional unit of the state
tomorrow, and uses this forecast to choose her control today. The value of the
control, together with the agent’s forecast of the tomorrow’s shadow price, are
then used to compute a proxy for the unobserved shadow price of today’s state
vector. This proxy provides a new data point which the agent uses to update
her forecasting model. We find conditions sufficient to guarantee that, over
time, the regulator learns to optimize. We also embed this type of boundedly
rational optimizing behavior in a simple DSGE model and compare the results
with those obtained from embedding other learning mechanisms.

JEL Classifications: E52; E31; D83; D84

Key Words: Learning, Optimization, Bellman Systems

1 Introduction

A central paradigm of modern macroeconomics is the need for micro-foundations.
Macroeconomists construct their models by aggregating the behavior of individual
agents who are assumed “rational” in two important ways: they form forecasts opti-
mally; and, given these forecasts, they make choices by maximizing their objective.
Together with simple market structures and, sometimes institutional frictions, it is
this notion of rationality that identifies a micro-founded model.

While assuming rationality is at the heart of much economic theory, the implicit
sophistication required of agents, both as forecasters and as decision theorists, is sub-
stantial: they must be able to form expectations conditional on the true distributions
of the endogenous variables in the economy; and they must be able to make choices
– i.e. solve infinite horizon programming problems – given these expectations. The
criticism that the ability to make optimal forecasts requires an unrealistic level of
sophistication has been leveled repeatedly; and, in response to this criticism, the lit-
erature on “bounded rationality” has developed. Boundedly rational agents are not
assumed to know the true distributions of the endogenous variables; instead, they
have forecasting models that they use to form expectations. These agents update
their forecasting models as new data become available, and through this updating
process, the dynamics of the associated economy can be explored. In particular, the
asymptotic behavior of the economy can be analyzed, and if the economy converges
in some natural sense to a rational expectations equilibrium, then we may conclude
that agents in the economy are able to learn to forecast optimally. In this way, the
learning literature has provided a response to the criticism that rational expecta-
tions is unrealistic. The original work on learning in macroeconomics was done by
Bray (1982), Bray and Savin (1986); for a comprehensive treatment, see Evans and
Honkapohja (2001).

While the learning literature focuses primarily on whether by using estimated
models, agents can learn to be forecast optimally, the literature has largely neglected
the link between forecasts and agent-level decision making. Instead, the standard
procedure as applied to a DSGE model is as follows: assume rationality on the part
of agents when obtaining conditions capturing optimizing behavior; aggregate and im-
pose market conditions; simplify the associated sequence of equilibrium restrictions;
and linearize the restrictions to obtain a reduced form system of linear expectational
difference equations. Only then is bounded rationality imposed by assuming the ex-
pectations operator in the system of expectational difference equations is no longer the
rational expectations operator, but instead it is an operator capturing the boundedly
rational forecasting behavior of the agents. Notice the disconnect between the deriva-
tion of the reduced form system and the imposition of bounded rationality: agents are
assumed to behave as if they were optimal forecasters and optimal decision makers
when deriving the reduced form system, and only then are they assumed boundedly
rational. We call this type of learning implementation “reduced form learning.”

We address this disconnect by simply reversing the order of analysis: we assume
agents are boundedly rational before aggregation and market clearing are imposed,
that is, before the reduced form equations are obtained. This order reversal exposes
an additional subtlety involved when incorporating bounded rationality at the micro-
level: boundedly rational agents are assumed to have limited sophistication as fore-
casters, but are assumed to be highly sophisticated as decision makers; in particular,
they are assumed to understand how, given their beliefs, to solve stochastic dynamic

2

programming problems. We find this discontinuity in sophistication unsatisfactory,
particularly because it is internal to the agents.

To address this discontinuity we define the notion of bounded optimality. We imag-
ine our agents facing a sequence of decision problems in an uncertain environment:
not only is there uncertainty in that the environment is inherently stochastic, but
also, our agents do not fully understand the conditional distributions of the variables
requiring forecasts. One option when modeling agent decisions in this type of en-
vironment is to assume agents are Bayesian; and, given their priors, that they are
able to fully solve their dynamic programming problems; however, we feel this level
of sophistication is extreme, and instead, we prefer to model our agents as relying on
decidedly simpler behavior. Informally, we assume that each day our agents act as if
they face a two period optimization problem: they think of the first period as “today”
and the second period as “the future,” and use one period forecasts of shadow prices
to measure the trade-off between choices today and the impact of these choices on
the future. We call our implementation of bounded optimality shadow price learning
(SP-learning).

Our notion of bounded optimality is inexorably linked to bounded rationality:
agents in our economy as not assumed to fully understand the conditional distribu-
tions of the economy’s variables, or, in the context of an individual’s optimization
problem, the conditional distributions of the state variables. Instead, consistent with
the learning literature, we provide our agents with forecasting models, which they
re-estimate as new data become available. Our agents use these estimated models to
make one period forecasts, and then use these one period forecasts to make control
decisions.

We find our learning mechanism appealing for a number of reasons: it requires
only simple econometric modeling and thus is consistent with the learning literature;
it assumes agents make only one period ahead forecasts instead of establishing priors
over the distributions of all future endogenous variables; and it imposes only that
agents make decisions based on these one period ahead forecasts, rather than requiring
agents to solve a dynamic programming problem with parameter uncertainty. Finally,
notice SP-learning postulates that, fundamentally, agents make decisions by facing
prices – a hallmark of economics.

We begin our analysis of bounded optimality, in association with bounded rational-
ity, by first addressing whether the behavior makes sense from an agent’s perspective.
To this end, we back off the DSGE environment, and instead consider a standard
quadratic regulator’s problem. After recalling the derivation of the optimal policy
rule, we carefully specify the behavioral primitives of our boundedly optimal regula-
tor. We then show, under quite general conditions, that the policy rule employed by
our boundedly optimal regulator converges to the optimal policy rule: following our
simple behavioral primitives, our regulator learns to optimize.

3

We are not the first to carefully consider the link between agents’ forecasts and
their associated decisions; as mentioned above, Bayesians take precisely this approach,
though with a high level of imposed sophistication. Further, researchers in the learn-
ing literature have noted the limitations of imposing bounded rationality directly on
the reduced form system of a DSGE model. Evans and Honkapohja (2006) introduce
Euler equation learning to address this concern: these authors take the Euler equa-
tion of a representative agent as the behavioral primitive and assume agents make
decisions based on the boundedly rational forecasts required by the Euler equation.1

They find, in a variety of models, that Euler equation learning imparts the same
implied dynamics as reduced form learning, and, in this way, Euler equation learning
can be used to justify reduced form learning.

There is a close connection between Euler equation learning and SP-learning, and
we explore this connection in detail in Section 3. We define an nth-order Euler equa-
tion system as a sequence of first order conditions establishing relationships between
current variables and their forecasts n-periods in the future. We then obtain two sim-
ple sets of well-known conditions establishing the existence of first order Euler equa-
tion systems. Turning to bounded optimality, we show that if either set of conditions
is satisfied, then Euler equation learning and SP-learning are generically equivalent;
however, when higher order Euler equations are required to capture the program-
ming problem’s first order conditions, SP-learning and Euler equation learning may
well differ. The intuition for their difference is quite simple: Euler equation learning
requires fewer perceived parameters in the agent’s forecasting rule, and therefore,
demands that the agent has more structural knowledge: in order to behave like an
Euler equation learner, the an SP-learner must understand the relationships between
the states’ shadow prices, and further, he must use these relationships to impose
restrictions on his perceived parameters.

Having found that bounded optimality is reasonable from an agent’s perspective,
in that he can expect to eventually behave optimally, we embed shadow price learning
into a simple DSGE model consistent with our quadratic regulator environment. We
consider a Robinson Crusoe economy, with quadratic preferences and linear technol-
ogy: see Hansen and Sargent (2005) for many examples of these types of economies,
including the model we use. Our only innovation is to include a double lag in pro-
duction, thus providing the simplest possible example of a multivariate model for
which no first order Euler equation system exist. We use the Crusoe economy to
walk carefully through the boundedly optimal behavior displayed by our agent, thus
providing examples of, and intuition for the behavioral assumptions made in Section
2.1. Also, exploiting the double-lagged production function, we compute convergence
rates under SP-learning and Euler equation learning, and find, as predicted, that they
are equivalent only in case the second lag coefficient vanishes.

1See also Evans, Honkapohja, and Mitra (2003).

4

The Crusoe economy that we investigate is special not only because we impose a
linear-quadratic environment, but also because there is only one agent. The appli-
cation of SP-learning to a generic linearized DSGE model raises a number of inter-
esting and subtle issues including working with linearized behavioral conditions and
carefully distinguishing between individual and aggregate variables. In a companion
paper, Evans and McGough (2009), we modify shadow price learning to apply to
linearized DSGE models, and, within the context of an RBC model with habit persis-
tence, we carefully address these and other issues. Further, in that paper, we explore
in detail the relationships between SP-learning, Euler equation learning (and it vari-
ates) and infinite horizon learning, which is another agent-level learning mechanism,
emphasized by Preston (2005).

This paper is organized as follows: in Section 2 we investigate the regulator’s
problem. We specify the behavioral primitives of bounded optimality and provide
conditions under which a boundedly optimal regulator will learn to optimize. Section
3 provides a general comparison of SP-learning and Euler equation learning. Sec-
tion 4 introduces shadow price learning into a simple DSGE model; we characterize
individual agents’ decisions as based on their boundedly rational forecasts, and an-
alyzed associated learning dynamics. Section 5 concludes, and all proofs are in the
Appendix, Section 6.

2 Learning to optimize

We begin be specifying the programming problem of interest. We focus on the behav-
ior of a quadratic regulator facing a linear constraint to exploit certainty equivalence
and to allow for parametric analysis.2 It is of considerable interest to analyze a
general regulator’s problem, and we are currently investigating extending our results
to more general settings using non-parametric methods. The specification of our
quadratic problem is taken from Hansen and Sargent (2005); for additional reading,
we recommend Stokey and Lucas Jr. (1989), and Bertsekas (1987).

