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Abstract

This paper develops a wavelet (spectral) approach to testing the presence of a
unit root in a stochastic process. The wavelet approach is appealing, since it is based

directly on the different behavior of the spectra of a unit root process and that of a short
memory stationary process. By decomposing the variance (energy) of the underlying
process into the variance of its low frequency components and that of its high frequency

components via the discrete wavelet transformation (DWT), we design unit root tests
against near unit root alternatives. Since DWT is an energy preserving transformation

and able to disbalance energy across high and low frequency components of a series,
it is possible to isolate the most persistent component of a series in a small number of

scaling coefficients. We demonstrate the size and power properties of our tests through
Monte Carlo simulations.
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1 Introduction

As Granger (1966) pointed out, the vast majority of economic variables, after removal of

any trend in mean and seasonal components, have similar shaped power spectra where the

power of the spectrum peaks at the lowest frequency with exponential decline towards higher

frequencies. Since Nelson and Plosser (1982) argued that this persistence was captured by

modeling the series as having a unit autoregressive root, designing tests for unit root has

attracted the attention of many researchers. The well-known Dickey and Fuller (1979) unit

root tests have limited power to separate a unit root process from near unit root alternatives

in small samples. Phillips (1986) and Phillips (1987a) pioneered the use of the functional

central limit theorem to establish the asymptotic distribution of statistics constructed from

unit root processes. To construct unit root tests with serially correlated errors, one approach

is due to Phillips (1987a) and Phillips and Perron (1988) by adjusting the test statistic

to take account for the serial correlation and heteroskedasticity in the disturbances. The

other approach is due to Dickey and Fuller (1979) by adding lagged dependent variables

as explanatory variables in the regression. Other important contributions are Chan and

Wei (1987), Park and Phillips (1988), Park and Phillips (1989), Sims et al. (1990), Phillips

and Solo (1992) and Park and Fuller (1995). In general, unit root tests cannot distinguish

highly persistent stationary processes from nonstationary processes and the power of unit

root tests diminish as deterministic terms are added to the test regressions. For maximum

power against very persistent alternatives, Elliott et al. (1996) (ERS) use a framework similar

to Dufour and King (1991) (DK) to derive the asymptotic power envelope for point-optimal

tests of a unit root under various trend specifications. Ng and Perron (2001) exploits the

finding of ERS and DK to develop modified tests with enhanced power subject to proper

selection of a truncation lag.

Most existing unit root tests make direct use of time domain estimators of the coefficient

of the lagged value of the variable in a regression with its current value as the dependent

variable, except Choi and Phillips (1993), the Von Neumann variance ratio (VN) tests of

Sargan and Bhargava (1983) and their extensions. Recently, Cai and Shintani (2006) provide

alternative VN tests based on combinations of consistent and inconsistent long run variance

estimators. Phillips and Xiao (1998) and Stock (1999) provide a helpful review of the main

tests and an extensive list of references.

In this paper, we develop a general wavelet spectral approach to testing unit roots in-

spired by Granger (1966). The method of wavelets decomposes a stochastic process into

its components, each of which is associated with a particular frequency band. The wavelet

power spectrum measures the contribution of the variance at a particular frequency band
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relative to the overall variance of the process. If a particular band contributes substantially

more to the overall variance relative to another frequency band, it is considered an important

driver of this process. Recall that the spectrum of a unit root process is infinite at the origin,

and hence the variance of a unit root process is largely contributed by low frequencies. By

decomposing the variance1 of the underlying process into the variance of its low frequency

components and that of its high frequency components via the discrete wavelet transforma-

tion (DWT), we design wavelet-based unit root tests. Since DWT is an energy preserving

transformation and able to disbalance energy across high and low frequency components of

a series, it is possible to isolate the most persistent component of a series in a small number

of coefficients referred to as the scaling coefficients. Our tests utilize the scaling coefficients

of the unit scale. In particular, we construct test statistics from the ratio of the energy from

the unit scale to the total energy (variance) of the time series. We establish asymptotic

properties of our tests, including their asymptotic null distributions, consistency, and local

power properties. Our tests are easy to implement, as their asymptotic null distributions are

nuisance parameter free and the corresponding critical values can be tabulated. The Monte

Carlo simulations are conducted to compare the empirical size and power of our tests to

the Dickey and Fuller (1979) (ADF), Phillips and Perron (1988) (PP), Elliott et al. (1996)

(ERS) and Ng and Perron (2001) (MPP) tests. Our tests have good size and comparable

power against near unit root alternatives in finite samples.

