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Abstract

We find that investors’expectations of U.S. nominal yields, at different maturities and

forecast horizons, exhibit significant time-variation during the Great Moderation. Nominal

zero-coupon bond yields for the U.S. are used to fit the yield curve using a latent factor

model. In the benchmark model, the VAR process used to characterize the conditional

forecasts of yields has constant coeffi cients. The alternative class of models assume that

investors use adaptive learning, in the form of a constant gain algorithm and different en-

dogenous gain algorithms, which we propose here. Our results indicate that incorporating

time-varying coeffi cients in the conditional forecasts of yields lead to large improvements

in forecasting performance, at different maturities and horizons. These improvements are

even more substantial during the Great Recession. We conclude that our results provide

strong empirical motivation to use the class of adaptive learning models considered here,

for modeling potential investor expectation formation in periods of low and high volatility,

and the endogenous learning model leads to significant improvements over the benchmark in

periods of high volatility. A policy experiment, which simulates a surprise shock to the level

of the yield curve, illustrates that the conditional forecasts of yields implied by the learning

models do significantly better at capturing the response observed in the realized yield curve,

relative to the constant-coeffi cients model. Furthermore, the endogenous learning algorithm

does well at matching the time-series patterns observed in expected excess returns implied

by the Survey of Professional Forecasters. JEL classifications: E43, E47, D83, C5
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1 Introduction

[T]he Federal Reserve’s ability to influence economic conditions today depends

critically on its ability to shape expectations of the future, specifically by helping

the public understand how it intends to conduct policy over time, and what the

likely implications of those actions will be for economic conditions. (Vice-Chair

Janet Yellen, At the Society of American Business Editors and Writers 50th

Anniversary Conference, Washington, D.C., April 4, 2013)

Expectations of investors in the economy about the term structure of yields are central

to the conduct of monetary policy. Influencing these expectations, using the different instru-

ments available to the Federal Reserve, has been important during the Great Moderation.

During the Great Recession, this strategy has been at the forefront of the central bank’s

policy: as the accommodative monetary policy stance of the Federal Reserve has kept the

federal funds rate at the zero-lower bound since 2008, one of the main channels through

which monetary policy can affect longer yields (and the subsequent consumption and sav-

ings decisions of economic agents), is by affecting the formation of conditional expectations

by market investors.

Recognizing the importance of the formation of investor expectations, this paper asks

three questions: how are the conditional expectations of investors about yields at different

forecasting horizons formed, how do they change over time, and are there are significant

differences in the formation of these beliefs during periods of high and low volatility? To

answer these, we use U.S. nominal yield curve data to develop a novel methodology to model

the evolution of investor beliefs. The Great Moderation is used as the baseline period,

and the results are extended to include the Great Recession. Our analysis allows for the

comparison of investor beliefs about the entire yield curve, across a cross section of forecast

horizons.

Our strategy is briefly described as follows: following recent studies3, a latent factor model

is used to fit the U.S. nominal yield curve; in the model, implied conditional expectations of

yields (and associated latent factors) are formed using a vector auto-regressive (VAR) model

with constant coeffi cients. The forecasting performance of the model is evaluated, and a

series of tests of rationality of the forecasting errors implied by this model confirm that these

3Examples include Diebold and Li (2006) and Aruoba, Diebold and Rudebusch (2006).
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errors are biased, systematic, and correlated with revisions in yield forecasts. Additionally,

this framework imposes the restriction that investors must be placing identical weights on

past information while forecasting the short and long yields. The model also implies that the

investors must be using constant coeffi cients to form expectations over different forecasting

horizons. Thus, it does not allow investors to endogenously adapt to any structural breaks

that they might perceive in the evolution of the average yields, or the yield curve slope.

The above results motivate our hypothesis that market investors are using other models

of expectations formation. Theoretical analyses, such as Piazzesi, Salomao and Schneider

(2013) and Sinha (2013), incorporate adaptive learning into the expectations formation of op-

timizing agents in models of the yield curve. The implied term structures are more successful

at matching the properties of the empirical yield curve, relative to models with time-invariant

beliefs. Therefore, we explore alternative specifications for the formation of conditional fore-

casts of the yield curve factors, and subsequent yields. A class of adaptive learning models

are considered for expectations formation: constant gain learning (CGL) and variants of an

endogenous learning algorithm that we develop. The main innovation is that investors are

now allowed to vary the weights they place on past information about yields, and they are

also able to change these weights in response to large and persistent deviations observed in

the yield curve factors. There are significant improvements in forecasting performance of the

model, at different forecasting horizons and yield maturities. For example, at the one-month

forecasting horizon, the CGL forecast of the ten-year yield improves on the benchmark by

6%; at the six-month horizon, the improvement is 25%. Similar improvements are found

in the one- and five-year yields. The main conclusions we draw are the following: (a) the

implied conditional expectations of investors display significant time-variation during the

Great Moderation; (b) investors place asymmetric weights on past information while form-

ing expectations about future long and short yields, for a fixed forecasting horizon; and (c)

for a fixed yield maturity, the conditional expectations for over different forecasting horizons

will also place varying weights on past information. In addition, the results from the en-

dogenous learning schemes suggest that when investors are making conditional forecasts at

the shorter forecasting horizon, the process that best describes their expectations formation

allows their beliefs to switch between different "regimes", even though the underlying state

variable is assumed not to follow a regime-switching process. On observing large deviations

in their coeffi cient estimates, we find that the investors begin to place greater weight on the
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past history of observations than before. However, for the longer forecasting horizons, on

observing large deviations in the time series of the yield curve factors from the past, the

investors may become more inattentive to the past data. Thus, there is an asymmetry in

the formation of conditional forecasts at the short versus long forecasting horizon, which

has important implications for analyzing the effects of monetary policy actions on the yield

curve. For example, if conditional forecasts about the long yield at a fixed forecasting hori-

zon respond much more sluggishly to new information than forecasts for the short yield, the

policy action at the short end of the term structure will transmit to the long end at a slower

pace than predicted by the constant coeffi cients models.

Our results for the Great Moderation and the financial crisis period suggest that the

beliefs of investors can be best modelled using endogenous gain learning. The forecasting

performances of the different learning algorithms during the low volatility period are similar;

however, during periods of high volatility, there are large improvements in the conditional

forecasts of the endogenous learning mechanism, relative to the constant gain process. The

endogenous learning process does better in accounting for the movements in the observed

time series of the latent factors (these approximate the level of the yield curve, its slope,

curvature and convexity), which are used to form the forecasts of the yields. It is able to do

this since it allows the beliefs to endogenously adapt to large deviations observed, and place

more weight on past information than in periods of low volatility.

Our empirical strategy also contributes to the literature on adaptive learning. In the

learning processes, the key parameter of interest is the updating or gain coeffi cient. The

gains are allowed to vary across the different factors; this provides a general way to allow for

the investors to update their information. For example, while forming forecasts, the investors

may place more or less weight on the history of the level of yields, than on the slope of the

yield curve. If they believe that there were several structural breaks in the average level of

the yield curve, they may prefer to place more weight on the recent past observations, instead

of the longer history. If such breaks are not perceived to exists in the yield curve slope, the

investors may place almost equal weight on past observations. These gain parameters are

therefore central to the bounded rationality approach, since they determine the persistence in

expectations formation, and how investors will react to permanent versus transitory shocks.

In this analysis, we use fixed baseline time periods (for the Great Moderation and the Great

Recession period) to find the optimal gains. To our knowledge, this is the first paper to
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extract optimal gains from (relatively) high frequency data. While the magnitude of the

optimal gains derived from daily data is small, there are large improvements in forecasting

performance.

Given the success of the endogenous learning mechanism in modeling conditional fore-

casts of investors, we consider the implications of our framework for two important aspects

of the term structure of interest rates: first, how does the effect of a sudden policy announce-

ment, which lowers the average level of yields, affect the term structure and the conditional

forecasts, when agents use endogenous learning to form these forecasts; and second, do the

adaptive learning mechanisms considered here for explain the patterns observed in survey

data for excess returns.

For the first implication, we consider the following policy experiment. Since August 2011,

the statements of the Federal Open Markets Committee meetings have included calendar-

based forward guidance about the length of the accommodative monetary policy stance.