2.1 The quadratic regulator

The “sequence problem” is to determine a sequence of controls ut that solve

max −E0

∑
βt (x′tRxt + u′tQut + 2x′tWut) (1)

s.t. xt+1 = Axt +But + Cεt+1,

with x0 taken as given. Here εt is a zero mean i.i.d. process. Under well-known
conditions, which will be discussed in detail below, this problem has a unique solution,

2Also, many applied DSGE models are ultimately linearized.

5

and the sequence of controls are determined by ut = −Fxt for an appropriate matrix
F . This matrix may be obtained by analyzing the associated Bellman functional
equation:

V (x) = max
u
− (x′Rx+ u′Qu+ 2x′Wu+ βEV (Ax+Bu+ Cε)) .

By guessing that V has a quadratic functional form, it is not difficult to show that

V (x) = −x′Px− β

1− β
trPCC ′σ2

F = − (Q+ βB′PB)
−1

(βB′PA+W ′), (2)

where, again, under appropriate assumptions, P is the unique symmetric positive
semi-definite matrix satisfying the Riccati equation

P = R + βA′PA− (βA′PB +W) (Q+ βB′PB)
−1

(βB′PA+W ′). (3)

Solving the Riccati equation is not possible analytically; however, a variety of numer-
ical methods are available.

Conditions sufficient to guarantee the problem (1) has a unique solution and
that the Riccati equation has a unique positive semi-definite solution are most eas-
ily stated by transforming the problem to eliminate the state-control interaction in
the objective: see Sargent and Hansen (2005), Chapter 8 for many details. Set

Â = β
1
2 (A−BQ−1W ′), B̂ = β

1
2B, and DD′ = R̂ where R̂ = R−WQ−1W ′. Letting

x̂t = β
t
2xt, the problem becomes

max −E0

∑(
x̂′tR̂x̂t + u′tQut

)
(4)

s.t. x̂t+1 = Âx̂t + B̂ut + β
t+1
2 Cεt+1,

To place restrictions on the matrices identifying the problem (4), a few definitions
are needed.

• A matrix is stable if its eigenvalues have modulus less than one.

• The matrix pair (Â, B̂) is stabilizable if there exists a matrix K so that Â+ B̂K
is stable.

• A matrix pair (Â,D) is detectable if the eigenspaces of Â that are not detectable
by D′ have associated eigenvalue with modulus smaller than one. Thus if y is
a eigenvector of Â associated to the eigenvalue λ, and if D′y = 0 so that D′

doesn’t detect this eigenvalue, then |λ| < 1.

• A matrix pair (Â,D) is observable if all the eigenspaces of Â are observable by
D′. Thus if D′y = 0 and Ây = λy then y = 0.

6

With these definitions at hand, we assume

LQ.1: The matrix R̂ is symmetric positive semi-definite and the matrix Q is symmetric
positive definite.

LQ.2: The system (Â, B̂) is stabilizable.

LQ.3: The system (Â, R̂) is observable.

This list represents a standard set of assumptions sufficient to guarantee a well-
behaved problem. LQ.1 imparts the appropriate concavity assumptions on the ob-
jective and LQ.2 says that it is possible to find a set of controls driving the state
to zero in the deterministic problem. The need for LQ.3 is slightly more subtle: if
(Â, R̂) is observable then (Â,D) is detectable and the control path must be chosen
to counter dynamics in the explosive eigenspaces of Â. To illustrate, suppose z is
an eigenvector of A with associated eigenvalue λ, suppose that |λ| > 1, and finally
assume that x0 = z. If the control path is not chosen to mitigate the explosive dy-
namics in the eigenspace associated to λ then the state vector will diverge in norm.
Furthermore, because (Â,D) is detectable, we know that D′z 6= 0. Taken together,
these observations imply that an explosive state is suboptimal:

−x′tR̂xt = −λ2tz′DD′z = −
(
|λ|t|D′z|

)2 → −∞.
Sargent and Hansen (2005) put it more concisely (and eloquently): If (Â, B̂) is sta-
bilizable then it is feasible to stabilize the state vector; if (Â,D) is detectable then it
is desirable to stabilize the state vector. While detectability sufficient to guarantee
the that Riccati equation (3) has a unique positive semi-definite solution, the link
between this solution and the control problem requires the slightly stronger condition
of observability.

Theorem 1 Under assumptions LQ.1 – LQ.3, the Riccati equation (3) has a unique
positive semi-definite solution, P ∗, and iteration of the Riccati equation yields con-
vergence to P ∗ if initialized at any positive semi-definite matrix P0. Also, there is a
unique sequence of controls solving (1), and they are given by ut = Fxt, where F is
determined by (2).

This result is well-known and follows from Section 8.3 and the Stability Theorem on
page 162 of Sargent and Hansen (2005), and from Theorem 16.6.4, on page 368 of
Lancaster and Rodman (1995).

7

2.2 Bounded optimality

For an agent to solve the programming problem (1) as described above, he must
understand the quadratic nature of his value function as captured by the matrix P ∗,
he must know the relationship of this matrix to the Riccati equation, he must be
aware that iteration on the Riccati equation provides convergence to P ∗, and finally,
he must know how to deduce the optimal control path given P ∗. Furthermore, this
behavior is predicated upon the assumption that he knows the conditional means of
the state variables, that is, he knows A and B.

We modify the primitives identifying agent behavior, first by imposing bounded
rationality and then by assuming bounded optimality. Our agent is not assumed to
know the state variables’ conditional means: he must estimate A and B. Our agent is
also not assumed to know how to solve his programming problem: he does not know
Theorem 1. Instead, he uses a simple forecasting model to estimate the value of a
unit of state tomorrow, and then he uses this forecast, together with his estimate of
the transition equation, to determine his control today. Then, he based on his control
choice and his forecast of the value of a unit of state tomorrow, he re-estimates the
value of a unit of state today. This provides him new data to update his state-value
forecasting model.

To facilitate intuition for our learning mechanism, we reconsider the above problem
using a Lagrange multiplier formulation. The Lagrangian is given by

L = E0

∑
βt (−x′tRxt − u′tQut − 2x′tWut + λ′t(Axt−1 +But−1 + Cεt − xt))

As usual, λt may be interpreted as the shadow price of the state vector xt along the
optimal path. The first order conditions provide

Lxt = 0⇒ λ′t = −2x′tR− 2u′tW
′ + βEtλ

′
t+1A

Lut = 0⇒ 0 = −2u′tQ− 2x′tW + βEtλ
′
t+1B.

Transposing and combining with the transition equation yields the following dynamic
system:

λt = −2Rxt − 2Wut + βA′Etλt+1 (5)

0 = −2W ′xt − 2Qut + βB′Etλt+1 (6)

xt+1 = Axt +But + Cεt. (7)

This system, together with transversality, identifies the unique solution to (1). It also
provides intuitive behavioral restrictions on which we base our notion of bounded
optimality.

We now marry the assumption from the learning literature that agents make
boundedly rational forecasts with a list of behavioral assumptions characterizing the

8

decisions agents make given these forecasts; and, we do so in a manner that we feel im-
parts a level of sophistication consistent with bounded rationality. Much of the learn-
ing literature centers on equilibrium dynamics implied by one-step-ahead boundedly
rational forecasts;3 we adopt and expand on this notion by developing assumptions
consistent with the following intuition: agents make one-step-ahead forecasts and
agents know how to solve a two period optimization problem based on their forecasts.
Formalizing this intuition, we make the following assumptions:

1. Agents know their individual instantaneous return function, that is, they know
Q,R, and W ;

2. Agents know the form of the transition law and estimate the coefficient matrices:
let At and Bt be the associated estimates;

3. Conditional on their their perceived value of an additional unit of x tomorrow,
agents know how to choose their control today;

4. Conditional on their perceived value of an additional unit of x tomorrow, agents
know how to compute the value of an additional unit of x today.

Assumption one seems quite natural: if agents are to make informed decisions about
a certain vector of quantities u, they should at least be able to understand the direct
impact of these decisions. Assumption two is standard in the learning literature:
agents are not certain about the evolution of the state vector. Assumptions three and
four require some explanation.

Let λ∗t be the unobserved shadow price of x along the realized path of x and u. Do
not think of λ∗ as directly related to λ; indeed λ is the vector of shadow prices of x
along the optimal path of x and u and agents are not (necessarily) interested in this
value. Let Êtλ

∗
t+1 be the agent’s time t forecast of the time t+1 value of an additional

increment of the state x. Assumption three says that given Êtλ
∗
t+1, agents know how

to choose ut, that is, they know how to solve the associated two period problem. And
how is this choice made? The agents simply contemplates an incremental decrease
dui in ui and equates marginal loss with marginal benefit. If r is the rate function
then the marginal loss is rui

dui. To compute the marginal gain, he must estimate
the effect of dui on the whole state vector tomorrow. This effect is determined by
Bitdui, where Bit is the time t estimate of the ith-column of B. To weigh this effect
against the loss obtained in time t, he must then compute its inner product with the
expected price vector, and discount. Thus

rui
dui = βÊt

(
λ∗t+1

)′
Bitdui.

3There are notable exceptions, including infinite horizon learning: see Preston (2005)

9

Stacking, and imposing our linear quadratic set-up gives the bounded rationality
equivalent to (6):

0 = −2W ′xt − 2Qut + βB′tÊtλ
∗
t+1. (8)

Equation (8) operationalizes assumption 3.

To update their shadow price forecasting model, agents need an estimate of the
unobserved value λ∗t . Let Êtλ

∗
t be agents’ time t estimate of λ∗t . Assumption four

says that given Êtλ
∗
t+1, agents know how to compute Êtλ

∗
t . And how is this estimate

computed? Agents simply contemplate an incremental increase in x and evaluate the
benefit. Again, if r is the rate function then the benefit of dxi is given by

Êtλ
∗
tdxi =

(
rxi

+ βÊt
(
λ∗t+1

)′
Ait

)
dxi.

Stacking, and imposing our linear quadratic set-up yields the bounded rationality
equivalent to (5):

Êtλ
∗
t = −2Rxt − 2Wut + βA′tÊtλ

∗
t+1. (9)

Equation (9) operationalizes assumption 4.