Choi and Phillips (1993) developed unit root tests based on an alternative spectral ap-

proach to time series analysis, the Fourier spectral analysis, and demonstrated advantages

of their tests over tests based on time domain approach. Unlike our tests, however, their

tests make use of frequency domain estimators of the autoregressive coefficient. The DWT

is an orthonormal transformation which may be relaxed through an oversampling approach

termed as the maximum overlap DWT (MODWT), see, for example, Percival and Mofjeld

(1997).2 The VN tests of Sargan and Bhargava (1983) are based on the ratio of the sample

variance of the first differences and the levels of the time series. These tests avoid the problem

of redundant trend to gain efficiency. Sargan and Bhargava (1983) suggested using the VN

statistic for testing the Gaussian random walk hypothesis, and Bhargava (1986) extended

to the case of the time trend. Stock (1995) studied unit root tests with a linear time trend

and Schmidt and Phillips (1992), working with polynomial trends, showed that the Lagrange

multiplier principle leads to a VN test. Interestingly, we show that the VN tests are special

1In the signal processing literature, the variance of a process is referred to as the energy of the process.
In this paper, we use the two terminologies interchangeably.

2The MODWT goes by several names in the literature, such as the stationary DWT by Nason and
Silverman (1995) and the translation-invariant DWT by Coifman and Donoho (1995). A detailed treatment
of MODWT can be found in Percival and Walden (2000) and Gençay et al. (2001).
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cases of our wavelet tests when we use the Haar wavelet filter and unit scale MODWT. The

Haar wavelet filter is the member of Daubechies compactly supported wavelet filter of the

shortest length. By using Daubechies wavelet filter of longer length, our tests gain power

over the VN tests in finite samples.

The Fourier approach is appealing when working with stationary time series. However,

restricting ourselves to stationary time series is not appealing since most economic/financial

time series exhibit quite complicated patterns over time (e.g., trends, abrupt changes, and

volatility clustering). In fact, if the frequency components are not stationary such that they

may appear, disappear, and then reappear over time, traditional spectral tools may miss

such frequency components. Wavelet filters provide a natural platform to deal with the

time-varying characteristics found in most real-world time series, and thus the assumption

of stationarity may be avoided. The wavelet transform intelligently adapts itself to capture

features across a wide range of frequencies and thus has the ability to capture events that

are local in time. This makes the wavelet transform an ideal tool for studying nonstationary

time series. Early applications of wavelets in economics and finance are by Ramsey and his

coauthors (see Ramsey et al. (1995), Ramsey and Zhang (1997), Ramsey (1999), Ramsey

(2002) for a review and references) who explore the use of DWT in decomposing various

economic and financial data. Davidson et al. (1998) investigated U.S. commodity prices

via wavelets. Gençay et al. (2003, 2005) propose a wavelet approach for estimating the

systematic risk or the beta of an asset in a capital asset pricing model. The proposed method

is based on a wavelet multiscaling approach where the wavelet variance of the market return

and the wavelet covariance between the market return and a portfolio are calculated to

obtain an estimate of the portfolio’s systematic risk (beta) at each scale. In time series

econometrics, one example of the successful application of wavelets is in the context of

long memory processes where a number of estimation methods have been developed. These

include wavelet-based OLS, the approximate wavelet-based maximum likelihood approach,

and wavelet-based Bayesian approach. Fan (2003) and Fan and Whitcher (2003) provide an

extensive list of references. The success of these methods relies on the so called ‘approximate

decorrelation’ property of the DWT of a possibly nonstationary long memory process, see

Fan (2003) for a rigorous proof of this result for a nonstationary fractionally differenced

process. Fan and Whitcher (2003) propose overcoming the problem of spurious regression

between fractionally differenced processes by applying the DWT to both processes and then

estimating the regression in the wavelet domain. Other examples of applications of wavelets

in econometrics include wavelet-based spectral density estimators and their applications in

testing for serial correlation/conditional heteroscedasticity, see e.g., Hong (2000), Hong and

Lee (2001), Lee and Hong (2001), Duchesne (2006a), Duchesne (2006b), and Hong and Kao
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(2004).

This paper provides another context in which the use of the wavelet (spectral) approach

may have advantages over the time domain approach or the Fourier approach. Unlike Hong

(2000), Hong and Lee (2001), Lee and Hong (2001), Duchesne (2006a), Duchesne (2006b),

and Hong and Kao (2004) who develop and/or make use of wavelet estimators of spectral

density functions of the relevant processes, we employ directly the DWT of the observed

time series. We contribute to the unit root literature on three different fronts. First, we

propose a unified wavelet spectral approach to unit root testing; second, we provide a spectral

interpretation of existing VN unit root tests; and finally, we propose higher order wavelet

filters to capture low-frequency stochastic trends parsimoniously and gain power against near

unit root alternatives.