We ask the following question: suppose that in a FOMC announcement, there is a surprise

lengthening of the accommodative monetary policy stance, and a sudden drop in the level of

the yield curve. In this case, what are the one-month ahead forecasts of the yields (at different

maturities) implied by the constant-coeffi cients model, and the learning algorithms? We find

that forecasts implied by the constant-coeffi cient model are unable to capture the observed

changes in the yield curve, and the implied yield curve slope remains flat. This is in contrast

to the observed yield curve. On the other hand, the constant gain and endogenous learning

schemes perform significantly better. Intuitively, the time-invariant coeffi cients model does

not fully account for the reaction of investors to the surprise information; in contrast, the

learning mechanisms allow them to weight the new information differently following the

shock.

To examine the implications for excess returns, we first use survey data from the Survey

of Professional Forecasters (SPF) to derive the excess returns for ten-year nominal yields at

different forecasting horizons. The excess returns are then constructed in a similar manner

from the constant coeffi cients and learning models. The endogenous learning mechanism

does significantly better at matching the observed patterns in survey expected excess returns,

relative to the constant gain mechanism.

This paper is organized as follows: section two gives a brief overview of the literature. The

factor model for the nominal yield curve, and tests for systematic relationships between the
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forecast errors and revisions are described in section three. Section four discusses the different

learning mechanisms and section five presents the numerical results, along with a discussion

of the optimization routines. We also discuss the findings in the context of other endogenous

learning mechanisms here. The policy experiment and findings for expected excess returns

are described in sections six and seven respectively, and section eight concludes.

2 Related Literature

There are three strands of the literature that are relevant for the purposes for this paper.

The first is the extant analyses that have used the Nelson-Siegel-Svensson parameterization

for fitting the yield curve. The database used here is drawn from the nominal yield curves

estimated by Gürkaynak, Sack and Wright (2007) based on this spline approach. Aruoba,

Diebold and Rudebusch (2006) estimate the yield curve using the Nelson-Siegel approach,

and estimate the evolution of the yield and factor jointly; Diebold and Li (2006) propose a

dynamic version of the approach4. A survey of the different models of the term structure

and their relative forecasting performances is conducted by Pooter (2007). A more recent

approach has introduced the restrictions used in affi ne arbitrage-free models of the term

structure, which suffer from poor forecasting performance, into the spline based methods

(Christensen, Diebold and Rudebusch, 2011). In contrast to these, the focus of this paper

is to extract the process which best approximates the evolution of the yield curve factors,

instead of analyzing different models of yield curve estimation. If a time-varying process for

the factors is found to perform better than the VAR for forecasting purposes, then it will

have implications for the evolution of the discount factor over time. The work of Bianchi,

Mumtaz and Surico (2009) models the U.K. nominal yield curve using the Nelson-Siegel-

Svensson approach, and specify a time-varying process for the evolution of the factors. They

find that the factors of the yield curve showed greater volatility before inflation targeting

was adopted in the U.K. in 1992.

Time-varying beliefs have been widely incorporated into partial and general equilibrium

models of the yield curve to match characteristics of the data: Laubach, Tetlow and Williams

(2007) allow investors to re-estimate the parameters of their term structure model —both

4These analyses use the original three-factor model of Nelson and Siegel (1987). The Svensson (1994)
model extends this framework and incorporates additional flexibility in the shape of the yield curve.
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those determining the point forecasts of yields, and the parameters describing economic

volatility —based on incoming data. Kozicki and Tinsley (2001) and Dewachter and Lyrio

(2006) use changing long-run inflation expectations as an important factor characterizing

the yield curve. Fuhrer (1996) finds that estimating changing monetary policy regimes is

important for the success of the Expectations Hypothesis of the term structure. Piazzesi,

Salomao and Schneider (2013) decompose expected excess returns into the returns implied

by the statistical VAR model and survey expectations, used as an approximation for subjec-

tive investor expectations. Survey expectations are found to be significantly more volatile

compared to model implied returns. The authors use constant-gain learning to describe

these expectations, and the excess returns implied by the learning model capture movements

in the empirical data better. The common theme of these analyses is the incorporation of

subjective beliefs in explaining characteristics of the empirical term structure.

Finally, endogenous learning algorithms have been previously introduced in the literature

by Marcet and Nicolini (2003) and Milani (2007a). In the former analysis, the authors

incorporate bounded rationality in a monetary model; the agents switch between using a

constant gain and a decreasing gain algorithm. They are successfully able to explain the

recurrent hyperinflation across different countries during the 1980s. In Milani (2007a), the

agents switch between gains based on the historical average of t he forecasting errors, instead

of a fixed value. Gaus (2013) proposes a variant of the endogenous gain learning mechanism,

in which the agents adjust the gain coeffi cient in response to the deviations in observed

coeffi cients. Kostyshyna (2012) develops an adaptive step-size algorithm to model time-

varying learning in the context of hyperinflations.
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3 Factor Model and the Performance of Implied Yield

Forecasts

The zero-coupon yield curve for 1972 − 2011 is modeled using the Nelson-Siegel-Svensson

approach:

ynt = β0 + β1

1− exp
(
−n
τ1

)
n
τ1

+ β2

1− exp
(
−n
τ1

)
n
τ1

− exp

(
−n
τ 1

) (1)

+β3

1− exp
(
−n
τ2

)
n
τ2

− exp

(
−n
τ 2

) .
Here ynt is the zero-coupon yield of maturity n months at time t, β0 approximates the level

of the yield curve, β1 approximates its slope, β2 the curvature and β3 the convexity of the

curve. The latter captures the hump in the yield curve at longer maturities (20 years or

more). When β3 = 0, the specification in (1) reduces to the Nelson-Siegel (1987) form.

This functional form has been used by Gürkaynak, Sack and Wright (2007) to construct

the zero-coupon yield curve, and is a parsimonious representation of the yield curve.5 The

estimates for this nominal curve are updated daily, and are available from January 1972 on

the Federal Reserve Board website. The parameters in (1), which are β0, β1, β2, β3, τ 1 and

τ 2 are estimated using maximum likelihood by minimizing the sum of squared deviations

between the actual Treasury security prices and the predicted prices.6

To construct yield forecasts using the representation in (1), it must be amended with a

process for the evolution of the factors. Diebold and Li (2006) and Aruoba, Diebold and

Rudebusch (2006) specify the two-step estimation of yields and factors:

5See Pooter (2007) for an overview of the methods and forecast comparison.

6The prices are weighted by the inverse of the duration of the securities. Underlying Treasury security
prices in the Gürkaynak, Sack and Wright estimation are obtained from CRSP (for prices from 1961 - 1987),
and from the Federal Reserve Bank of New York after 1987.
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yt = Xtβt + εt (2a)

βt = µ+ Φβt−1 + ηt. (2b)

Here yt is the 3 × 1 vector of yields, Xt is a 4 × 1 vector of the regressors in (1)7, βt is a

4 × 1 vector of the factors, µ is the intercept and Φ denotes the dependence of the factors

on past values. We will consider this as the benchmark model for factor evolution. The

variance-covariance matrices given by:

var(εt) = H =

σ
2
1 0 0

... ... ...

0 0 σ2
n

 ; var(ηt) = Q =

ω
2
11 ω2

12 ω2
13

... ... ...

ω2
n1 ω2

n2 ω2
n3

 . (3)

The factor errors are assumed to be distributed as a normal, with mean zero.8

The forecasts of the yields are constructed as follows:

Etyt+h = EtXtβ̂t+h = XtEtβ̂t+h (4a)

Etβ̂t+h =
[
I3 − Φ̂h

] [
I3 − Φ̂

]−1

µ+ Φ̂hβt, (4b)

where h is the forecast horizon. Here, the second equality in (4a) holds since we use estimated

values of the parameters τ 1 and τ 2 at time t, while forming the conditional forecasts.