Assumption 3, as captured by (8), lies at the heart of bounded optimality: it pro-
vides that agents make one-step-ahead forecasts of shadow prices and make decisions
today based on those forecasted prices, just as they would if solving a two period
problem. Assumption 4, as captured by (9), provides the mechanism by which agents
assess their forecast of prices: agents use the forecast of prices at time t + 1 and
their control decision at time t to re-estimate the value of time t state; in this way,
our boundedly optimal agents keep track of their forecasting performance. Below, we
allow agents to exploit this re-estimation by updating their shadow price forecast-
ing model. We call boundedly optimal behavior, as captured by assumptions 1 – 4,
shadow price learning.

To close the model we must specify the shadow price forecasting model, that
is, the way agents form Êtλ

∗
t+1. Along the optimal path it is not difficult to show

that λt = −2P ∗xt, and so it is quite natural to impose a forecasting model of this
functional form. Therefore, we assume that, at time t, agents believe

λ∗t = Htxt + µt (10)

for some n× n matrix Ht and error term µt.

Given the perceived value of Ht, we may use (8) to determine the value chosen by
agents for their control:

ut = (2Q− βB′tHtBt)
−1(βB′tHtAt − 2W ′)xt

≡ F (Ht, At, Bt)xt, (11)

where we recall that Q is positive definite and so invertible; the invertibility of 2Q−
βB′tHtBt for appropriately chosen Ht follows from the fact that the fixed point P ∗ of

10

the Riccati equation is positive semi-definite, so that Q+ βB′tP
∗Bt is invertible, and

Ht will remain near −2P ∗.

Given the value of Ht and the value of the control chosen by agents, we may
use (9) and (10) to compute agents’ perceived shadow price of the state, that is, to
compute Êλ∗t . We find

Êtλ
∗
t = (−2R− 2WF (Ht, At, Bt) + βA′tHt (At +BtF (Ht, At, Bt)))xt

≡ T̂ (Ht, At, Bt)xt. (12)

Given the estimates At and Bt, and given the forecasting model (10), equation
(11) indicates how agents make their time t decision and equation (12) indicates how
agents assess their previous forecasts. Notice that given his control choice ut, the
agent may numerically compute Êtλ

∗
t+1, and then use

Êtλ
∗
t = −2Rxt − 2Wut + βA′tÊtλ

∗
t+1

to numerically compute Êtλ
∗
t . In particular, it is not necessary to assume, nor do we

assume that our agent knows the T̂ -map. We discuss the subtleties of this assumption
in the context of a simple DSGE model in Section 4.

We now provide recursive algorithms that allow agents to update their estimates
of the transition function and to use their assessments to update their shadow price
forecasting model. To capture recursive updating, we model our agents as least
squares learners. Using the data available, agents run OLS regressions and make
forecasts and choices based on the estimated models. To estimate the transition
equation, and thus obtain the estimates At and Bt, agents regress xt−1 on xt−2, ut−2,
using data {xt−1, ut−1, . . . , x0, u0}.4 To estimate the shadow price forecasting model
at time t, and thus obtain the estimate Ht, we assume agents use Êt−1λ

∗
t−1 as a proxy

for λ∗t−1: agents regress Êt−1λ
∗
t−1 on xt−1 using data {xt−1, . . . , x0, Êtλ

∗
t−1, . . . , Ê0λ

∗
0}.

We may describe the evolution of the estimate of At, Bt and Ht over time using
RLS. The following dynamic system, written in recursive causal ordering, captures

4As is standard in the learning literature, when analyzing real time learning, agents are not
assumed to use current data to form current estimates as this avoids technical difficulties with the
recursive formulation of the estimators. There are alternatives: see Marcet and Sargent (1989) for
details.

11

the evolution of agent behavior under bounded optimality.

Rt = Rt−1 +
1

t

(
xt−1x

′
t−1 −Rt−1

)
Ht = Ht−1 +

1

t
R−1
t xt−1

(
E∗t−1λ

∗
t−1 −Ht−1xt−1

)′
R̂t = R̂t−1 +

1

t

((
xt−2

ut−2

)(
x′t−2, u′t−2

)
− R̂t−1

)
(13)(

Ât
B̂t

)
=

(
Ât−1

B̂t−1

)
+

1

t
R̂−1
t

(
xt−2

ut−2

)(
xt−1 −

(
Â′t−1, B̂′t−1

)(xt−2

ut−2

))′
xt = Axt−1 +But−1 + Cεt

ut = F (Ht, Â
′
t, B̂

′
t)xt

E∗t λ
∗
t = T̂ (Ht, Â

′
t, B̂

′
t)xt

Proposition 2 If LQ.1 – LQ.3 are satisfied then there exists a neighborhood of
(−2P ∗, A,B) so that if the initial conditions are chosen within this neighborhood and
if learning algorithm (13) is augmented with a projection facility then (Ht, At, Bt)
converges to (−2P ∗, A,B) almost surely.

See the Appendix for the proof, including a more careful statement of the proposi-
tion, a construction of the relevant neighborhood, and a discussion of the “projection
facility,” which essentially prevents the estimates from wandering too far away from
the fixed point. A detailed discussion of real time learning in general and projection
facilities in particular is provided by Evans and Honkopohja (2001). We conclude
that under quite general conditions, our simple notion of boundedly optimal behavior
is asymptotically optimal, that is, shadow price learners learn to optimize.

The heart of the proof of Proposition (2) lies in understanding DT̂H ; in fact, the
proof hinges on showing that the ordinary differential equation

dH

dτ
= T̂ (H,A,B)−H

is Lyapunov stable. In this way, asymptotic optimality is governed by an E-stability
differential equation entirely analogous to the standard results in the theory of least
squares learning. An interesting twist here, though, is that T̂ is not a T-map in the
usual sense (which is why we do not denote it T): it does not map the perceived law
of motion to the actual law of motion because the λ∗t is unobserved.

3 Euler equation learning

As mentioned in the introduction, we are not the first to consider issues surrounding
agent-level learning: Euler equation learning and infinite horizon learning have been

12

explored within the context of particular DSGE models. In this section, we compare
our shadow price learning mechanism to Euler equation learning using the quadratic
regulator as our laboratory; because infinite horizon learning, at least as developed
thus far, applies specifically to consumption problems, we conduct its examination in
our companion paper.5

3.1 What is an Euler equation?

To detail Euler equation learning, we must first specify what we mean by an Euler
equation. While there are many references to, and constructions of Euler equations
in the literature, we are unable to find a source that offers a precise definition. Some
reflection reveals why: whereas construction of an Euler equation within a particular
model usually requires only simple variational arguments, defining Euler equations in
the context of general models that include complex interactions between variations
in controls today and states n periods in the future, is quite complicated. In our
companion paper, Evans and McGough (2009), we offer a general definition and
explore issues of existence. Because these details would distract from our current
goal of providing a simple comparison of Euler equation learning and SP-learning, we
avoid the general, precise definition here and instead focus on examples germane to
special cases of the regulator’s problem.

The problem of interest is given by

V (xt) = max Et
∑
s≥0

βsr(xt+s, zt+s, ut+s) (14)

s.t. ut+s ∈ Γ(xt+s)

xt+s+1 = g(xt+s, zt+s, ut+s, εt+s+1) (15)

zt+s+1 = h(zt+s, ηt+s+1). (16)

Here ut+s ∈ Rm is the control, Γ(xt+s) is the set of feasible controls, xt+s ∈ Rn is
the vector of endogenous state variables, that is, states that depend in part on the
control, and zt+s ∈ Rk is the vector of exogenous state variables.

As is standard in the literature, we think of an “Euler equation” as a system
of first order conditions that must be satisfied along the optimal path.6 Typically

5Infinite horizon learning asserts that the agent’s behavioral primitive includes the lifetime budget
constraint, which specifies that at any time t the present value of consumption equal (not be more
than) current savings plus the present value of income flow. While this notion of a lifetime budget
constraint applies most naturally to problems of agent consumption (say, government or consumer),
nothing in principle prevents it from being applied in more general settings, provided the transition
equation is linear. We explore this possibility in the companion paper.

6With particular assumptions on the return and transition functions, together with transversality,
these conditions may also be sufficient to guarantee optimality.

13

Euler equations may be constructed using a simple variational technique: assume
the optimal control path has been identified and consider a small change dut in the
control at time t; then, determine a finite sequence of small changes in future controls,
dut+k for k = 1, . . . , n, together with the associated changes in the endogenous states,
dxt+k for k = 1, . . . , n, so that dxt+n+1 = 0. Since the path is assumed optimal, the
small variation {dut+k, dxt+k}nk=0 must not change the regulator’s expected return:
dV (xt) = 0.7 The Euler equation system is obtained by eliminating the differentials
from the equation implied by dV (xt) = 0. Notice that while the derivatives encoding
the Euler equation system will condition on the exogenous state vector zt, and while
the transition equation (16) will be used to form expectations, zt plays no explicit
role in the construction of the Euler equation.

As a simple example, consider an endowment problem with habit persistence:

max Et
∑
t≥0

βtu(ct − γct−1)

s.t. st = Rtst−1 − ct
Rt+1 = h(Rt, ηt+1)

Here s0 is the initial stock of a good that grows stochastically at rate Rt, and ex-
ogenous income is zero for all times t. For simplicity, set γ = 0 for now, but we
will return to the non-zero case directly. The endogenous state variable is xt = st−1

and the control is ut = ct.
8 To compute the Euler equation system, contemplate a

variation dct 6= 0. Our goal is to choose dct+1 so that dxt+2 = 0. Now, dxt+2 = dst+1,
and st+1 = Rt+1st − ct+1; thus, we may choose dct+1 = Rt+1dst, which yields

dxt+2 = dst+1 = Rt+1dst − dct+1 = 0.

Finally, we may compute the effect of this proposed variational path on the time t
value of utility; a necessary conditional for optimality is that this effect be zero. We
have

dV (xt) = 0 =⇒ u′(ct)dct + Etu
′(ct+1)dct+1 = 0

=⇒ u′(ct)dct + Etu
′(ct+1)Rt+1dst = 0

=⇒ u′(ct)dct − Etu′(ct+1)Rt+1dct = 0 (17)

where the last line uses dst = −dct. Notice that (17) simplifies to the usual Euler
equation.