In section two, we begin with a brief overview of wavelets, discrete wavelet filters and

discrete wavelet transformation. In section three, we develop our wavelet-based unit root

tests against purely stationary alternatives and trend stationary alternatives. Section four

provides Monte Carlo simulations on the size and power properties of our tests. We conclude

thereafter. An appendix contains technical proofs. Throughout this paper, we use =⇒ to

denote weak convergence. All the limits are taken as the sample size approaches ∞.

2 Discrete Wavelet Transformation

A wavelet is a small wave which grows and decays in a limited time period.3 To formalize

the notion of a wavelet, let ψ(.) be a real valued function such that its integral is zero,∫
∞

−∞
ψ(t) dt = 0, and its square integrates to unity,

∫
∞

−∞
ψ(t)2 dt = 1. Thus, although ψ(.)

has to make some excursions away from zero, any excursions it makes above zero must cancel

out excursions below zero, i.e., ψ(.) is a small wave, or a wavelet.

Fundamental properties of the continuous wavelet functions (filters), such as integration

to zero and unit energy, have discrete counterparts. Let h = (h0, . . . , hL−1) be a finite length

discrete wavelet (or high pass) filter such that it integrates (sums) to zero,
∑L−1

l=0 hl = 0,

and has unit energy,
∑L−1

l=0 h
2
l = 1. In addition, the wavelet filter h is orthogonal to its even

shifts; that is,

L−1∑

l=0

hlhl+2n =
∞∑

l=−∞

hlhl+2n = 0, for all nonzero integers n. (1)

The natural object to complement a high-pass filter is a low-pass (scaling) filter g. We will

denote a low-pass filter as g = (g0, . . . , gL−1). The low-pass filter coefficients are determined

3This section closely follows Gençay et al. (2001), see also Percival and Walden (2000). The contrasting
notion is a big wave such as the sine function which keeps oscillating indefinitely.
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by the quadrature mirror relationship4

gl = (−1)l+1hL−1−l for l = 0, . . . , L− 1 (2)

and the inverse relationship is given by hl = (−1)lgL−1−l. The basic properties of the scaling

filter are:
∑L−1

l=0 gl =
√

2,
∑L−1

l=0 g
2
l = 1,

L−1∑

l=0

glgl+2n =

∞∑

l=−∞

glgl+2n = 0, (3)

for all nonzero integers n, and

L−1∑

l=0

glhl+2n =
∞∑

l=−∞

glhl+2n = 0 (4)

for all integers n. Thus, scaling filters are average filters and their coefficients satisfy the

orthonormality property that they possess unit energy and are orthogonal to even shifts.

By applying both h and g to an observed time series, we can separate high-frequency

oscillations from low-frequency ones. Let y = {yt}T
t=1 be a dyadic length vector (T = 2M )

of observations where M = log2(T ). The length T vector of discrete wavelet coefficients w

is obtained by w = Wy, where W is a T × T real-valued orthonormal matrix defining the

DWT which satisfies WTW = IT (T × T identity matrix). We refer the interested reader

to Percival and Walden (2000) for a detailed discussion on the construction of W from the

wavelet and scaling filters. The vector of wavelet coefficients may be organized into M + 1

vectors,

w = [w1,w2, . . . ,wM ,vM ]T , (5)

where wj is a length T/2j vector of wavelet coefficients associated with changes on a scale

of length λj = 2j−1 and vM is a length T/2M vector of scaling coefficients associated with

averages on a scale of length 2M = 2λM .

In practice the DWT is implemented via a pyramid algorithm of Mallat (1989, 1998).

The first iteration of the pyramid algorithm begins by filtering (convolving) the data with

each filter to obtain the unit-scale wavelet and scaling coefficients:

Wt,1 =
L−1∑

l=0

hly2t−l mod T and Vt,1 =
L−1∑

l=0

gly2t−l mod T ,

4Quadrature mirror filters (QMFs) are often used in the engineering literature because of their ability
for perfect reconstruction of a signal without aliasing effects. Aliasing occurs when a continuous signal is
sampled to obtain a discrete time series.
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where t = 1, . . . , T/2. Let w1 =
(
W1,1, ...,WT/2,1

)
′

and v1 =
(
V1,1, ..., VT/2,1

)
′

denote respec-

tively the vectors of unit-scale wavelet and scaling coefficients. We obtain the level 1 partial

DWT w = [w1, v1]
T .