3.1 Properties of Nominal Yield Curve Factors

Table 1 summarizes the first and second moments of the yield curve factors, and figure 1

plots the first two factors for the full sample. The level and slope factors behave as expected:

average interest rates are higher in the 1970s, and the yield curves slopes downwards. The

1995−2006 period is characterized by an upward sloping yield curve. The persistence of the

factors also changes between the two sample periods: the second sample is characterized by

larger autocorrelations, at the one-, six- and twelve-month horizons than the 1970s. Figure

7Since the parameters τ1 and τ2 are jointly estimated using the maximum likelihood approach, the Xt

vector is time-varying.
8In the estimation, the cross covariances in ηt are set to zero.
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2 shows the correlation between the yield curve factors and their empirical counterparts. In

the first panel of figure 2, we plot β0 with the yield curve slope, computed as the average of

the three-month, two-year and ten-year yields, (yt(3) + yt(24) + yt(120))/3. For the sample

period 1984 − 2011, the correlation between the two variables is 0.56. The yield slope,

(yt(3) − yt(120)) along with the second factor β1 is plotted in the second panel, and the

correlation between these variables is 0.61. Aruoba, Diebold and Rudebusch (2006) further

interpret these factors in terms of macroeconomic variables. The correlation of β0 with

inflation9 over between 1984− 2011 is 0.22; while this is lower than the estimates of Aruoba,

Diebold and Rudebusch, the correlation between β0 and one-year ahead inflation forecasts

reported by the Survey of Professional Forecasters is 0.59.10 The forecasts are the median

forecasts from the SPF. Figure 2 plots the level factor and actual inflation (computed as

specified above) and one-year ahead inflation expectations. The second factor, β1 has been

interpreted as approximating capacity utilization in the economy. For the 1984− 2011, the

correlation between these variables is 0.63.

3.2 Tests of the Forecast Errors

Since the model for factor evolution in (2b), and implied conditional yield forecasts in (4a)

have been widely used in the literature, we first test the forecast errors implied by this

framework. The underlying hypothesis in these analyses is that the framework in (2b) is

the "true" model for factor evolution. In this case, the forecasts of yields would be rational;

that is, they satisfy the null hypotheses of unbiasedness and effi ciency. Thomas (1999)

presents a survey of the literature that examines the rationality of inflation forecasts reported

by different surveys, and these tests are used to analyze the rationality of the forecasts

from the benchmark model. For the following tests, the sample period from 1985 − 2000

is considered. The out-of-sample forecasts are constructed for the next four years, using a

rolling data window. At each step, the one-, three- and six-month ahead forecasting errors

are constructed. This exercise uses data at the daily frequency, and the forecast errors at

maturity n and horizon h are defined as the difference between the realized yields, and the

9This is the inflation based on the annual percent change in the CPI for all Urban Consumers, seasonally
adjusted. The data series is obtained using the St. Louis FRED database.

10Rudebusch and Wu (2004) emphasize the link between the level factor obtained from their macro-finance
model and the actual as well as expected inflation.
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conditional expected yields from (4a).

3.2.1 Are the Forecast Errors Unbiased?

In order to test whether the model specification in (2b) leads to unbiased forecasts, the

following regression is considered:

ynt+h − Etynt+h = αn + ent,t+h, (5)

for forecast horizons h = 1, 3 and 6 months.11 Here Etynt+h is the expectation at time t of the

yield of maturity n, h periods into the future. The errors corresponding to the regressions for

different yield maturities are denoted by en1t. The coeffi cients for the different yield maturities

and forecast horizons are shown in panel A of table 2. The null hypothesis of unbiasedness

requires αn1 = 0,∀n. The coeffi cients in panel A show that for the one-year yield maturity,
as the forecast horizon increases, the implied conditional forecasts of yields overshoot the

realized yields. For the five- and ten-year yields, the model undershoots the implied yields,

but as the forecast horizon increases, the conditional forecasts are larger than the actual

yields.

3.2.2 Are the Forecast Errors Effi cient?

We test whether there is information in the forecast of the yields which can help to predict

the forecast error:

ynt+h − Etynt+h = αn + βnEty
n
t+h + ent,t+h. (6)

Under the null hypothesis, αn = 0 and βn = 0. This implies that the forecasts themselves

have no predictive content for forecast errors. The coeffi cients in panel B of table 2 show that

this hypothesis is rejected for the yield maturities considered, across the different forecast

horizons.
11This is equivalent to the specification considered by Thomas (1999), and is used by Mankiw, Reis and

Wolfers (2004).
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3.2.3 Are the Forecast Errors Systematic?

If (2b) is the true model for the evolution of the factors, then the implied yield forecasts

must correspond to the "true" forecast. In this case, the forecast errors must be uncorrelated

with the revision in forecast yields (the construction of the forecasts is shown in appendix

B). That is, in the following regression:

ynt+h − Etynt+h = αn + βn
(
Ety

n
t+h − Et−1y

n
t+h

)
+ ent,t+h (7)

the intercept and slope coeffi cients must be statistically not different from zero.12 The

coeffi cients from the regression in (7) are reported in panel C of table 2. Several patterns of

interest emerge from the coeffi cient estimates. The slope coeffi cients are statistically different

from zero, implying that the ex-post forecast errors are systematically predictable from the

ex-ante forecast revisions. There is also a qualitative difference in how the forecast errors

respond to forecast revisions at various horizons. At the longest forecast horizon considered,

the slope coeffi cient is positive, implying that the yield forecasts implied by the model were

lower than observed yields.

3.2.4 Forecast Errors from the Survey Data

For comparison, it is useful to analyze the performance of expectations of yields reported

by the Survey of Professional Forecasters (SPF) using the above tests. SPF data on median

forecasts of the ten-year Treasury yield and three-month Treasury bills are available. We

construct the regressions in (5), (6) and (7) using the forecasts at the six- and twelve-

month forecast horizons.13 The results are shown in three panels in table 3. The null of

unbiasedness is strongly rejected for the three-month Treasury bills. The median forecasts

of the Treasury bills and the ten-year bonds are found to have strong predictive power for the

forecast errors, and the forecast revisions are related to the forecast errors in a statistically

significant manner.14

12This is similar to the test used by Coibion and Gorodnichenko (2012) as a test for full-information
rational expectations. The authors map the estimates of the slope coeffi cients which they obtain from a
regression of inflation forecast errors on the inflation forecast revisions in survey data to theoretical models
of asymmetric information.
13This regression is constructed using the monthly forecasts reported by the SPF.
14SPF forecasts are only available monthly, and the expectations are reported at the quarterly horizons.
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4 Construction of Yield Forecasts under Alternative

Learning Models

In this section, investors are assumed to use the term structure model in (2). However,

they now update their estimates of the parameters describing the factor evolution process,

(µ,Φ), as new information on yields and implied latent factors becomes available. The timing

is as follows: at time t, the estimates of (β0, β1, β2, β3, τ 1, τ 2) are derived using maximum

likelihood estimation. To construct forecasts of the yields at one-, three- and six-month

horizons, the investors use the learning processes described below to determine (µt,Φt).

Once the parameters (µt,Φt) are estimated, they are used for constructing the conditional

yield forecasts.At time t + 1 the process is repeated, and updated estimates of (µt+1,Φt+1)

are used to construct the forecasts of yields and corresponding forecast errors.

In contrast to (2b), this process is represented using a time-varying VAR model (with

the coeffi cients being updated using different learning schemes):

βt = µt−1 + Φt−1βt−1 + ηt. (8)

For each factor βi, i ∈ {0, 1, 2, 3}, the coeffi cients Ωi,t =
(
µi,t,Φi,t

)
are updated as:(

µi,t

φi,t

)
=

(
µi,t−1

φi,t−1

)
+ giR

−1
i,t−1qi,t−1

[
βi,t −

(
µi,t−1

φi,t−1

)′
qi,t−1

]
(9)

Ri,t = Ri,t−1 + gi
[
qi,t−1q

′
i,t−1 −Ri,t−1

]
where qi,t−1 =

(
1, βi,t

)′t−1

t=0
, gi is the weight the investors assign to the forecast errors made and

βi,t is the latent factor derived at time t using the maximum likelihood procedure. Finally,

the forecasts of the yields are given by:

Etyt+h = XtEtβ̂t+h (10)

Etβ̂t+h =
[
I3 − Φ̂h

t−1

] [
I3 − Φ̂t−1

]−1

µt−1 + Φ̂h
t−1βt.

The only distinction from (4a) is that the coeffi cients (µt,Φt) are updated over time. We

make the assumption that while making conditional forecasts at time t, the investors do not

13



allow for the possibility that they will revise their estimates of (µ,Φ) .15

4.1 Constant gain learning

With constant gain learning (CGL), the gain parameter g is fixed. CGL has been a widely

used method for characterizing the expectations formation for optimizing agents. In contrast

to the constant-coeffi cients model, investors can now allow for structural changes in the

data they are forecasting, by placing an exponentially decaying weight on the history of

observations. However, this process does not allow them to modify the weights they place

on past data, in case they observe actual data realizations that are significantly different.