In the previous example, it was possible to choose dut+1 so that dxt+2 = 0, and
this resulted in an Euler equation with only one lead: to satisfy the Euler equation,

7Because ut does not affect xt, dxt is taken to be zero.
8Alternatively, we could choose st to be the control, and substitute out consumption. In this

case, the variation contemplated is different, but the Euler equation is the same.

14

agents are required only to forecast one period ahead. Because some models require
multiple leads, we offer the following terminology: an Euler equation has order N if
it predicates dependence on time t expectations of time t+N variables. To illustrate,
consider again the above example, but now assume γ > 0. As before, the control is
ut = ct, but now the endogenous state vector must be expanded: xt = (st−1, ct−1)

′.
Again, contemplate a small change in control, dct 6= 0, For a first order Euler equation
to exist, we must choose dct+1 so that dxt+2 = 0. Now, dxt+2 = 0 implies that
dst+1 = 0 and dct+1 = 0. But then

dst+1 = Rt+1dst − dct+1 = −Rt+1dct = 0,

which contradicts our assumption that dct 6= 0.

On the other hand, a second order Euler equation does exist. Now we require that
dxt+3 = 0, which means dst+2 = dct+2 = 0. Since dst+2 = Rt+2dst+1 − dct+2, we need
dst+1 = 0. Thus choose dct+1 = Rt+1dst, as above. We have dV (xt) = 0⇒

u′(t)dct − βγEtu′(t+ 1)dct = −βEtu′(t+ 1)Rt+1dst + β2γEtu
′(t+ 2)Rt+1dst = 0

where u′(t) = u′(ct − γct−1). Again, using the transition equation to determine that
dst = −dct, we obtain the usual Euler equation.

To provide sufficient conditions guaranteeing the existence of first order Euler
equations, we require a little more notation. Let r∗(s) is the partial of r with respect
to ∗ evaluated at (xs, zs, us), and g∗(s) is the partial of g with respect to ∗ evaluated
at (xs, zs, us, εs+1). Consider a small change in the controls ut and ut+1. A first order
Euler equation exists provided that given dut, we can choose dut+1 so that dxt+2 = 0,
where

dxt+2 = gx(t+ 1)gu(t)dut + gu(t+ 1)dut+1. (18)

This leads to the following two simple cases.

Case 1: dimu ≥ dimx, det gu(t) 6= 0

By trivially expanding the state vector, we may assume that dimu = dimx. Since
gu(t+ 1) is invertible, we may choose

dut+1 = −gu(t+ 1)−1gx(t+ 1)gu(t)dut.

The resulting Euler equation has the form

ru(t) + βEt
(
rx(t+ 1)− ru(t+ 1)gu(t+ 1)−1gx(t+ 1)

)
gu(t) = 0. (19)

15

Case 2: gx = 0

Since gx = 0, it follows that dxt+2 = gu(t+ 1)dut+1. Thus we may choose dut+1 = 0.
We obtain the usual Euler equation

ru(t) + βEt (rx(t+ 1)gu(t)) = 0.

See, for example, Ljunqvist and Sargent (2006).

3.2 Euler equation learning

We now consider Euler equation learning in the context of the quadratic regulator.
Consider a quadratic regulator who faces a linear constraint satisfying Case 2 above
and without exogenous states, and assume that dim(x) = dim(u). The regulator’s
problem is

max −Et
∑
t≥0

βt (x′tRxt + u′tQut + 2x′tWut) (20)

s.t. xt+1 = But + εt+1, (21)

and the associated Euler equation is given by

Qut +W ′xt = −β(B′REtxt+1 +B′WEtut+1). (22)

To implement Euler equation learning, we back off the assumption that our regulator
knows how to solve the system given by the transition equation and (22); instead, we
follow Evans, Honkapohja, and Mitra (2003) and take (22) as the behavioral primitive:
agents form boundedly rational forecasts of xt+1 and ut+1, and make their time t
control decision to meet their perceived Euler equation. For simplicity, we assume
the agent knows the transition matrix B, though he could just as well estimate it.

The agent is required to forecast his own future control decision, and we provide
him a forecasting model that is functionally consistent with optimal behavior: PLM
ut = Fxt. The agent computes

Etxt+1 = But, and Etut+1 = FEtxt+1,

which yields the control decision

ut = − (Q+ βB′RB + βB′WFB)
−1
W ′xt.

Finally, agents update their forecast of future behavior by regressing the control on
the state. This updating process results in a recursive algorithm analogous to (13),
which identifies the agent’s behavior over time.

16

The stability of this recursive algorithm may be analyzed via the T-map, which
is given by

TF (F) = − (Q+ βB′RB + βB′WFB)
−1
W ′.

The associated matrix differential

dTF = β (Q+ βB′RB + βB′WFB)
−1
B′W (dF)B (Q+ βB′RB + βB′WFB)

−1
W ′.

Vectorizing, and studying the eigenvalues at the optimal matrix F provides stability
results.

We now ask whether Euler equation learning and shadow price learning are equiv-
alent in some natural sense. The T-maps are not the same – often they act on spaces
of different dimensions – and so a precise notion of equivalence is somewhat subtle.
We will say that learning mechanisms are equivalent if they predict the same rate of
convergence as determined by the E-stability differential equation.9

Consider agent behavior under SP-learning. We provide agents the usual PLM:
λ = Hx. The T-map may be computed by our previous work, and is given by

TH(H) = −2R + 4W (2Q− βB′HB)−1W ′,

with associated matrix differential

dTH = 4βW (2Q− βB′HB)
−1
B′ (dH)B (2Q− βB′HB)

−1
W ′.

At the fixed points, we have that

1

2
(2Q− βB′HB) = Q+ βB′RB + βB′WFB ≡ D.

Therefore, the only difference in the differentials dTF and dTH is ordering:

dTF = βDB′W (dF)BDW ′

dTH = βWDB′ (dH)BDW ′

Because for square conformable matrices S and T we have that eig(ST) = eig(TS),
it follows that

max (Re (eig (WDB′ ⊗DB′W))) = max (Re (eig (WDB′ ⊗WDB′))) , (23)

which yields the following proposition:

Proposition 3 For the quadratic regulator problem (20), Euler equation learning and
SP learning are equivalent.

9The convergence rate is governed by the largest real part of the T-map derivatives’ eigenvalues.

17

Euler equation learning and SP learning are not, in general, equivalent. For
example, when higher order Euler equations are needed to capture the model’s first
order conditions, then they will generically differ. The intuition for their difference is
straightforward. Suppose dim(u) = 1. The PLMs are given as follows:

SP PLM: λt = Hxt

EL PLM: ut = Fxt

If x is also univariate then H and F are both scalars: in this sense the PLMs require
and capture the same amount of information. On the other hand, if x is bivariate,10

then λ ∈ R2, and H is 2× 2, where as F is 2× 1: in this case SP learners have twice
as many perceived parameters as their Euler equation counterparts. Said differently,
the SP-PLM requires less information than the EL PLM: for the SP and EL PLMs
to be equivalent, the SP-learner must understand the structural relationship between
the states’ shadow prices, and he must incorporate this relationship by imposing
restrictions on his perceived parameters.

4 SP-learning in a Crusoe

By Proposition (2), an individual with quadratic preferences and facing a linear con-
straint can learn to make optimal choices provided he makes boundedly rational fore-
casts and uses boundedly optimal behavior. To further investigate and gain insight
into the behavior imparted by SP-learning, we turn to a simple Crusoe economy.

The application of Proposition (2) to a generic DSGE model raises a number of
interesting and subtle issues. Specifically,

• The DSGE models prevalent in the literature typically specify non-quadratic
objective functions and non-linear transition systems; therefore our result can
not be applied directly.11

• The reduced form equations identifying the DSGE model’s equilibrium are often
linearized before learning mechanisms are applied.

• Even in representative agent models, incorporating agent-level-learning appro-
priately requires carefully distinguishing between individual and aggregate vari-
ables.

In Evans and McGough (2009), we modify shadow price learning to apply to linearized
DSGE models, and, within the context of an RBC model with habit persistence, we

10For this case to be interesting, A 6= 0. Otherwise, x1t is proportional to x2t and thus redundant.
11We are currently working to modify our result to include more general specifications of the

regulator’s problem.

18

carefully address the issues raised above. Further, in that paper, we explore in detail
the relationships between SP-learning, Euler equation learning (and it variates) and
infinite horizon learning. We avoid these issues in the current paper by considering
a Robinson Crusoe economy with quadratic preferences and linear technology, as
in Sargent and Hansen (2009). In Section 4.3 below, we do consider shadow price
learning in a linearized version of the Crusoe economy with more general preferences.

4.1 A Robinson Crusoe economy

A narrative approach may facilitate intuition. Thus, imagine Robinson Crusoe, a
middle class Brit, finding himself marooned on a tropical island. An organized young
man, he quickly takes stock of his surroundings. He finds that he faces the following
problem:

max −E
∑
t≥0

βt
(
(ct − bt)2 + φl2t

)
(24)

s.t. yt = A1st−1 + A2st−2 + zt (25)

st = yt − ct + µt+1 (26)

st−1 = lt (27)

bt − b∗ + ∆(bt−1 − b∗) + εt

zt = ρzt−1 + ηt,

with s−1, s−2, and z0 given.

Here yt is fruit and ct is consumption of fruit. Equation (25) is Bob’s production
function – he can either plant the fruit or eat it, seeds and all – and the double lag
captures the production differences between young and old fruit trees. Note that
st is the quantity of fruit trees sprouting in time t; thus it is also the quantity of
young trees in t + 1 and the quantity old trees in t + 2. All non-consumed seeds are
planted. Some seasons local voles eat some of the seeds; other seasons, they expose
past caches: the number of viable sprouts st is given by equation (26), where the
white noise term µ is dated t + 1 to indicate that Bob cannot condition on it when
making time t consumption/savings decisions. Weeds are prevalent on the island:
without weeding around all the young trees, the weeds rapidly spread everywhere
and there is no production at all from any trees: see equation (27). This is bad
news for Bob as he’s not fond of work: φ > 0. Finally, zt is a productivity shock
(weather may induce rabbits to eat saplings or ancient seeds sprout; voles, of course,
are impervious to weather) and bt is stochastic bliss: see Sargent and Hansen (2009)
for further discussion of this economy as well as many other examples of economies
governed by quadratic objectives and linear transitions.12

12The only novelty in our economy is the presence of a double lag in production. The double lag
is a mechanism to expose the difference between Euler equation learning and SP-learning. Other

19

Some comments on φ and the constraint (27) are warranted, as they play impor-
tant roles in our analysis. Because φ > 0 and lt = st−1, it follows that an increased
stock of productive trees reduces Bob’s utility. In the language LQ programming,
these assumptions imply that a diverging state st is observed and must be avoided:
specifically, φ > 0 is necessary for the corresponding matrix pairs to be observable: see
Assumption LQ.3. In contrast, and somewhat improbably, Bob’s disheveled Ameri-
can cousin Slob is not at all lazy: his φ is zero and his behavior, which we analyze in
a companion paper, is quite different from British Bob’s.