The second step of the pyramid algorithm starts by defining the “data” to be the scaling

coefficients v1 from the first iteration and apply the filtering operations as above to obtain

the second level of wavelet and scaling coefficients:

Wt,2 =

L−1∑

l=0

hlV2t−l,1 mod T/2 and Vt,2 =

L−1∑

l=0

glV2t−l,1 mod T/2,

t = 1, . . . , T/4. Keeping all vectors of wavelet coefficients, and the final level of scaling co-

efficients, we have the following length T decomposition w = [w1, w2, v2]
T , where w2, v2

denote respectively the vectors of second scale wavelet and scaling coefficients. This proce-

dure may be repeated up to M times where M = log2(T ) and gives the vector of wavelet

coefficients in Equation (5).

The orthonormality of the matrix W implies that the DWT is a variance preserving

transformation:

‖w‖2 =

T/2M∑

t=1

V 2
t,M +

M∑

j=1




T/2j∑

t=1

W 2
t,j


 =

T∑

t=1

y2
t = ‖y‖2 .

This can be easily proven through basic matrix manipulation via

‖y‖2 = yTy = (Ww)TWw = wTWTWw = wT w = ‖w‖2 .

Given the structure of the wavelet coefficients, ‖y‖2 is decomposed on a scale-by-scale basis

via

‖y‖2
=

M∑

j=1

‖wj‖2
+ ‖vM‖2

, (6)

where ‖wj‖2 =
∑T/2j

t=1 W 2
t,j is the sum of squared variation of y due to changes at scale λj

and ‖vM‖2 =
∑T/2M

t=1 V 2
t,M is the information due to changes at scales λM and higher.

The idea behind our wavelet unit root tests can be best understood through the energy

(variance) decomposition of a white noise process and that of a unit root process. To

illustrate, in Figure 1, the dot chart of a Gaussian white noise process is plotted for 1024

observations (M = 210 = 1024). A six level (J = 6)5 DWT is used. “Data” represents the

total energy of the data which is normalized at one, wi, i = 1, . . . , 6 represents the percentage

energy of wavelet coefficients, and v6 is the percentage energy of the scaling coefficients. The

5There is no specific reason for choosing J = 6. Any level J < M could be used.
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sum of the energies of the wavelet and the scaling coefficients is equal to the total energy

of the data. The energy is the highest at the highest frequency wavelet coefficient (w1) and

declines gradually towards the lowest frequency wavelet coefficient (w6). The percentage

energy of the scaling coefficient (v6), i.e., ‖vJ‖2
/ ‖y‖2

, is close to zero. In Figure 2, the dot

chart of a unit root process

yt = yt−1 + ut, ut ∼ i.i.d. N(0, 1) (7)

is plotted for y0 = 0 and t = 1, 2, . . . , 1024 observations. The energy is the highest for the

scaling coefficients and almost zero at all wavelet coefficients. The percentage energy of the

scaling coefficients (v6), i.e., ‖vJ‖2 / ‖y‖2, is almost equal to one. The number of coefficients

needed equals 41 (41/1024 = 4%) of the total number of coefficients to account for almost

all energy of the data. Heuristically, when a white noise process is added up (say, as in a

unit root process), the high frequencies are smoothed out (those spikes in the white noise

disappear) and what is left is the long term stochastic trend. On the contrary, when we

do differencing (e.g., first differencing to a unit root, then we are back to the white noise

series), we get rid of the long term trend, and what is left is the high frequencies (spikes)

with mean zero. Since a unit root process can be succinctly approximated by a few scaling

coefficients and the energy of the scaling coefficients is almost equal to the total energy of

the data, we develop our statistical tests for a unit root process based on this principle of

energy decomposition.

3 New Unit Root Tests

Let {yt}T
t=1 be a univariate time series generated by

yt = ρyt−1 + ut, (8)

where {ut} is a weakly stationary zero-mean error with a strictly positive long run variance

defined by ω2 ≡ γ0 + 2
∑

∞

j=1 γj where γj = E(utut−j). Throughout this paper, the initial

condition is set to y0 = Op(1) and the following assumption on the error term is maintained.