That is, at any point in time, the agents will continue to place the same weight on an

observation n quarters ago, that they did before. Due to this characteristic of CGL, the

technique is limited in explaining the behavior of macroeconomic variables, such as the high

inflation in 1970s, and the subsequent behavior of the series during the Great Moderation.

These observations motivate us to propose the following learning techniques.

4.2 Endogenous gain learning

Under endogenous learning, the investors continue to use the law of motion for the factors

in (8), along with the updating equation in (9). However, the gain is no longer held fixed

for the entire sample. In the first variant of endogenous learning, EGL1 hereafter, the gain

switches according to the specification below:

g =

 g1 if
∣∣∣Ωt−Ω̄k

σΩ

∣∣∣ ≤ ε

g2 if
∣∣∣Ωt−Ω̄k

σΩ

∣∣∣ > ε
. (11)

Here Ω̄ is the average of the k most recent coeffi cients and σΩ is the standard deviation of

these k coeffi cients. The following time line describes the investors’updating mechanism:

investors use a baseline time period to estimate gains g1 and g2. At time t, they observe

new data on βt, and use the estimated gain g1 to update there coeffi cients to Ωt. They then

compare these coeffi cients to the average of the coeffi cients for the k most recent periods. If

15This is the anticipated utility assumption (Kreps, 1988).
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the difference is not significant16, the investors continue to use g1 to update their coeffi cients

next period. However, if the difference is large, they switch the gain to g2, and then updates

its coeffi cients to Ωt..

The novel feature of this learning mechanism is that it allows the investors to endoge-

nously switch their beliefs and permits them to change the weights they place on past data,

in response to new information. This does not require the underlying state variable (the

endowment process in this simple model) to be regime-dependent.

An alternative to the gain specification in (11) is the following (EGL2 in the following

discussions), developed in Gaus (2013):

gt = ḡlb + ḡsf

∣∣∣Ωt−Ω̄k
σΩ

∣∣∣
1 +

∣∣∣Ωt−Ω̄k
σΩ

∣∣∣ , (12)

where ḡlb is the lower bound the endogenous gain and ḡsf is the scaling factor. In this variant

of endogenous learning, if the recent coeffi cient estimate (Ωt) is close to the mean (Ω̄k), then

gt = ḡlb. However, as the realization of Ωt diverges from Ω̄k, the gain approaches ḡlb +ḡsf .

Therefore, as long as 0 < ḡsf , ḡsf < 1 and ḡlb +ḡsf < 1, gt will be bounded between zero and

one. As times progresses, the investors will increase increase the value of the gain in times

when their coeffi cient estimates are different from the recent past, and decrease the value of

the gain when their coeffi cient estimates are similar.

The process in (12) is different from the gain in (11) the following fundamental way:

as the divergence between the recent coeffi cient estimates and mean increases, investors

become more inattentive to the history of data. That is, they begin to weight the more

recent observations more heavily. Meanwhile, the gain in (11) implies that the agents may

be weighing past observations more (g2 < g1), or less (g2 > g1). However, it will not adapt

to the the difference between the coeffi cient estimates and the mean, in the same manner as

(12). The comparative numerical results below are presented for the benchmark constant-

coeffi cients case (in which (µt,Φt) are not updated and g = 0), CGL, and gain specifications

following (11) and (12).

16Using the measure defined in (11).
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5 Evaluation of the Models and Implications for In-

vestor Expectations

There are two aspects of investor expectations that we will analyze. First, for a fixed yield

maturity, how do investors form conditional forecasts over different forecasting horizons?

That is, do they hold their beliefs constant while making forecasts over the short- and

medium-term, or do the beliefs depend on the forecasting horizon? Second, when the fore-

casting horizon is held constant, do investors keep their beliefs constant while making fore-

casts about the one- and ten-year yields, or are these beliefs varying? The results presented

below will provide a framework for analyzing the beliefs of investors on these dimensions.

We first consider the performance of the different models of expectations formation for

the Great Moderation period, and the analysis is later expanded to compare forecasts for the

Great Recession. The models’forecasting performance is evaluated by comparing their root

mean square errors (RMSEs), and then the implications of these results for modeling investor

expectations are discussed. The sample period is January 1980 to December 1993, and the

out-of-sample forecasts are constructed for the years between 1994-2000. The out-of-sample

forecasts are constructed for the one-, five- and ten-year yields, at the one-, three- and six-

month horizons. These horizons are set to match (on average) the number of trading days.

For example, for constructing the one-month ahead forecast, the number of days is set at

21. Before discussing the model evaluation in section 5.2 below, we describe the mechanism

used to compute the optimal gains used in the different learning mechanisms.

5.1 Determination of the Gain Parameters

In order to allow investors to update their coeffi cients of Ωt, using the constant-gain algorithm

described above, we must first set the initial values of the gain parameter. We allow the

investors to use different gains for the four latent factors, and these initial values are available

upon request. The initial sample period is used find the optimal constant gain for the latent

factors. These are shown in table 4. The optimal gains (as well as the initial values of

the gain parameters) for the remaining forecast horizons are shown in the appendix. These

values are at the lower end of the gain values used in the literature. For example, Eusepi

and Preston (2013) use a gain of 0.002 in a RBC model, while Milani (2007a) estimates a
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gain of 0.02 using a DSGE model for the U.S. economy. To our knowledge, our paper is the

first to provide estimates of the gain parameter, using macroeconomic data observed at a

daily frequency.

The values of the gain parameter are central to characterizing expectations using these

learning models. The values of the gain parameter presented in table 4 show that at the

different forecasting horizons, the gain for the factor corresponding to the slope is higher

than for the other factors, and it decreases across the forecasting horizon. This implies

that while forming conditional expectations at these longer horizons, more weight is being

assigned to observations further in the past. Therefore, investors appear to paying more

attention to a longer history of data for the yield curve slope, compared to the other factors.

The importance of varying gain values is further discussed in the context of the policy

experiment simulated below. In the first variant of endogenous learning, EGL1, the optimal

values for the gains corresponding to the different factors are specified in the third and fourth

columns of 4. The investors are assumed switch between these gains when the difference

between the estimated coeffi cients Ωt differs from the historical average by more than two

standard deviations. In all the following simulations of conditional yield forecasts, investors

are assumed to be using t = 140 days of data. On observing large deviations from the past

coeffi cients, the investors use g2. As the coeffi cients show, large deviations from the historical

data on coeffi cients motivate investors to optimally choose a lower gain; that is, they place

greater weight on past observations than before.

5.2 Investor Expectations during the Great Moderation andModel

Evaluation

Table 5 presents the comparison of conditional forecasts of the constant-coeffi cients17, con-

stant gain and endogenous learning models. In order to compare the forecasting performance,

we first fix the yield maturity, and then compare across forecasting horizons. As expected,

in general, the constant coeffi cients model is outperformed by the learning models. For the

17For the constant-coeffi cients model, in order to construct the forecast, as additional data becomes avail-
able for the latent factors, the coeffi cients Ωt are also re-estimated. This strategy is adopted to allow the
benchmark model to have the best possible forecasting perfomace against the alternatives. This is in contrast
to the methodology of Laubach, Tetlow and Williams (2007)
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one-year yield, the learning algorithms outperfom the constant coeffi cients model in a more

significant manner as the forecasting horizon increases; the pattern is repeated across the

yield curve as well. Also, for all the yield maturities considered, as the forecasting horizon

increases, the RMSEs are lowered for the learning algorithms, in contrast to the result for

the constant coeffi cients case. For example, at the six-month horizon, for the ten-year yield,

the CGL algorithm improves upon the RMSE of the benchmark model by approximately

23%. This improvement in forecasting performance suggests that even during the period of

the Great Moderation, there is evidence of investors accounting for structural changes in the

factors. Conversely, for a fixed forecasting horizon, the improvement in forecasting horizon

for the learning models is larger as the yield maturity increases.

The findings for the learning models can be parsed out further dimensions. For a fixed

yield maturity, as the forecasting horizon increases, there are significant improvements in the

RMSE, and this is applicable to all the different algorithms. For example, for the one-year

yield, the RMSEs at the six-month horizon are lower than the RMSEs at the one-month

horizon by 21% and 16% for the constant gain and EGL1 algorithms respectively. The

corresponding reductions in RMSEs for the ten-year yield are 18% and 16%. Conversely,

when the forecasting horizon is held fixed, as the there are small improvements in forecasting

performance across the yield curve.