When he is first marooned, Bob doesn’t know if there is a cyclic weather pattern;
but he thinks that if last year was dry this year might be as well. Good with numbers,
Bob decides to estimate this possible correlation using RLS. Bob also estimates the
production function using RLS. Finally, Bob contemplates how much fruit to eat.
He decides that his consumption choice should depend on the value of future fruit
trees forgone. He concludes that the value of an additional tree tomorrow will depend
(linearly) on how many trees there are, and makes a reasoned guess about this de-
pendence. Given this guess, Bob estimates the value of an additional tree tomorrow,
and chooses how much fruit to eat today.

Belly full, Bob pauses to reflect on his decisions. Bob realizes his consumption
choice depended in part on his estimate about the value of additional trees tomorrow,
and that perhaps he should revisit this estimate. He decides that the best way to
do this is to contemplate the value of an additional tree today. Bob realizes that
an additional young tree today requires weeding, but also provides additional young
trees tomorrow (if he planted the young tree’s fruit) and an old tree tomorrow, and
that an additional old tree today provides young trees tomorrow (if he planted the
old tree’s fruit). Using his estimate of the value of additional trees tomorrow, Bob
estimates the value of an additional young tree and an additional old tree today. He
then uses these estimates to re-evaluate his guess about the dependence of tree-value
on tree-stock. Exhausted by his efforts, Bob falls sound asleep. He should sleep
well: Proposition 2 tells us that by following this simple procedure, Bob will learn to
optimally exploit his island paradise.

This simple narrative describes the behavior of our boundedly rational agent. It
also points to a subtle behavioral assumption that is more easily examined by adding
precision to the narrative. To avoid unnecessary complication, set ∆ = 0, zt = 0,
εt = 0. The simplified problem becomes

max −E
∑
t≥0

βt
(
(ct − b∗)2 + φs2

t−1

)
(28)

s.t. st = A1st−1 + A2st−2 − ct + µt+1

We assume that βA1 + β2A2 > 1 and φ > 0 to guarantee that steady-state consump-

mechanisms, such as the incorporation of habit persistence in the quadratic objective, yield similar
results.

20

tion is positive and below bliss: see the Appendix for a detailed analysis of the steady
state and fully optimal solution to (28). Let λ∗1t be the time t value of an additional
new tree in time t and λ∗2t the time t value of an additional old tree in time t.13 Bob
guesses that λ∗it depends on st−1 and st−2:

λ∗it = ai + bist−1 + dist−2. (29)

He then forecasts λ∗it+1:

Êtλ
∗
it+1 = ai + biÊtst + dist−1. (30)

Because he must choose consumption, and therefore savings, before output is realized,
Bob estimates the production function and finds

Êtst = A1t−1st−1 + A2t−1st−2 − ct, (31)

where At is obtained by regressing st on (st−1, st−2)
′. He concludes that

Êtλ
∗
it+1 = ai + (biA1t−1 + di)st−1 + biA2t−1st−2 − bict, (32)

which, he notes, depends on his consumption choice today.

Now Bob contemplates his consumption decision. By increasing consumption by
dc, Bob gains −2(ct − b∗)dc and loses βÊtλ

∗
1t+1dc. Bob equates marginal gain with

marginal loss, and solves for consumption. With ct in hand, he also obtains numerical
values for Êtλ

∗
it+1 via (32).

Finally, Bob revisits his parameter guesses ai, bi, and di. He first thinks about the
benefit of an additional new tree today (dst−1 = 1): it would require weeding, but the
fruits could be saved to produce A1t new trees tomorrow, plus he gets an additional
old tree tomorrow. He concludes

Êtλ
∗
1t = −2φst−1 + βA1tÊtλ

∗
1t+1 + βÊtλ

∗
2t+1. (33)

He then thinks about the benefit of an additional old tree today (dst−2 = 1): the
fruits could be saved to produce A2t new trees tomorrow. Thus

Êtλ
∗
2t = βA2tÊtλ

∗
1t+1. (34)

Because Bob has numerical values for Êtλ
∗
it+1, (33) and (34), together with the esti-

mates Ait, generate numerical values for the updated shadow price perceptions. Bob
may then use these data to form new estimates of his parameter guesses ai, bi, and
di. We have the following result.

13The state vector in this model is three dimensional, but the shadow price corresponding to the
constant term plays no role in the control or updating behavior. The same point holds for any
exogenous state variable.

21

Proposition 4 Robinson Crusoe learns to optimally consume fruit.

The proof of this proposition is in the Appendix and obtains by demonstrating that
Bob’s optimization problem (28) meets the criteria of Proposition 2.

This precise implementation of the narrative above highlights our view of Bob’s
behavior: he estimates forecasting models, makes decisions, and collects new data to
update his models. The implementation also reveals the subtle behavioral assumption
alluded to above: we think of our agent as forming a forecasting model for shadow
prices, and determining consumption behavior; then, based on this consumption be-
havior, our agent obtains numerical estimates of future shadow prices, and uses these
estimates to revise his estimates of current shadow prices. Alternatively, one could
assume Bob recognizes the impact of his shadow price forecasting model, and of the
perceived parameters in particular, on his current shadow price revisions: one could
assume Bob knows and understands the T̂ -map. Under this interpretation, it might
further seem natural for Bob to search for a forecasting model that is consistent with
the way shadow prices are subsequently revised: Bob could simply seek a fixed point
of the T̂ -map. We view this alternative behavioral assumption as strong, and some-
what unnatural for two reasons. First, understanding the importance of, searching
for, and finding a fixed point to the T̂ -map is equivalent to full optimality given the
perceived transition equations. This violates a principal assumption that our agent,
as a decision maker, has limited sophistication. We prefer to assume our agent does
not even explicitly recognize the existence of a T̂ -map. But even if he did know the
T̂ -map, would he recognize that a fixed point is what’s wanted to ensure optimal
behavior? Why would the agent think such a fixed point even exists? And if it did
exist, how would the agent find it? Recognition that a fixed point is important, ex-
ists, and is computable is precisely the knowledge afforded those who study dynamic
programming; our assumption is that our agent does not have this knowledge, even
implicitly.

Our second reason for assuming Bob does not seek a fixed point to the T̂ -map
relates to the above observation that obtaining such a fixed point is equivalent to
full optimality given the “perceived transition equations.” However, if the perceived
coefficients Ait are far from the true coefficients, Ai, it is not clear that the behavior
dictated by a fixed point to the T̂ -map is superior to the behavior we assume. Given
that computation is unambiguously costly, it makes more sense to us that Bob not
iterate on the T̂ -map for fear that he might make choices based on magnified errors.

4.2 Comparing learning mechanisms in a Crusoe economy

The simplified model (28) provides a nice laboratory to compare and contrast SP-
learning with Euler equation learning. We assume that our agent knows the true
values of Ai: the second part of Proposition 2 shows this assumption is innocuous.

22

Shadow price learning has been detailed in the previous section: the agent has PLM
(29), and using this PLM, he forecasts future shadow prices: see (30). These forecasts
yield his consumption decision

ct = φ1(ai, bi, di) + φ3(ai, bi, di)st−1 + φ3(ai, bi, di)st−2, (35)

which he uses to compute shadow price forecasts via (32). We may use these forecasts,
together with equations (33) and (34) to determine T̂ -map: see the Appendix for
details.

To obtain the Euler equation, we proceed as in Section (3.1): we use simple
variational techniques to identify the sequence of first order conditions, which, when
coupled with the transversality condition, are sufficient to guarantee optimality. The
Euler equation is given by

ct − βφst = Ψ + βA1Etct+1 + β2A2Etct+2, (36)

where Ψ = b∗(1 − βA1 − β2A2). As described in Section 3, Euler equation learning
is implemented by taking (36) as the behavioral primitive. The agent is assumed to
forecast his future consumption behavior and then choose consumption today based
on these forecasts. The agent is assumed to form forecasts using a PLM that is
functionally consistent with optimal behavior:

ct = a3 + b3st−1 + d3st−2.

Using this forecasting model and the transition equation

st = A1st−1 + A2st−2 − ct,

the agent behaves so as to satisfy (36). This behavior can then be used to identify
the associated T-map. See the Appendix for a derivation of the T-map.

Our interest here is to compare shadow price learning and Euler equation learning.
As in the previous section, we will say that the learning mechanisms are equivalent
if they indicate the same speed of convergence. If A2 = 0 then the agent’s problem
has a one dimensional control and a two dimensional state, with one dimension corre-
sponding to a constant: by Proposition 3, shadow price learning and Euler equation
learning will be equivalent in this case; however, for A2 > 0, the endogenous state’s
dimension becomes two, and the equivalence may break down, as is evidenced by
Figure 1. Here we plot the maximum real part of the eigenvalues for the respective
T-map’s derivatives. The intuition for the inequivalence of shadow price learning
and Euler equation learning is precisely as indicated in Section (3.2): shadow price
learning recognizes the two endogenous states and requires that the agent learn the
relationship between their prices; Euler equation learning assumes agents understand
the link between the two shadow prices and can exploit this link to simplify the
forecasting and decision problem.