Assumption 1:

(a) {ut} is a linear process defined as ut = ψ(L)εt =
∑

∞

j=0 ψjεt−j, ψ(1) 6= 0, and
∑

∞

j=0 j|ψj| <
∞;

(b) {εt} is i.i.d. with E(εt) = 0, V ar(εt) = σ2, and finite fourth cumulants, and εs = 0 for

s ≤ 0.
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The last condition in Assumption 1(a) is referred to as 1-summability of ψ(L). The as-

sumption εs = 0 for s ≤ 0 in Assumption 1(b) is made for convenience. Under Assumption 1,

we have ω2 = ψ(1)2σ2 and T−1/2
∑[T ·]

t=1 ut =⇒ ωW (·) where [Tr] denotes the integer part of

Tr and W (·) denotes a standard Brownian motion defined on C [0, 1], the space of continuous

functions on [0, 1]. It is known that the weak convergence result: T−1/2
∑[T ·]

t=1 ut =⇒ ωW (·)
holds for more general/other classes of processes than the class of linear processes specified

in Assumption 1 including linear processes with martingale difference innovations {εt}, see

Phillips and Solo (1992). One may also extend the weak convergence result to linear pro-

cesses with GARCH innovations by making use of the weak convergence result for GARCH

processes, see Berkes et al. (2008). It is possible to extend the results to be developed in

this paper to these other processes. For ease of exposition, we will stick to Assumption 1 in

this paper.

In Subsections 3.1 and 3.2, we consider tests for H0 : ρ = 1 against H1 : |ρ| < 1 in (8).

Under the alternative hypothesis, {yt} is a zero-mean stationary process with the long run

variance ω2/(1 − ρ)2. As mentioned in Section 2, our tests for unit root are based on the

different behavior of the energy decomposition of a unit root process and that of a short-

memory such as a white noise process. To introduce the fundamental idea, we first develop

a test based on the Haar wavelet filter and unit scale DWT in Subsection 3.1. In Subsection

3.2, we extend it to tests based on any Daubechies (1992) compactly supported wavelet filter

of finite length. Finally, we extend the tests developed in Subsections 3.1 and 3.2 to trend

stationary alternatives in Subsection 3.3.

3.1 The first test — Haar wavelet filter

Consider the unit scale Haar DWT of {yt}T
t=1 where T is assumed to be even. The wavelet

and scaling coefficients are given by

Wt,1 =
1√
2
(y2t − y2t−1), t = 1, 2, . . . , T/2, (9)

Vt,1 =
1√
2
(y2t + y2t−1), t = 1, 2, . . . , T/2. (10)

The wavelet coefficients {Wt,1} capture the behavior of {yt} in the high frequency band

[1/2, 1], while the scaling coefficients {Vt,1} capture the behavior of {yt} in the low frequency

band [0, 1/2]. The total energy of {yt}T
t=1 is given by the sum of the energies of {Wt,1} and

{Vt,1}. Since for a unit root process, the energy of the scaling coefficients {Vt,1} dominates

that of the wavelet coefficients {Wt,1} , we propose the following test statistic:

ŜT,1 =

∑T/2
t=1 V

2
t,1∑T/2

t=1 V
2
t,1 +

∑T/2
t=1 W

2
t,1

. (11)
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Heuristically, under H0, ŜT,1 should be close to 1, since
∑T/2

t=1 V
2

t,1 dominates
∑T/2

t=1 W
2
t,1, while

under H1, ŜT,1 should be smaller than 1. We formalize these statements in the following

lemma.

Lemma 3.1 Under H0, ŜT,1 = 1 + op(1), while under H1, ŜT,1 = E(y2t+y2t−1)2

E(y2t+y2t−1)2+E(y2t−y2t−1)2
+

op(1).

Note that:
E(y2t + y2t−1)

2

E(y2t + y2t−1)2 + E(y2t − y2t−1)2
=

E
(
V 2

t,1

)

E
(
V 2

t,1

)
+ E

(
W 2

t,1

) < 1.

We conclude that it is the relative magnitude of the energy of the scaling coefficients to that

of the wavelet coefficients that determines the power of the test based on ŜT,1 and we expect

our test based on ŜT,1 to have power against H1.

The asymptotic distribution of ŜT,1 under H0 is summarized in the following theorem.

Theorem 3.2 Under H0, T (ŜT,1 − 1) =⇒ − γ0

λ2
v

R

1

0
[W (r)]2dr

, where λ2
v = 4ω2.