The predictions of the EGL1 model are not significantly different from those of CGL for

the Great Moderation. However, the finding that investors are switching to a lower gain for

the different latent factors, when large deviations from the past average of coeffi cients are

observed, is important. Applying the second variant of endogenous learning (EGL2) to the

Moderation period, we find that for the one- and three-month horizons, EGL2 implies similar

results as EGL1 across the various yield maturities (table 5). At the six-month forecasting

horizon, the EGL2 forecasts are better than those implied by EGL1. The fact that EGL2

implies better forecasts at the longer forecast horizons, implies that investors may simply

choose to become inattentive to the history of data, when they observe large deviations from

the past. However, while they are forecasting over the shorter and medium-term horizons

(and the subsequent consumption, savings and investment decisions associated with these

horizons), they find it optimal to pay more attention to the past behavior of the data.

In our view, the above results suggest the following implications. First, incorporating

time-variation in the formation of investors’conditional forecasts leads to significant fore-
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casting improvements. These results are robust across forecasting horizons, as well as yield

maturities. Second, a large literature has used constant gain learning to model investor

beliefs in theoretical frameworks. While this framework does well during the Great Mod-

eration, our analysis for the Great Recession below suggests that during periods of large

deviations in the data, from the historical average, it may not be able to capture the belief

formation process adequately. Adopting the endogenous learning algorithms proposed above

provides an intuitive manner to model investor beliefs during such periods, as well as periods

with low volatility. Intuitively, during periods of low volatility, the investors will not need to

pay attention to a longer time series of the latent factors. However, as deviations from past

averages increase, the investors begin to pay significantly more attention to the historical

evolution of the factors. This finding corroborates the findings of Coibion and Gorodnichenko

(2012), where the authors find that the degree of information rigidity increases during the

Great Moderation, and decreases in periods of high volatility.

5.3 Investor Expectations during the Great Recession

To analyze the implications for the Great Recession period, the baseline period is from July

2006 to June 2009, and the forecasts are constructed for July 2009 to January 2011. The Root

Mean Square Error (RMSE) is used to compare the forecasting performance across different

models. The results for the different models are presented in table 6. The optimal gains are

derived in a similar manner; during the Great Recession, we find that the optimal values

of the constant gain are larger than for the Great Moderation by two orders of magnitude

. The gains also increase as the forecast horizon is increased to three months. We attribute

this partly to the short data sample used to find the optimal gains. Due to the short sample

period, we only present the results for the one- and three-month forecasting horizons for this

period.

For the recession period, the CGL mechanism improves on the benchmark model by

close to 60% for the ten-year yield at the three-month forecasting horizon. During the

Great Recession, EGL1 outperforms the constant gain learning algorithm, as the RMSEs

show in table 6. Therefore, investors are doing better at predicting yields at all forecasting

horizons, when they begin to weight the historical data more heavily. This implies that

their conditional forecasts display much more persistence than the CGL model allows for, in
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periods of large deviations.

In our view, this observation has important implications for considering the effect of

different monetary policy actions on investor expectations. If investors place asymmetric

weights on recent observations for shorter and longer yields at different forecasting horizons,

then the policy of targeting only shorter-term interest rates may not translate into the

desired effects on longer-term investor expectations. Both the benchmark model, as well

as the constant gain learning approach will be unable to capture this shift in beliefs, and

the analysis of monetary policy actions through the lens of these frameworks, may be an

incomplete representation of investors’conditional forecasts.

5.4 Other Moments of the Forecasting Errors

Other moments of the forecasting errors are presented in table 7. We find that the mean of

the errors for the different yields increases as the forecasting horizon becomes longer. The

variance of the errors also increases across the yield spectrum as the forecasting horizon is

lengthened, although the autocorrelation of the forecast errors reduces. These findings are

similar to the results reported by Diebold and Li (2006). Finally, the mean forecast errors

for the recession period are negative: the model consistently produces yield forecasts that

overshoot the realized yields during this period.

The properties of the forecast errors implied by the CGL model are further analyzed

in table 8. In the latter period, the yield forecasts implied by the CGL algorithm over-

shoot the realized yields; however, the magnitude of overshooting is smaller compared to

the benchmark case. The variance of the forecasting errors is also reduced substantially.

Other moments of the forecast errors from the endogenous learning mechanisms during the

Moderation and period are shown in tables 9 and 10. The moments of forecasting errors

during the Great Recession are shown in the appendix.

5.5 Context in the Literature

The endogenous learning techniques proposed in this paper provide a general mechanism to

model the change in investor beliefs, in response to large fluctuations in the data. These can

be easily applied in cases where learning for multiple variables is required. It is, however,

useful to compare the performance of our learning algorithms, with the endogenous learning
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process suggested by Marcet and Nicolini (2003). To explain the hyperinflations across

different countries, the authors propose a learning algorithm in which the agents switch

between a decreasing and constant gain based on the forecasting errors for the variable being

forecast (in their case, inflation). While this strategy works well in the case of univariate

forecasting, it may be challenged in the case of multiple variables. To test this, we use the

Marcet and Nicolini strategy, and the gain parameter now switches between decreasing gain

(g = 1/t), and the constant gain estimated for the baseline period used above. The results

are reported in the appendix.

Using the Marcet and Nicolini (2003) process, denoted as MN1, the gain switches to

the constant value when the mean forecasting error exceeds a predetermined value. In the

Milani (2007) variation, denoted MN2, the switching occurs when the mean forecasting error

exceeds the historical average of forecasting errors. The results show a consistent pattern

across the forecasting horizons, for a fixed yield maturity: the MN1 process is outperformed

by the remaining learning algorithms. For both the period under consideration, the MN1

and MN2 techniques imply similar RMSEs as EGL1 and EGL2. The results are available

upon request.

6 A Policy Experiment: The Effects of an FOMC An-

nouncement

The findings above suggest the following: (a) the constant-coeffi cients benchmark model

is unable to capture the varying persistence in the conditional forecasts of investors, at

different forecast horizons and yield maturities; (b) differences in the formation of conditional

expectations, at the short- and long-end of the term structure have important implications

for analyzing the effects of central bank policies, which influence the short yields, on the

term structure of yields.

In order to illustrate the differences in the predictions of the constant-coeffi cients and

the learning models, we consider a policy experiment. In the recent years, following the

Great Recession, the communications of the Federal Reserve, through the statements of the

Federal Open Markets Committee (FOMC), have provided increasingly explicit guidance

about the timing of the monetary policy intervention. The introduction of these statements
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has been important: the first calendar-based guidance of the FOMC, in August 2011, was

found to cause a significant drop in the expectations of the federal funds rate by professional

forecasters, as found by Crump, Eusepi and Moench (2013).

The calendar-based guidance in the September 2012 statement shifted the end of the ac-

commodative monetary policy to mid-2015. Following this statement, the October statement

made no changes to the policy, and in December 2012, the accommodative stance of policy

was made dependent on the state of the economy, with an emphasis on the unemployment

rate. Thus, the FOMC statement in September 2012 was important because it was the last

explicit change in date-based calendar guidance. We ask the following question: following

the release of this statement, what was the evolution of yields in the data, at the one-month

horizon, and what were conditional forecasts of yields implied by the constant-coeffi cient and

benchmark models?

In order to construct the conditional forecasts of yields, following the FOMC state-

ment release on September 13, 2012, we adopt the following strategy. The estimates of

(β0, β1, β2, β3, τ 1, τ 2) for mid-December 2011 to September 13, 2013 are used to derive the

AR(1) parameters in (2b). We then construct the one-month ahead forecasts, using the

constant-coeffi cients model, and the different learning algorithms. For these algorithms, the

optimal gains found during the Great Moderation are used (since the gains from the Great

Recession are found using a significantly smaller sample period). Following the announce-

ment, a one standard deviation fall in β0 is simulated, and the shock is assumed to last

for two days following the announcement. The one-month ahead forecasts of the one-, five-

and ten-year yields are shown in figure 3. To show the relative performance of the different

models, we show the ratio of the five- and ten-year yields to the one-year yield. At the

one-month horizon, the implied yield curve (derived using the estimated β and τ factors,

at the one-month ahead horizon) falls. The constant-coeffi cients model forecasts of yields

explains only 19.5% of the total variation in yields, following the shock. However, the con-

stant gain and endogenous gain learning (EGL1) algorithms predict yields that follow the

same pattern as the implied yield curve, and explain 34.4% and 29.6% of the total varia-

tion in yields following the shock. While the drop in the learning yields is not as large as

shown by the actual yield curve, the conditional forecasts are significantly closer than the

constant-coeffi cient benchmark. This experiment suggests that accounting for the varying

weights placed on the history of information is important for understanding the forecasts of
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investors about the term structure.