23

Figure 1: Comparing Learning Mechanisms: β = .95, φ = 1.1, A1 = 1.5

Euler Equation Learning

Shadow Price Learning

0.2 0.4 0.6 0.8 1.0
A2

0.25

0.30

0.35

0.40

0.45
DT

4.3 Shadow price learning in a linearized model

Proposition 2 applies only to economies identified by quadratic objectives and linear
constraints; however, the behavioral assumptions governing shadow price learning are
easily adapted to more general settings, provided that we abandon the requirement
that agents learn to behave optimally, and instead adopt the more lenient requirement
that they learn to behave optimally, up to first order. Consider, for example, the
simple Crusoe economy identified above, but modified to incorporate a more general
utility function:

max E
∑
t≥0

βt(u(ct)− v(lt))

s.t. yt = A1st−1 + A2st−2

st = yt − ct + µt+1

lt = st−1

The Euler equation is given by

u′(ct) + βv′(st) = βA1Etu
′(ct+1) + β2A2Etu

′(ct+2), (37)

so that, in the deterministic steady state,

βv′(s) = (βA1 + β2A2 − 1)u′ ((A1 + A2 − 1)s) . (38)

24

Assuming u′ > 0, v′ > 0, v′′ > 0 and u′′ < 0, there is a unique positive steady-state
level of savings, and an associated positive steady-state level of consumption, if and
only if βA1 + β2A2 − 1 > 0, which is precisely the same requirement as for the LQ
problem.

Under SP-learning, our agent chooses his consumption today given his forecast of
the benefit of a new tree tomorrow, and then reconsiders his estimates of the values of
new and old trees today. The fully optimal, non-linear system capturing this behavior
is given by

u′(ct) = βEtλ
∗
1t+1 (39)

Êtλ
∗
1t = −v′(st−1) + βA1Êtλ

∗
1t+1 + βÊtλ

∗
2t+1

Êtλ
∗
2t = βA2Êtλ

∗
1t+1.

Since our goal is to assess whether an agent can learn to make decisions based on
the first order approximation to fully optimal behavior, we assume that given his
forecasts, our agent makes his consumption decision to meet the linearization of (39).
The system becomes

ct = − 1

σ
Etλ

∗
1t+1, (40)

Êtλ
∗
1t = −

(
βv′′(s)s

u′(s)

)
st−1 + βA1Êtλ

∗
1t+1 + β2A2Êtλ

∗
2t+1 (41)

Êtλ
∗
2t = Êtλ

∗
1t+1. (42)

where σ is the usual measure of risk aversion, and variables are now in proportional
deviation from steady state. By simply providing agents with PLMs of the form (29),
equations (40) – (42) can be used to determine the relevant T̂ -map, and to analyze
stability under learning. We note that, as expected, in case A2 = 0, SP-learning and
Euler equation learning are equivalent in this linearized model, but if A2 > 0, they
may differ: see our companion paper, Evans and McGough (2009), for a detailed
exploration of SP-learning in linearized models.

5 Conclusion

The prominent role played by the micro-foundations in modern macroeconomic the-
ory has directed researchers to intensely scrutinize the assumption of rationality –
an assumption on which these micro-foundations fundamentally rest; and, some re-
searchers have mounted criticism that the implied level of sophistication demanded
of agents in these micro-founded models is unrealistically high. Rationality on the
part of agents consists of two central behavioral primitives: that agents are optimal
forecasters; and that agents make optimal decisions given these forecasts. While the

25

learning literature has successfully defended the optimal forecasting ability of agents
by showing that agents may learn the economy’s rational expectations equilibrium,
and thereby learn to forecast optimally, the way in which agents make decisions while
learning to forecast has been given much less attention.

In this paper, we formalize the connection between boundedly rational forecasts
and agents’ choices by introducing the notion of bounded optimality. Our agents fol-
low simple behavioral primitives: they use econometric models to forecast one-period
ahead shadow prices; and they make control decisions today based on the trade-off
implied by these forecasted prices. We call this learning mechanism shadow price
learning. We find our learning mechanism appealing for a number of reasons: it
requires only simple econometric modeling and thus is consistent with the learning
literature; it assumes agents make only one period ahead forecasts instead of estab-
lishing priors over the distributions of all future endogenous variables; and it imposes
only that agents make decisions based on these one period ahead forecasts, rather
than requiring agents to solve a dynamic programming problem with parameter un-
certainty.

Investigation of SP-learning reveals that it is behaviorally consistent at the agent
level: by following our simply behavioral assumptions, a regulator facing a standard
programming problem will learn to optimize. Further, we find that SP-learning is
related to, but distrinct from Euler equation learning, and in higher dimensions,
less informationally demanding. Finally, we find that SP-learning embeds naturally
in a simple DSGE models, and can be generalized to model behavior in linearized
economies.

While SP-learning is the only agent-level learning known to be behaviorally con-
sistent in a general regulator’s environment, it also appears to be the case that, in the
appropriate context, using behavior primitives dictated by Euler equation learning
or infinite horizon learning may induce regulators to optimize asymptotically. In this
case, the research on agent level learning raises interesting empirical questions: Are
any of the learning mechanisms consistent with the data? If so, can the data be used
to select among the learning mechanisms? What about planning horizons? Do the
data tell us agents look forward only one period, or do they make longer forecasts?
These and other related questions are the topics of future research.

Additional theoretical questions arise from our research as well. Section 4 shows
that for the DSGE model under investigation that while both SP-learning and Euler
equation learning impart stability on the model’s unique REE, the learning dynamics
differed. Also, Preston (2005) finds examples where Euler equation learning and
infinite horizon learning provide different stability conditions. It would be useful
to characterize as formally as possible the different agent-level learning mechanisms
provide the same stability results. Whether this can be done in a general context
rather than always be a model specific question is unknown.

26

6 Appendix

This Appendix is divided into three subsections corresponding respectively to the
proofs of Propositions 2 and 3, and to the analysis of LQ-problem (28) respectively.

6.1 Proof of Proposition 2

The proof is completed in two main steps. first, we use the theory of stochastic
recursive algorithms to show that the asymptotic behavior of our system is governed
by the Lyapunov stability of the differential system

dH

dτ
= T̂ (H,A,B)−H.

The second step involves showing that the real part of the eigenvalues of DT̂H are
less than unity.

Recall the dynamic system under consideration:

Rt = Rt−1 +
1

t

(
xt−1x

′
t−1 −Rt−1

)
(43)

Ht = Ht−1 +
1

t
R−1
t xt−1

(
E∗t−1λ

∗
t−1 −Ht−1xt−1

)′
R̂t = R̂t−1 +

1

t

((
xt−2

ut−2

)(
x′t−2, u′t−2

)
− R̂t−1

)
(44)(

Ât
B̂t

)
=

(
Ât−1

B̂t−1

)
+

1

t
R̂−1
t

(
xt−2

ut−2

)(
xt−1 −

(
Â′t−1, B̂′t−1

)(xt−2

ut−2

))′
xt = Axt−1 +But−1 + Cεt

ut = F (Ht, Â
′
t, B̂

′
t)xt

E∗t λ
∗
t = T̂ (Ht, Â

′
t, B̂

′
t)xt (45)

To apply the theory of stochastic recursive algorithms, we must place our system in
the following form:

θt =
1

t
H(θt−1, Xt) +

1

t2
ρt(θt−1, Xt) (46)

Xt = A(θt−1)Xt−1 +B(θt−1)ηt. (47)

Here θ ∈ RM for some M . For extensive details on the asymptotic theory of recursive
algorithms such as this, see Chapter 6 of Evans and Honkapohja (2001).

Notice that Rt, R̂t, Â
′
t and B̂′t are matrices and θ is a column vector. Therefore, we

will need to identify the space of matrices with RM for appropriate M . Let M(n,m)
be the space of real n×m matrices and let

vec : M(n,m)→ Rnm

27

be the usual “vec” operator. Then vec is a vector space isomorphism. Also, if
f : M(n,m)→M(p, q) then define fv : Rmn → Rpq by fv = vec ◦ f ◦ vec−1.

Next, we must deal with a standard timing issue that arises in real time learning
environments. Write St−1 = Rt and Ŝt−1 = R̂t. Then

St = St−1 +
1

t
(xtx

′
t − St−1) +

1

t2

(
− t

1 + t

)
(xtx

′
t − St−1) ,

and similarly for Ŝ. With these new variables we may define φt = (Â′t, B̂
′
t)
′, and

θt =

vec(St)
vec(Ht)

vec(Ŝt)
vec(φt)

 and Xt =

xt
xt−1

ut−1

xt−2

ut−2

εt−1

 .

We may now construct the function

H : Rn2 ⊕ Rn2 ⊕ R(n+m)2 ⊕ Rn(n+m) → Rn2 ⊕ Rn2 ⊕ R(n+m)2 ⊕ Rn(n+m)

component-wise as follows:

H1(θt−1, Xt) = vec (xtx
′
t − St−1)

H2(θt−1, Xt) = vec

(
S−1
t−1xt−1

(
(T̂ (Ht−1, Â

′
t−1, B̂

′
t−1)−Ht−1)xt−1

)′)
H3(θt−1, Xt) = vec

((
xt−1

ut−1

)(
x′t−1, u′t−1

)
− Ŝt−1

)
H4(θt−1, Xt) = vec

(
Ŝ−1
t−1

(
xt−2

ut−2

)(((
A, B

)
−
(
Â′t−1, B̂′t−1

))(xt−2

ut−2

)
+ Cεt−1

)′)
Letting ηt = (εt, εt−1)

′ it is straightforward to find a matrix A(θt−1) and a matrix B
so that (47) is satisfied. Finally, to complete the process of rewriting our system in
the canonical form (46) we simply define ρt appropriately to capture the second order
terms in the recursions for S and Ŝ.

Let M = 2n2 +(n+m)2 +n(n+m). The theory of stochastic recursive algorithms
tells us to fix θ ∈ U ⊂ RM (where U is an open set to be defined below) and consider
the function h : RM → RM defined by

h(θ) = lim
t→∞

EH(θ,Xt).

Notice that h(θ) captures the long run average behavior of the function H for given
θ. In learning algorithms, this function H usually reflects a forecast error, and so

28

we may think of h(θ) as the long run average forecast error obtained when using a
forecasting model based on the perceived parameters θ.