The proof of Theorem 3.2 in the Appendix makes it clear that it is the energy of the scaling co-

efficients that drives the asymptotic behavior of ŜT,1 under the null hypothesis. Alternatively,

noting the energy decomposition:
∑T/2

t=1 V
2
t,1 +

∑T/2
t=1 W

2
t,1 =

∑T
t=1 y

2
t , we get immediately,

T (ŜT,1 − 1) = −
T−1

∑T/2
t=1

(
W 2

t,1 −EW 2
t,1

)

T−2
∑T

t=1 y
2
t

−
1
2
EW 2

t,1

T−2
∑T

t=1 y
2
t

= − op(1)

ω2
∫ 1

0
[W (r)]2dr

− γ0

4ω2
∫ 1

0
[W (r)]2dr

= − γ0

λ2
v

∫ 1

0
[W (r)]2dr

+ op(1) under H0.

There are two unknown parameters in the asymptotic null distribution of ŜT,1: γ0 =

E(u2
2t) and λ2

v or ω2. To estimate these parameters, we let ût = yt − ρ̂yt−1 denote the OLS

residual. Then γ̂0 = T−1
∑T

t=1 û
2
t is a consistent estimator of γ0. Being the long run variance

of {ut} , ω2 can be consistently estimated by a nonparametric kernel estimator with the

Bartlett kernel:

ω̂2 = 4γ̂0 + 2

q∑

j=1

[1 − j/(q + 1)]γ̂j ,

where q is the bandwidth/lag truncation parameter and γ̂j = T−1
∑T

t=j+1 ûtût−j, see Newey

and West (1987).6 Andrews (1991) showed that this long run variance estimator is consistent

6Newey and West (1987) suggest setting the bandwidth using the sample size dependent rule of
4(T/100)2/9. We use this rule with Bartlett kernel in this paper.
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when the bandwidth q grows at a rate slower than T 1/2, with an optimal growth rate being

T 1/3 under some moment conditions. Let λ̂2
v = 4ω̂2 and define the test statistic as

FG1 =
T λ̂2

v

γ̂0

[
ŜT,1 − 1

]
.

Then under the null hypothesis, the limiting distribution of the test statistic FG1 is given

by the distribution of

− 1∫ 1

0
[W (r)]2dr

.

The limiting distribution of FG1under H0 is free from nuisance parameters and is extremely

easy to simulate, see MacKinnon (2000) for a detailed treatment. The critical values of this

test are tabulated in the first row of Table 1.

We note that an alternative way to estimate γ0 is via the wavelet variance estimators.

We will elaborate on this approach in the next subsection when we allow the use of a general

filter. Also, ω2 can be estimated by any existing long run variance estimators, including the

wavelet-based estimator of Hong (2000).

3.2 A general test — Daubechies compactly supported wavelet

filter

For a general Daubechies compactly supported wavelet filter {hl}L−1
l=0 , the boundary-independent

(BI) unit scale wavelet and scaling coefficients are given by

Wt,1 =
L−1∑

l=0

hly2t−l, Vt,1 =
L−1∑

l=0

gly2t−l, (12)

where t = L1, L1 + 1, . . . , T/2 with L1 = L/2. Again the wavelet coefficients {Wt,1} extract

the high frequency information in {yt}. Since any Daubechies wavelet filter has a difference

filter embedded in it, {Wt,1} is stationary under both H0 and H1. However the sequence of

scaling coefficients {Vt,1}, extracting the low frequency information in {yt}, is nonstationary

under H0 and stationary under H1. Reflected in their respective energies, this implies that

the energy of the scaling coefficients dominates that of the wavelet coefficients under H0,

which forms the basis for our tests.

Define7

ŜL
T,1 =

∑T/2
t=L1

V 2
t,1∑T/2

t=L1
V 2

t,1 +
∑T/2

t=L1
W 2

t,1

.

We will construct a test for unit root based on the following asymptotic properties of ŜL
T,1.

7Instead of using the BI wavelet and scaling coefficients only, one could use all the wavelet and scaling
coefficients. This would not change the asymptotic results, as there is only a finite number of boundary
dependent wavelet and scaling coefficients.
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Theorem 3.3 (i) ŜL
T,1 = 1 + op(1) under H0 and ŜL

T,1 = cL + op(1) under H1 with cL =
E(V 2

t,1)
E(V 2

t,1)+E(W 2

t,1)
< 1; (ii)

(
T
2

)
(ŜL

T,1 − 1) =⇒ − E(W 2

t,1)
λ2

v

R

1

0
[W (r)]2dr

under H0.