7 Explaining Expected Excess Returns

Predictable patterns in excess returns for nominal yields in the U.S. have been well docu-

mented. Piazzesi, Salomao and Schneider (2013) and Dick, Schmeling and Schrimpf (2013)

document the patterns in excess returns using survey data; the patterns are compared with

those generated by an affi ne factor model in the former approach. In this section, we first

use data from the Survey of Professional Forecasters to estimate the expected excess returns

for the ten-year yield. We then investigate the implications of the learning model, along with

those of the constant-coeffi cients model.

The excess return for yield maturity n, at time t, for horizon h is given by:

Et

[
rx

(n+h)
t,t+h

]
= Et

[
p

(n)
t+h

]
− p(n+h)

t − yht , (13)

here pnt is the price of the zero-coupon security at time t of maturity n quarters. Then, in

terms of the yields:

Et

[
rx

(n+h)
t,t+h

]
= −nEt

[
y

(n)
t+h

]
+ (n+ h) y

(n+h)
t − y(h)

t . (14)

With SPF data, we can compute the following, for n = 40 quarters (10 − year yield) and
h = 4 (1-year ahead forecasts)

Et

[
rx

(n+h)
t,t+h

]
= −nEt

[
y

(n)
t+h

]
+ (n+ h) y

(n+h)
t − y(h)

t (15)

= −40Et

[
y

(40)
t+4

]
+ (40 + 4) y

(40+4)
t − y(4)

t .

In order to compute excess returns for the ten-year yield for forecasting horizons h, for the

yields y(40+4)
t and y(4)

t , we use the eleven-year and one-year yield from the Gürkaynak, Sack

and Wright (2007) data. Et
[
y

(10)
t+4

]
is the SPF expected value of the 10-year yield at the

1-year horizon. The same methodology is used to construct expected excess returns from

the learning and constant coeffi cients models; in this case, the Et
[
y

(10)
t+4

]
is computed using

the conditional forecasts described above in section 4. In this section, we generate expected

excess returns from survey data and the theoretical models for the period 1993 to 2008. For
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the learning models, the gain parameters are set using the optimal gains derived for the

Great Moderation period (we use the gains shown in panel A of table 4).

The evolution of expected excess returns for the constant coeffi cients, CGL and EGL2

algorithms are shown in the two panels of figure 4. The excess returns from the former are

significantly more variable. These are also higher on average for the sample period, than

excess returns implied by any of the learning algorithms. The evolution of the expected

excess returns over the sample period also reveals an important finding: the excess returns

of the constant-coeffi cients are counter cyclical; in comparison, the excess returns from the

learning models are significantly less counter cyclical. This is also the pattern observed in

the expected excess returns generated from the SPF data. These findings are similar to the

results of Piazzesi, Salomao and Schneider (2013).

Among the learning models, the endogenous learning algorithm matches the patterns

observed in survey data better even during the sub-sample of the Great Moderation period.

With the constant gain process, there are several sub-period observed during which the

implied excess returns are rising, even as the survey expected excess returns are falling.

Finally, table 11 shows the moments of the expected excess returns for the ten-year yield,

at the one-year forecasting horizon for the SPF survey data, constant coeffi cients and the

different learning models.

8 Conclusion

An empirical analysis of how subjective expectations evolve is useful for both macroecono-

mists and financial economists. Central bankers try to influence the economy using the short-

term yields. Whether the transmission mechanism (to the long end of the curve) occurs as

posited by bankers is still a matter of debate. If expectations of investors about future short

yields are not rational, and are more persistent than policy makers expect them to be, then

long yields may not move as much as anticipated. The above analysis attempts to show that

the Nelson-Siegel-Svensson model of characterizing the yield curve can be improved upon

by allowing for a process for factor evolution that incorporates time-varying parameters,

instead of a constant-coeffi cient VAR model. Alternative models of expectations formation,

the constant-gain learning process and endogenous gain, improve upon the forecasting per-

formance of the spline based method. The improvements in out-of-sample forecasting occurs
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during periods of low volatility, as well as during the financial crisis period.

References

[1] Aruoba, B., F.X. Diebold and G.D. Rudebusch, (2006), "The Macroeconomy and the

Yield Curve: A Dynamic Latent Factor Approach", Journal of Econometrics, 131, pp.

309-338.p. 396-409.

[2] Bianchi, F., H. Mumtaz and P. Surico, (2009), "The Great Moderation of the Term

Structure of U.K. Interest Rates", Journal of Monetary Economics, 56, pp. 856-71.

[3] Christensen, J.H.E., F.X. Diebold and G.D. Rudebusch, (2011), "The Affi ne Arbitrage-

Free Class of Nelson-Siegel Term Structure Models", Journal of Econometrics, 164, pp.

4-20.

[4] Coibion, O., and Y. Gorodnichenko, (2012), "Information Rigidity and the Expectations

Formation Process: A Simple Framework and New Facts", Working paper.

[5] Crump. R, S. Eusepi and E. Moench, (2013), "Making a Statement: How Did Profes-

sional Forecasters React to the August 2011 FOMC Statement?", Liberty Street Eco-

nomics Blog.

[6] Dewachter, H., and M. Lyrio, (2006), "Macro Factors and the Term Structure of Interest

Rates", Journal of Money, Credit and Banking, 38, pp. 119-140.

[7] Diebold, F.X. and C. Li, (2006), "Forecasting the Term Structure of Government Bond

Yields", Journal of Econometrics, 130, pp. 337-364.

[8] Eusepi, Stefano, and B. Preston, (2011). "Expectations, Learning and Business Cycle

Fluctuations". American Economic Review, forthcoming.

[9] Fuhrer, J., (1996). "Monetary Policy Shifts and Long-Term Interest Rates". The Quar-

terly Journal of Economics, 111(4), pp. 1183-1209.

[10] Gaus, E., (2013), "Time-Varying Parameters and Endogenous Learning Algorithms",

Working paper, Ursinus College.

25



[11] Gürkaynak, R.S., Sack, B., Wright, J.H., (2007), "The U.S. Treasury Yield Curve: 1961

to the Present", Journal of Monetary Economics, 54, pp. 2291-2304.

[12] Kostyshyna, O. (2013), "Application of an Adaptive Step-Size Algorithm in Models of

Hyperinflation", Macroeconomic Dynamics, 16, pp. 355—375.

[13] Kozicki, S. and P. A. Tinsley, (2001). "Shifting Endpoints in the Term Structure of

Interest Rates". Journal of Monetary Economics, 47(3), pp. 613-652.

[14] Kreps, D., (1998), "Anticipated Utility and Dynamic Choice", 1997 Schwartz Lecture.

In: D.P. Jacobs, E. Kalai and M. Kamien, Editors, Frontiers of Research in Economic

Theory, Cambridge University Press, Cambridge, England.

[15] Laubach, T., R. J. Tetlow and J. C. Williams, (2007). "Learning and the Role of Macro-

economic Factors in the Term Structure of Interest Rates". Working paper.

[16] Mankiw, N.G., J. Wolfers and R. Reis, (2004), “Disagreement about Inflation Expecta-

tions,”NBER Macroeconomics Annual 2003, pp. 209-248

[17] Marcet, A. and J.P. Nicolini, (2003), "Recurrent Hyperinflations and Learning", Amer-

ican Economics Review, vol. 93(5), pp. 1476-1498.

[18] Milani, F., (2007a), "Learning and Time-Varying Macroeconomic Volatility", Working

paper.

[19] Milani, F., (2007b), "Expectations, Learning and Macroeconomic Persistence", Journal

of Monetary Economics, 54, pp. 2065-2082.

[20] Nelson, C.R. and A.F. Siegel, (1987), "Parsimonious Modeling of Yield Curve", Journal

of Business, 60, pp. 473-489.

[21] Piazzesi, M., J. Salomao and M. Schneider, (2013), "Trend and Cycle in Bond Premia",

Working paper.

[22] Pooter, M. de, (2007), "Examining the Nelson-Siegel Class of Term Structure Models,"

Discussion Papers 07-043/4. Tinbergen Institute.