Now fix H near −2P ∗ and Â and B̂ near A′ and B′ respectively. Recall that
F (−2P ∗, A,B) stabilized the matrix pair (A,B), so that the eigenvalues of A +
BF (−2P ∗, A,B) are inside the unit circle. By continuity, the eigenvalues of Â′ +
B̂′F (−2P ∗, Â′, B̂′) will be inside the unit circle as well. Thus, for H near −2P ∗

and Â and B̂ near A′ and B′, the process (xt, ut) is asymptotically stationary. Let
M1(H, Â

′, B̂′) = limExtx
′
t and

M2(H, Â
′, B̂′) = limE

(
xt
ut

)(
x′t, u′t

)
.

Set

θ∗ =

vec(M1(−2P ∗, A,B))

vec(−2P ∗)
vec(M1(−2P ∗, A,B))

vec((A,B)′

Then the above argument shows that there is an open set U with θ∗ ∈ U so that
θ ∈ U implies

h1(θ) = vec (M1(θ)− S) (48)

h2(θ) = vec
(
S−1M1(θ)

(
T̂ (H, Â′, B̂′)−H

))
(49)

h3(θ) = vec
(
M2(θ)− Ŝ

)
(50)

h4(θ) = vec

(
Ŝ−1M2(θ)

((
A′

B′

)
−
(
Â

B̂

)))
(51)

where Mi(θ) = Mi(H, Â, B̂) and the H, Â and B̂ come from the components of θ.

Having computed h(θ), we next analyze the differential equation θ̇ = h(θ). Notice
that h(θ∗) = 0, so that θ∗ is a fixed point of this differential equation. The theory
of stochastic recursive algorithms tell us that under certain conditions, if θ∗ is a
Lyapunov stable fixed point, then our learning algorithm will converge to it almost
surely.

The determination of Lyapunov stability for the system θ̇ = h(θ) involves simply
computing the derivative of h and studying its eigenvalues: if the real parts of these
eigenvalues are negative then the fixed point is Lyapunov stable. Computing the
derivative of h looks somewhat daunting at first, particularly since we do not know
the functional forms of Mi(θ); however, computation is made easy by observing that
the terms multiplying the Mi(θ) in equation (49) and (51) are zero when evaluated
at θ∗ so that, by the product rule, the associated derivatives are zero. The resulting
block diagonal form of the derivative of h yields repeated eigenvalues that are −1 and
the eigenvalues of ∂h2/∂vec(H)′.

29

Lemma 5 If LQ.1 – LQ.3 are satisfied then the eigenvalues of DTv (vec(−2P ∗)) have
modulus less than one.

Proving this lemma is the second part of the proof of Proposition 2, and is found at
the end of the Appendix. Notice that

DTv ((vec(−2P ∗))− In2 = ∂h2/∂vec(H)′
∣∣
−2P ∗

so that if the eigenvalues of DTv ((vec(−2P ∗)) have modulus less than one then the
eigenvalues of ∂h2/∂vec(H)′

∣∣
−2P ∗ have negative real parts.

To complete the proof of Proposition 2, we apply the theory of stochastic recursive
algorithms to our system: for details, see chapter 6 of Evans and Honkapohja (2001),
and here we follow their notation. Because θ∗ is Lyapunov stable there exists an
open set D contained in the basin of attraction of the ode θ̇ = h(θ), and associated
Lyapunov function U : D → R+. For C > 0, set

K(c) = {θ ∈ RM : U(θ) ≤ c}.

There is a collection of regularity conditions on H, ρt, and A(θ) that must be met:
see p. 123 – 125 of Evans and Honkapohja (2001). Checking that these conditions
are met on some set W = intK(c) for some c > 0 is routine: we omit detail, but they
are available from the authors upon request.

We now create the projection facility: Choose 0 < c1 < c2 so that K(c2) ⊂ W .
Let θ̄t ∈ K(c1). Define a new recursive algorithm for θt as follows:

θt =

{
θ̂t = 1

t
H(θt−1, Xt) + 1

t2
ρt(θt−1, Xt) if θ̂t ∈ K(c2)

θ̄t if θ̂t /∈ K(c2)
(52)

In view of Lemma 5, we have the following corollary, which is a restatement of Propo-
sition 2:

Corollary 6 There exists an open set U with θ∗ ∈ U so that if θ0 ∈ U then θt → θ∗

almost surely.

This corollary is proved by choosing U ⊂ D and so that the map T̂ is well-defined,
that is, 2Q− βB̂HB̂′ is invertible (which is straightforward because the collection of
invertible matrices is open), and finally, so that F (H, Â′, B̂′) stabilizes (A,B). We
may then appeal to Corollary 6.8 on page 136 of Evans and Honkapohja, noting that
because εt has bounded support, provided F stabilizes (A,B), the random vector Xt

is almost surely uniformly bounded.

Proof of Lemma 5. Let D̂ be the the set of n×nmatrices P so that det(Q+B′PB) 6=
0 and set G : D̂ → D̂ by

G(P) = R + A′PA− (B′PA+W ′)′(Q+B′PB)−1(B′PA+W ′).

30

Notice that G(P) is simply the RHS of the Riccati equation. Note also that for H in
D, T (H) = −2G

(
(−1

2
H
)
, so that DT (−2P ∗) = DG(P ∗). Therefore, we study the

eigenvalues of DGv(vec(P ∗)).

Let A1 = β1/2(A − BQ−1W ′) and B1 = β1/2BQ−
1
2 , where Q−

1
2 is the usual

square root of the positive definite matrix Q. It is straighforward to check that
assumptions LQ.1 – LQ.3 imply (A1, B1) is stabilizable and (A1, D) is detectable.
From Theorem 13.5.2 in Lancaster and Rodman (1995), the eigenvalues of A1 −
B1(In+B′1P

∗B1)
−1B′1P

∗A1 have modulus less than one. Now notice that A1−B1(In+
B′1P

∗B1)
−1B′1PA1

= A−BQ−1W −BQ−
1
2

(
In +Q−

1
2B′P ∗BQ−

1
2

)−1

Q−
1
2B′P (A−BQ−1W)

= A−BQ−1W −B(Q+B′P ∗B)−1B′P (A−BQ−1W)

= A−B(Q+B′P ∗B)−1B′P ∗A−B(I − (Q+B′P ∗B)−1B′P ∗B)Q−1W

= A−B(Q+B′P ∗B)−1B′P ∗A−B(Q+B′P ∗B)−1W

= A−B(Q+B′P ∗B)−1(B′P ∗A+W).

Set Â = A−B(Q+B′P ∗B)−1(B′P ∗A+W). We will now show that DGv(vec(P ∗)) =
Â′ ⊗ Â′, which, by the above argument, will complete the proof.

To compute DGv(vec(P ∗)), we compute the Frechet derivative DG of G. Recall
that if B is a Banach space and F : B → B then F is Frechet differentiable at x ∈ B
if there exists a linear map DF (x) : B → B so that

lim
‖h‖→0

‖F (x+ h)− F (x)−DF (x)(h)‖
‖h‖

= 0.

If this limit exists then DF (x) is unique and is called the Frechet derivative of F at x.
Now notice that if B = M(n, n) then, exploiting that for appropriate matrix norm,
the vec operator is an isometric isomorphism, we have

lim
‖h‖→0, h∈Rn2

‖Fv(vec(x) + h)− Fv(vec(x))− vec ◦DF (x) ◦ vec−1(h)

‖h‖

= lim
‖h‖→0, h∈Rn2

‖vec−1 ◦ Fv(vec(x) + h)− vec−1 ◦ Fv(vec(x))−DF (x) ◦ vec−1(h)‖
‖h‖

= lim
‖h‖→0, h∈B

‖F (x+ vec(h))− F (x)−DF (x)(h)‖
‖h‖

= 0.

We conclude that DGv(vec(P ∗))(v) = vec ◦DG(P ∗) ◦ vec−1(v).

Some well-known results of Frechet derivatives will be useful.

1. If f, g : M(n, n)→M(n, n) are Frechet differentiable at x ∈M(n, n) the

D(fg)(x)(v) = Df(x)(v)g(x) + f(x)Dg(x)(v).

31

2. If det f(x) 6= 0 then f−1 exists (locally) and

Df−1(x)(v) = −f(x)−1Df(x)(v)f(x)−1.

3. Df ′(x)(v) = (Df(x)(v))′.

Now set

f1 : M(n, n)→M(n, n) by f1(P) = W ′ +B′PA

f2 : M(n, n)→M(n, n) by f2(P) = Q+B′PB

Then
G(P) = R + A′PA− f1(P)′f2(P)−1f1(P).

Then, using the results of Frechet derivatives listed above, for v ∈ M(n, n), we have
that DG(P ∗)(v)

= A′vA− (Df1(P
∗)(v))′ f−1

2 (P ∗)f1(P
∗)− f1(P

∗)′f−1
2 (P ∗)Df1(P

∗)(v)

+f1(P
∗)′f2(P

∗)−1Df2(P
∗)(v)f2(P

∗)−1f1(P
∗)

= A′vA− A′vB(Q+B′PB)−1(W ′ +B′PA)− (W ′ +B′PA)′(Q+B′PB)−1B′vA

+(W ′ +B′PA)′(Q+B′PB)−1B′vB(Q+B′PB)−1(W ′ +B′PA)

= Â′vÂ.

Finally, we get that

DGv(vec(P ∗))(x) = vec ◦DG(P ∗) ◦ vec−1(x) = vec
(
Â′vec−1(x)Â

)
=
(
Â′ ⊗ Â′

)
(x),

so that the eig (DGv(vec(P ∗))) = eig
(
Â′ ⊗ Â′

)
, which completes the proof.

6.2 Proof of Proposition 3

Pretty much clear.

6.3 Analysis of LQ-problem (28)

We reproduce the problem here for clarity:

max −E
∑
t≥0

(
(ct − b∗)2 + φs2

t−1

)
(53)

s.t. st = A1st−1 + A2st−2 − ct + µt+1

32

To place in standard LQ-form (see (1)), we define the state as xt = (1, st−1, st−2)
′ and

the control as ut = ct; then we make the following definitions:

R =

 (b∗)2 0 0
0 φ 0
0 0 0

 , A =

 1 0 0
0 A1 A2

0 1 0

 , (54)

and W = (−b∗, 0, 0)′, B = (0,−1, 0)′, and Q = 1. The transformed matrices are

R̂ = R−WW ′, Â = β
1
2 (A−BW ′), and B̂ = β

1
2B: thus

R̂ =

 0 0 0
0 φ 0
0 0 0

 , Â = β
1
2

 1 0 0
−b∗ A1 A2

0 1 0

 . (55)

We see immediately that LQ.1 is satisfied: R̂ is positive semi-definite and Q is
positive definite. Now let K = (K1, K2, K3) be any 1× 3 matrix. Then

Â− B̂K = β
1
2

 1 0 0
−b∗ +K1 A1 +K2 A2 +K3

0 1 0

 .