Theorem 3.3(i) implies that a consistent test for unit root can be based on ŜL
T,1. Theo-

rem 3.3(ii) extends Theorem 3.2 from the Haar filter (L = 2) to any Daubechies compactly

supported wavelet filter of finite length L. Since as the length of the filter L increases, the

approximation of the Daubechies wavelet filter to the ideal high-pass filter improves8, we

expect tests based on ŜL
T,1 to gain power as L increases. On the other hand, as L increases,

the number of BI wavelet and scaling coefficients will decrease which would have an adverse

effect on the power of our tests. It might be possible to choose L based on some power

criterion function, but this is beyond the scope of this paper. In other applications of DWT

with Daubechies compactly supported wavelet filter, L = 2 or 4 are often used.

Note that E
(
W 2

t,1

)
equals twice of the so-called wavelet variance at the unit scale. As

a result, existing wavelet variance estimators can be used to estimate E
(
W 2

t,1

)
, see Percival

(1995) for a detailed comparison of the wavelet variance estimators based on DWT and

MODWT respectively. Based on DWT, 2υ̂2
y,1 is a consistent estimator of the wavelet variance,

where

υ̂2
y,1 =

1

(T/2 − L1 + 1)

T/2∑

t=L1

W 2
t,1. (13)

Define the test statistic:

FGL
1 =

(
T

2

)
λ̂2

v

υ̂2
y,1

[
ŜL

T,1 − 1
]
.

Under the null hypothesis, the limiting distribution of FGL
1 is the same as that of FG1.

We now develop asymptotic power functions for our unit root tests by considering the

sequence of local alternatives given by

ρ = exp
( c
T

)
∼ 1 +

c

T
(14)

for a particular value of c < 0. Under this sequence of local alternatives, it is well known

that

T−2

T∑

t=1

y2
t =⇒ ω2

∫ 1

0

[Jc(r)]
2 dr,

where

Jc(r) =

∫ r

0

exp {(r − u)c} dW (u)

is the Ornstein-Uhlenbeck process generated in continuous time by the stochastic differential

equation dJc(r) = cJc(r)dr+dW (r). Using this, one can easily show that under this sequence

8Percival and Walden (2000) provides an excellent discussion on this.
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of local alternatives, the asymptotic distributions of the test statistics FGL
1 , FG1 are of the

same form as those under the null hypothesis except that the Brownian motion W (·) is

replaced with the Ornstein-Uhlenbeck process Jc(·), i.e., −1/
∫ 1

0
[Jc(r)]

2 dr. In particular,

this leads to the conclusion that all these tests have the same asymptotic power (to the first

order) against the sequence of local alternatives of the form (14). The following theorem

states consistency and local power properties of our tests.

Theorem 3.4 (i) Under H1, Pr
(
FGL

1 < −C
)
→ 1 for any fixed positive constant C; (ii)

Under (14), we obtain:

FGL
1 =⇒ − 1∫ 1

0
[Jc(r)]2dr

.

3.3 Tests against trend stationarity

Tests developed in the previous subsections can be extended to deal with trend stationary

alternatives. We adopt the components representation of a time series and work with the

detrended series, see Schmidt and Phillips (1992), Phillips and Xiao (1998), and Stock (1999).

For ease of exposition, we restrict ourselves to non-zero mean and linear trend cases only.

Phillips and Xiao (1998) also have a detailed discussion on efficient detrending for general

trends.

The process {yt} is assumed to be of the form:

yt = µ + αt+ ys
t , (15)

where {ys
t} is generated by model (8). Under H0 : ρ = 1, {ys

t} is a unit root process while

under H0 : |ρ| < 1, {ys
t} is a zero mean stationary process. If α = 0, we consider the

demeaned series {yt − y} , where y = T−1
∑T

t=1 yt is the sample mean of {yt}. If α 6= 0, we

work with the detrended series
{
ỹt − ỹ

}
, where ỹt =

∑t
j=1

(
∆yj −∆y

)
and ỹ is the sample

mean of {ỹt}, in which ∆yt = yt − yt−1 and ∆y is the sample mean of {∆yt} . Alternative

expressions for the detrended series
{
ỹt − ỹ

}
can be found in Schmidt and Phillips (1992).

Let
{
WM

t,1

}
and

{
V M

t,1

}
denote respectively the unit scale DWT wavelet and scaling co-

efficients of the demeaned series {yt − y}. We will construct our tests based on

ŜLM
T,1 =

∑T/2
t=1(V

M
t,1 )2

∑T
t=1(yt − y)2

.