26



[23] Rudebusch, G.D. and T.Wu, (2007), "Accounting for a Shift in Term Structure Behavior

with No-Arbitrage and Macro-Finance Models", Journal of Money, Credit and Banking,

39, pp. 395-422.

[24] Sinha, A., (2013), "Learning and the Yield Curve", Working paper.

[25] Svensson, L., (1994), "“Estimating and Interpreting Forward Rates: Sweden 1992-4,”

National Bureau of Economic Research Working Paper 4871.

[26] Thomas, L., (1999), "Survey Measures of Expected U.S. Inflation", Journal of Economic

Perspectives, vol. 13(4), pp. 125-144.

27



Table 1: Properties of Nominal Yield Curve Factors

Factor 1995-2006

µ σ ρ(βt, βt−m)

m = 1 m = 6 m = 12

β0 1.98 1.99 0.73 0.16 0.23

β1 2.01 2.26 0.75 0.22 0.25

β2 1.04 3.28 0.77 0.27 0.14

β3 12.16 5.72 0.70 -0.14 0.40

Note: The above moments are show for end of month data on the latent factors for the sub-

samples indicated.
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Table 2: Testing Forecast Errors for Nominal Yield Curve Factors

Yield h = 1 month h = 3 months h = 6 months

Maturity α β α β α β

Test 1: yt+h − Etyt+h = α + errort

1 year -2.1764
(0.04)

- -3.5495
(0.05)

- -5.2820
(0.08)

-

5 years 0.6366
(0.02)

- -0.5364
(0.03)

- -1.9979
(0.05)

-

10 years 1.9427
(0.02)

- 0.7984
(0.03)

- -0.6240
(0.04)

-

Test 2: yt+h − Etyt+h = α + βEtyt+h + errort

1 year 1.8125
(0.12)

-0.9225
(0.02)

2.4473
(0.12)

-1.0533
(0.02)

3.1419
(0.10)

-1.1353
(0.01)

5 years 2.3957
(0.04)

-0.5669
(0.01)

2.5063
(0.06)

3.7128
(0.03)

3.0019
(0.07)

-0.8723
(0.01)

10 years 3.8036
(0.02)

-0.6499
(0.00)

-0.5364
(0.03)

-0.7276
(0.00)

3.8714
(0.04)

-0.8286
(0.00)

Test 3: yt+h − Etyt+h = α + β (Etyt+h − Et−1yt+h) + errort

1 year -0.0000
(0.00)

3.0649
(0.02)

0.0357
(0.00)

0.5958
(0.00)

0.0496
(0.00)

0.7051
(0.00)

5 years 0.0489
(0.00)

-0.5694
(0.02)

0.0505
(0.00)

0.1743
(0.00)

0.0539
(0.00)

0.3776
(0.00)

10 years 0.0801
(0.00)

-2.4728
(0.02)

0.0818
(0.00)

-0.0691
(0.00)

0.0722
(0.00)

0.1809
(0.00)

Note: The above coeffi cient estimates are reported using daily data on the latent factors, for

the period 1985-2000. The standard errors are shown for the corresponding coeffi cients in brackets.

These coeffi cients are statistically significant at the 5% level.
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Table 3: Testing Forecast Errors for SPF Data

Yield h = 3 months h = 1 year

Maturity α β α β

Test 1: yt+h − Etyt+h = α + errort

T-bill -0.1288∗∗∗
(0.05)

- -0.2305
(0.18)

-

10 year -0.1220
(0.09)

- -0.2305
(0.18)

-

Test 2: yt+h − Etyt+h = α + βEtyt+h + errort

T-bill 0.3201∗
(0.19)

-0.0794
(0.03)

∗∗ 6.8827
(1.17)

∗∗∗ -1.1136
(0.18)

∗∗∗

10 year 2.0809
(0.77)

∗∗∗ -0.3472∗∗∗
(0.12)

Test 3: yt+h − Etyt+h = α + β (Etyt+h − Et−1yt+h) + errort

T-bill -0.1040
(0.04)

∗∗ 0.3636∗∗∗
(0.09)

−0.2135
(0.18)

−0.3735
(0.48)

10 year -0.1209
(0.10)

0.2493
(0.21)

Note: The SPF median forecasts are reported monthly, and data from 1992Q2-2002-Q4 is used

here. *** denotes significance at the 1% level, ** at the 5% level and * at the 10% level
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Table 4: Optimal Values of the Gain Parameter

Optimal Values of Gain Parameters

Factors CGL EGL1 EGL2

g1 g2 ḡlb ḡsf

Great Moderation (Forecasting horizon h = 1 month)

β0 0.0007 0.0030 0.0001 0.0001 0.0009

β1 0.0022 0.0027 0.0001 0.0011 0.0002

β2 0.0012 0.0012 0.0001 0.0013 0.0007

β3 0.0009 0.0010 0.0004 0.0001 0.0006

Great Recession (Forecasting horizon h = 1 month)

β0 0.1899 0.0545 0.0001 0.1905 0.0000

β1 0.1486 0.0378 0.0001 0.1487 0.0000

β2 0.1132 0.1126 0.0002 0.1132 0.0000

β3 0.2187 0.1063 0.0010 0.2187 0.0000

Note: These are the optimal gain values for constant gain (CGL), endogenous learning with

switching (EGL1) and endogenous gain with the scaling factor (EGL2), at the one-month forecasting

horizon, for the two sample periods.
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Table 5: Evaluating the Conditional Forecasts

Yield RMSE-BM RMSE-CGL RMSE-EGL1 RMSE-EGL2

Maturity

Forecasting horizon h = 1 month

1 year 3.8583 3.6662 3.6670 3.6651

5 years 3.5326 3.3305 3.3330 3.3319

10 years 3.8077 3.6132 3.6163 3.6157

Forecasting horizon h = 3 months

1 year 3.7911 3.3629 3.3654 3.3651

5 years 3.5510 3.1529 3.1571 3.1570

10 years 3.8195 3.4432 3.4476 3.4477

Forecasting horizon h = 6 months

1 year 3.7653 3.0183 3.0675 3.0218

5 years 3.5583 2.6865 2.7541 2.6920

10 years 3.8187 2.9551 3.0272 2.9609

Note: These are the root mean square (RMSE) values for constant coeffi cients (BM), constant

gain (CGL), endogenous learning with switching (EGL1) and endogenous gain with the scaling

factor (EGL2) models, at the three forecasting horizons.
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Table 6: Evaluating the Conditional Forecasts during the Great Recession

Yield RMSE-BM RMSE-CGL RMSE-EGL1 RMSE-EGL2

Maturity

Forecasting horizon h = 1 month

1 year 21.9134 10.7684 10.6107 10.6438

5 years 29.8131 12.3722 12.2163 12.2476

10 years 29.9448 11.4484 11.3015 11.3330

Forecasting horizon h = 3 months

1 year 21.9738 11.0417 10.9172 10.9172

5 years 29.8787 12.7111 12.5824 12.5824

10 years 29.9597 11.7318 11.6102 11.6102

Note: These are the root mean square (RMSE) values for constant coeffi cients (BM), constant

gain (CGL), endogenous learning with switching (EGL1) and endogenous gain with the scaling

factor (EGL2) models, at the three forecasting horizons.
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Table 7: Moments of Forecasting Errors from Benchmark Model for Nominal Yields for the

Great Moderation

Yield Mean Std.dev ρ1 ρ12

Maturity

Forecasting horizon h = 1 month

1 year 1.6691 3.4797 0.7374 0.3113

5 years 2.7581 2.2080 0.5681 0.1074

10 years 3.1550 2.1326 0.5337 0.0375

Forecasting horizon h = 3 months

1 year 1.7276 3.3757 0.3370 -0.1783

5 years 2.7660 2.2276 0.2381 -0.2964

10 years 3.1415 2.1731 0.2315 -0.2705

Forecasting horizon h = 6 months

1 year 1.7665 3.3263 0.2644 -0.2467

5 years 2.7319 2.2807 0.1278 -0.2227

10 years 3.0909 2.2432 0.0945 0.0234

Note: These are the mean, standard deviation (Std.dev), and autocorrelations in the forecast

errors. ρ1 denotes the autocorrelation between the forecast errors at the 1 month lag; ρ12 is the

statistic at the 12 month lag.
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Table 8: Moments of Forecasting Errors from Constant Gain Learning Model for Nominal