By choosing K2 = −A1 and K3 = −A2, we see that (Â, B̂) is a stabilizable pair:
thus LQ.2 is satisfied. Finally, note that R̂′y = 0 if and only if y2 = 0. Now suppose
Ây = λy for some λ ∈ C and also that y2 = 0. Since det Â = −A2β

3/2 6= 0 it follows
that λ 6= 0. Carrying out the third row multiplication, we see that y2 = 0 =⇒
(Ây)3 = 0. Since (Ây)3 = λy3, it follows that y3 = 0. Now y2 = y3 = 0 implies that

(Ây)2 = −β 1
2 by1. But (Ây)2 = λy2 = 0. Thus y1 = 0. We conclude that (A, R̂) is an

observable pair, and LQ.3 is satisfied.

Because LQ.1 – LQ.3 are satisfied, the solution to (53) may be written as ct = Fxt
where

F = − (Q+ βB′PB)
−1

(βB′PA+W ′)

and P is the unique positive semi-definite solution to the Ricatti equation

P = R + βA′PA− (βA′PB +W) (Q+ βB′PB)
−1

(βB′PA+W ′). (56)

The matrix P may be computed numerically, and, in theory, initializing a recursion
at any positive semi-definite matrix P0 and iterating (56) should yield a sequence of
matrices Pn converging to P ; in practice, however, because of the approximations use
by numerical routines, this iteration method may be unstable and produce a diverging
sequence. To avoid this issue we consider the system of expectational difference
equations (5) – (7), reproduced here for clarity:

λt = −2Rxt − 2Wut + βA′Etλt+1 (57)

0 = −2W ′xt − 2Qut + βB′Etλt+1 (58)

xt+1 = Axt +But + Cεt. (59)

33

The “REE” of this system has the form λt = Hxt, and we know that λt = −2Pxt.
Thus, solving (57) – (59) in the usual way provides a simple method for avoiding
numerical issues that may plague iteration of the Riccati equation. We note that
this method is, in essence, the invariant subspace method emphasized by Sargent and
Hansen.

To be explicit, solve (58) for ut, noting that, in our case, Q = 1:

ut =
β

2
B′Etλt+1 −W ′xt.

Write ξt = λt − Et−1λt, and stack (57) – (59) to get(
β(A′ −WB′) 03×3

−β
2
B′B I3

)(
λt+1

xt+1

)
=

(
I3 2(R−W ′W)

03×3 A−BW ′

)(
λt
xt

)
+

(
ξt+1

εt+1

)
,

which, because det(A′ −WB′) 6= 0, yields, with appropriate notation,(
λt
xt

)
= M

(
λt−1

xt−1

)
+ ξ̃t.

Write M = SΓS−1, where Γ = ⊕6
i=1γi is the diagonal matrix containing the eigen-

values of M written in order of decreasing magnitude. Changing coordinates to
zt = S−1(λt, xt)

′ gives the de-coupled system zt = Γzt−1 +ηt for appropriately defined
ηt. Because (57) – (59) has a unique non-explosive solution, |γi| > 1 if and only
if i < 4; thus, along the optimal path, zit = 0 for i = 1, 2, 3. Solving these three
equations for λt in terms of xt yields the desired matrix H.

Carefully specified as an economics problem, (53) should include the constraints
ct, st ≥ 0 and the consumption/resource constraint should be written

ct ≤ A1st−1 + A2st−2 − st + µt+1. (60)

Notice that because of our “bliss-point” utility specification, strict inequality in (60)
cannot be simply dismissed. The specification of the LQ-problem (1) does not incor-
porate such constraints: in particular, “free disposal” is not assumed and consumption
and savings (trees) may be driven below zero; therefore is it incumbent upon us to
provide conditions guaranteeing that the solution provided by Riccati system imparts
st > 0 and ct ∈ (0, b∗). We accomplish this by restricting the parameters β, A1 and
A2 so that the steady-state levels of consumption and savings, which we label c and s,
satisfy the wanted conditions; then, because the optimal feedback loop always drives
the system to steady state, we know that for reasonable initial values of the state,
the conditions st > 0 and ct ∈ (0, b∗) will hold.

The optimal feedback loop, that is, the dynamic system under the assumption
of optimizing behavior, is given by xt = (A − BF)xt−1, where F is determined as

34

above, and x1t = 1 for all t. The steady state, then, corresponds to the eigenvector v
of A− BF associated to the unique unit eigenvalue, and normalized so that v1 = 1.
It can be shown that v2 = v3; so, under the normalization, we have that v2 equals
steady state savings s. A more tractable approach to steady-state computation comes
through the transition equation ct = A1st−1 + A2st−2 − st and the Euler equation
(36). The transition equation implies c = Θs, where Θ = A1 +A2 − 1. Inserting this
condition into the Euler equation and solving for s yields

s =
b(1− βA1 − β2A2)

Θ(1− βA1 − β2A2)− βφ
.

We obtained the following:

1. If βA1 + β2A2 < 1 and A1 + A2 < 1 then s < 0

2. If βA1 + β2A2 < 1 and A1 + A2 > 1 then c > b∗.

3. If βA1 + β2A2 > 1 then s > 0 and c ∈ (0, b∗), which are the desired conditions.

Having completed the analysis of fully optimal behavior, we turn to the T-map
derivations, beginning with SP-learning. Without loss of generality, we assume that
agents know the values A1 and A2. Recall that agents have PLM

λ∗it = ai + bist−1 + dist−2,

which, combining with production, yields

Etλ
∗
it+1 = ai + (biA1 + di)st−1 + biA2st−2 − bict. (61)

Coupled with the marginal condition −2(ct − b∗) = βEtλ
∗
1t+1, this provides

ct =
b− β

2
a1

1− β
2
b1
− β

2

(
bA1 + d1

1− β
2
b1

)
st−1 −

β

2

(
b1A2

1− β
2
b1

)
st−2 :

this equation identifies the φ’s in (35),

ct = φ1(ai, bi, di) + φ3(ai, bi, di)st−1 + φ3(ai, bi, di)st−2. (62)

Now, using (61) and (62), together with the marginal conditions

Etλ
∗
1t = −2φst−1 + βA1Etλ

∗
1t+1 + βEtλ

∗
2t+1

Etλ
∗
2t = βA2Etλ

∗
1t+1,

35

yields the following T̂ -map:

a1 → βA1(a1 − b1φ1(ai, bi, di)) + β(a2 − b2φ1(ai, bi, di))

a2 → βA2(a1 − b1φ1(ai, bi, di)

b1 → βA1(b1(A1 − φ2(ai, bi, di)) + d1) + β(b2(A1 − φ2(ai, bi, di) + d2)− 2φ

b2 → βA2(b1(A1 − φ2(ai, bi, di)) + d1)

d1 → βA1b1(A2 − φ3(ai, bi, di)) + βb2(A2 − φ3(ai, bi, di))

d2 → βA2b1(A2 − φ3(ai, bi, di))

Turning to Euler equation learning, recall the FOC and PLM, as given by

ct − βφst = Ψ + βA1Etct+1 + β2A2Etct+2

ct = a3 + b3st−1 + d3st−2,

respectively, where Ψ = b∗(1−βA1−β2A2). Using the PLM, the following expectations
may be computed:

Etct+1 = a3 + (b3A1 + d3)st−1 + b3A2st−2 − b3ct
Etct+2 = a3(1− b3) + ((b3(A1 − b3) + d3)A1 + b3(A2 − d3))st−1

+(b3(A1 − b3) + d3)A2st−2 − (b3(A1 − b3) + d3)ct.

Combining these expectations with the FOC provides the following T-map:

a3 →
ψ + βA1a3 + β2A2a3(1− b3)

1 + βφ+ βA1b3 + β2A2(b3(A1 − b3) + d3)

b3 →
βφA1 + βA1(b3A1 + d3) + β2A2((b3(A1 − b3) + d3)A1 + b3(A2 − d3))

1 + βφ+ βA1b3 + β2A2(b3(A1 − b3) + d3)

d3 →
βφA2 + βA1b3A2 + β2A2(b3(A1 − b3) + d3)

1 + βφ+ βA1b3 + β2A2(b3(A1 − b3) + d3)

Comparing Euler equation learning and SP-learning requires differentiating these
T-maps: we used Mathematica, and the program is available upon request.

36

References

Bertsekas, D. (1987): Dynamic Programming. Prentice-Hall INC, Englewood
Cliffs, NJ.

Bray, M. (1982): “Learning, Estimation, and the Stability of Rational Expectations
Equilibria,” Journal of Economic Theory, 26, 318–339.

Bray, M., and N. Savin (1986): “Rational Expectations Equilibria, Learning, and
Model Specification,” Econometrica, 54, 1129–1160.

Evans, G. W., and S. Honkapohja (2001): Learning and Expectations in Macroe-
conomics. Princeton University Press, Princeton, New Jersey.

(2006): “Monetary Policy, Expectations and Commitment,” Scandinavian
Journal of Econoimcs, 108, 15–38.

Evans, G. W., S. Honkapohja, and K. Mitra (2003): “Notes on Agents’ Be-
havioral Rules under Adaptive Learning and Recent Studies of Monetary Policy,”
mimeo,.

Lancaster, P., and L. Rodman (1995): Algebraic Riccati Equations. Oxford Uni-
versity Press, Oxford, UK.

Marcet, A., and T. J. Sargent (1989): “Convergence of Least-Squares Learning
Mechanisms in Self-Referential Linear Stochastic Models,” Journal of Economic
Theory, 48, 337–368.

Preston, B. (2005): “Learning about Monetary Policy Rules when Long-Horizon
Forecasts Matter,” International Journal of Central Banking, 1.

Stokey, N., and R. E. Lucas Jr. (1989): Recursive Methods in Economic Dy-
namics. Harvard University Press, Cambridge, Mass.

37