Yields for the Great Moderation

Yield Mean Std.dev ρ1 ρ12

Maturity

Forecasting horizon h = 1 month

1 year 1.6622 3.2688 0.7764 0.3274

5 years 2.7465 1.8845 0.6244 0.1368

10 years 3.1429 1.7831 0.5818 0.0654

Forecasting horizon h = 3 months

1 year 1.7340 2.8822 0.5008 -0.1509

5 years 2.7419 1.5570 0.3617 -0.5345

10 years 3.1128 1.4721 0.3317 -0.4897

Forecasting horizon h = 6 months

1 year 1.4480 2.6491 0.4293 -0.2729

5 years 2.3560 1.2915 0.3475 -0.4472

10 years 2.7072 1.1852 0.2860 -0.2552

Note: These are the mean, standard deviation (Std.dev), and autocorrelations in the forecast

errors. ρ1 denotes the autocorrelation between the forecast errors at the 1 month lag; ρ12 is the

statistic at the 12 month lag.
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Table 9: Moments of Forecasting Errors from EGL1 Model for Nominal Yields for the Great

Moderation

Yield Mean Std.dev ρ1 ρ12

Maturity

Forecasting horizon h = 1 month

1 year 1.6670 3.2672 0.7673 0.3241

5 years 2.7508 1.8827 0.6175 0.1319

10 years 3.1471 1.7821 0.5769 0.0600

Forecasting horizon h = 3 months

1 year 1.7383 2.8826 0.4987 -0.2708

5 years 2.7456 1.5588 0.3578 -0.2613

10 years 3.1165 1.4748 0.3278 -0.2190

Forecasting horizon h = 6 months

1 year 1.5437 2.6516 0.4728 -0.6109

5 years 2.4509 1.2566 0.3608 -0.5427

10 years 2.8021 1.1461 0.2959 -0.3122

Note: These are the mean, standard deviation (Std.dev), and autocorrelations in the forecast

errors. ρ1 denotes the autocorrelation between the forecast errors at the 1 month lag; ρ12 is the

statistic at the 12 month lag.
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Table 10: Moments of Forecasting Errors from EGL2 Model for Nominal Yields for the Great

Moderation

Yield Mean Std.dev ρ1 ρ12

Maturity

Forecasting horizon h = 1 month

1 year 1.6659 3.2657 0.7688 0.3266

5 years 2.7503 1.8814 0.6191 0.1321

10 years 3.1468 1.7813 0.5779 0.0599

Forecasting horizon h = 3 months

1 year 1.7390 2.8818 0.4997 -0.1453

5 years 2.7460 1.5582 0.3581 -0.5284

10 years 3.1169 1.4741 0.3278 -0.4837

Forecasting horizon h = 6 months

1 year 1.4546 2.6495 0.4312 -0.2879

5 years 2.3604 1.2949 0.3438 -0.3933

10 years 2.7114 1.1900 0.2803 -0.2174

Note: These are the mean, standard deviation (Std.dev), and autocorrelations in the forecast

errors. ρ1 denotes the autocorrelation between the forecast errors at the 1 month lag; ρ12 is the

statistic at the 12 month lag.
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Table 11: Moments of Excess Returns

Data/Model SPF BM CGL EGL1 EGL2

Moment

Mean 0.0858 2.2616 1.5491 2.1674 2.5124

Stdev 0.3624 1.7333 1.0635 0.9621 0.8021

Note: This table reports the mean and standard deviations of the expected excess returns

derived using equation (15). The time period used for computing excess returns from SPF data is

1993:Q1 - 2007:Q4. The mean and standard deviation values have been converted to the monthly

frequencies.
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Figure 1: Level and Slope Factors for Nominal Curve
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Note: The figure shows the evolution of the first two latent factors of the nominal yield curve.

The shaded regions denote the NBER recessions.

Figure 2: Factors and Empirical Counterparts for Nominal Curve
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Note: The figure shows the evolution of the first two latent factors of the nominal yield curve,

with their obervable empirical counterparts. The shaded regions denote the NBER recessions.
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Figure 3: Effects of a Policy Announcement on the Yield Forecasts
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Note: The figure shows the one-month ahead conditional forecast of the yield curve, following

a one standard deviation fall in β0. The ratio of the yields are shown here. The graph point

corresponding to ’2’ is the ratio of the one-month ahead five-year yield to the one-year yield,

implied by the different models; at point ’3’, the corresponding ratio of the ten-year yield to the

one-year yield is shown. The graph plots the realized yield ratios (Realz), the yields under rational

expectations (RE), constant gain learning (CGL) and the endogenous learning mechanism (EGL2).
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Figure 4: Evolution of Expected Excess Returns
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Note: This figures shows the evolution of expected excess returns for the ten-year yield, derived

from the survey data (from the Survey of Professional Forecasters), the constant-coeffi cients and

learning models. In the first panel, the SPF returns are shown by the black line, the CGL returns

by the green line, and the EGL1 returns by the red line. In the second panel, the SPF returns are

again shown by the black line, and the constant-coeffi cients returns are shown by the red line.
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Appendix

Table 12: Other Moments of Forecasting Errors of Benchmark Model during the Great

Recession

Yield Mean Std.dev ρ1 ρ12

Maturity

Forecasting horizon h = 1 month

1 year -15.7759 15.2857 -0.1448 -

5 years -26.0464 14.5786 -0.3960 -

10 years -26.1070 14.7406 -0.4222 -

Forecasting horizon h = 3 months

1 year -15.8152 15.3323 0.1119 -

5 years -26.0647 14.6807 0.2530 -

10 years -26.0512 14.8706 0.2685 -

Note: These are the mean, standard deviation (Std.dev), and autocorrelations in the forecast

errors. ρ1 denotes the autocorrelation between the forecast errors at the 1 month lag; ρ12 is the

statistic at the 12month lag. For the shorter sample, we do not report the 12 month autocorrelation.
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Table 13: Other Moments of Forecasting Errors from CGL model during the Great Recession

Yield Mean Std.dev ρ1 ρ12

Maturity

Forecasting horizon h = 1 month

1 year -9.3471 5.3739 -0.0461 -

5 years -11.6287 4.2456 -0.1031 -

10 years -10.6908 4.1161 -0.1006 -

Forecasting horizon h = 3 months

1 year -9.7222 5.2606 -0.2404 -

5 years -12.0137 4.1736 -0.2256 -

10 years -11.0054 4.0846 -0.1713 -

Note: These are the mean, standard deviation (Std.dev), and autocorrelations in the forecast

errors. ρ1 denotes the autocorrelation between the forecast errors at the 1 month lag; ρ12 is the

statistic at the 12month lag. For the shorter sample, we do not report the 12 month autocorrelation.
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Table 14: Other Moments of Forecasting Errors from EGL1 model during Great Recession

Yield Mean Std.dev ρ1 ρ12

Maturity

Forecasting horizon h = 1 month

1 year -9.1565 5.3884 -0.0821 -

5 years -11.4026 4.4062 -0.1496 -

10 years -10.4602 4.3002 -0.1497 -

Forecasting horizon h = 3 months

1 year -9.5530 5.3110 0.1108 -

5 years -11.8095 4.3638 0.1314 -

10 years -10.7969 4.2905 0.1416 -

Note: These are the mean, standard deviation (Std.dev), and autocorrelations in the forecast

errors. ρ1 denotes the autocorrelation between the forecast errors at the 1 month lag; ρ12 is the

statistic at the 12month lag. For the shorter sample, we do not report the 12 month autocorrelation.
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Table 15: Other Moments of Forecasting Errors from EGL2 model from Great Recession

Yield Mean Std.dev ρ1 ρ12

Maturity

Forecasting horizon h = 1 month

1 year -9.1779 5.4175 -0.0905 -

5 years -11.4246 4.4362 -0.1589 -

10 years -10.4823 4.3295 -0.1593 -

Forecasting horizon h = 3 months

1 year -9.5530 5.3110 0.1108 -

5 years -11.8095 4.3638 0.1314 -

10 years -10.7969 4.2905 0.1416 -

Note: These are the mean, standard deviation (Std.dev), and autocorrelations in the forecast

errors. ρ1 denotes the autocorrelation between the forecast errors at the 1 month lag; ρ12 is the

statistic at the 12month lag. For the shorter sample, we do not report the 12 month autocorrelation.
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