Similarly, let
{
W d

t,1

}
and

{
V d

t,1

}
denote respectively the unit scale DWT wavelet and scaling

coefficients of the detrended series
{
ỹt − ỹ

}
. We will construct our tests based on

ŜLd
T,1 = −

∑T/2
t=1(V

d
t,1)

2

∑T
t=1(ỹt − ỹ)2

.

12



Under H0, it is known that T−2
∑T

t=1(yt − y)2 =⇒ ω2
∫ 1

0
[Wµ(r)]2 dr and T−2

∑T
t=1(ỹt −

ỹ)2 =⇒ ω2
∫ 1

0
[Vµ(r)]2 dr, where Wµ(r) = W (r)−

∫ 1

0
W (u)du and Vµ(r) = V (r)−

∫ 1

0
V (u)du

in which V (r) = W (r) − rW (1).

Theorem 3.5 Under H0, we have: (i) T
(
ŜLM

T,1 − 1
)

=⇒ − E(WM
t,1)2

2ω2
R

1

0
[Wµ(r)]2dr

; (ii) T
(
ŜLd

T,1 − 1
)

=⇒

− E(Wd
t,1)

2

2ω2
R

1

0
[Vµ(r)]2dr

. Under (14), we have: (i) T
(
ŜLM

T,1 − 1
)

=⇒ − E(WM
t,1)

2

2ω2
R

1

0
[JM

c (r)]2dr
; (ii) T

(
ŜLd

T,1 − 1
)

=⇒

− E(Wd
t,1)

2

2ω2
R

1

0
[Jd

c (r)]
2

dr
, where JM

c (r) =
∫ r

0
exp {(r − u)c} dWµ(u) and Jd

c (r) =
∫ r

0
exp {(r − u)c} dVµ(u).

To estimate ω2, we take the OLS residuals from a regression of yt on a linear trend

and yt−1 and then apply a nonparametric kernel estimator with the Bartlett kernel to the

residuals.

Remark 3.1. It is interesting to note that when the Haar wavelet filter is used,

ŜLM
T,1 = 1 −

∑T/2
t=1(y2t − y2t−1)

2/2
∑T

t=1(yt − y)2
.

This expression resembles that of the Sargan and Bhargava (1983) and Bhargava (1986) test.

In fact, we can obtain the Sargan and Bhargava (1983) and Bhargava (1986) test from an

extension of ŜLM
T,1 by using MODWT instead of DWT. To see this, we recall that apart from

a factor of
√

2, the unit scale MODWT wavelet and scaling coefficients of {yt − y} are given

by

W̃t,1 =
L−1∑

l=0

hlyt−l mod T , Ṽt,1 =
L−1∑

l=0

gl (yt−l mod T − y) , (16)

where t = 1, . . . , T . It is easy to see that the DWT coefficients are obtained from the

corresponding MODWT coefficients via downsampling by 2. At each scale, there are T

MODWT wavelet coefficients and T MODWT scaling coefficients. Let

S̃LM
T,1 =

∑T
t=1 Ṽ

2
t,1∑T

t=1 Ṽ
2
t,1 +

∑T
t=1 W̃

2
t,1

.

With the Haar wavelet filter, apart from one coefficient Ṽ 2
1,1 in the numerator, S̃LM

T,1 reduces

to

S̃LM
T,1 = 1 −

∑T
t=2(yt − yt−1)

2

∑T
t=1(yt − y)2

,

so that
(
1 − S̃LM

T,1

)
with the Haar wavelet filter is the VN ratio used in Sargan and Bhargava

(1983).

Remark 3.2. Generalizing the local power properties of FGL
1 in Theorem 3.4 (ii) to trend

stationary alternatives, Theorem 3.5 shows that under the sequence of local alternatives (14),

13



the asymptotic distributions of the test statistics developed in this subsection are of the same

form as those under the null hypothesis except that the Brownian motion is replaced with

the Ornstein-Uhlenbeck process JM
c (·) when α = 0 and with Jd

c (·) when α 6= 0. This implies

that their asymptotic power is the same as that of Sargan-Bhargava test. Hence, the local

power analysis provided in Elliott et al. (1996) (ERS) applies to our tests.

4 Monte Carlo Simulations

In this section, we investigate the finite sample performance of the new unit root tests against

trend stationary alternatives and compare them against the Elliott et al. (1996) (ERS) and

Ng and Perron (2001) (MPP) tests. To save space, we restrict ourselves to non-zero mean

and linear trend cases only.9

The asymptotic critical values of tests based on ŜLM
T,1 and ŜLd

T,1 are tabulated in Table 1.

These critical values are calculated from one million replications. The simulations are carried

out for a sample size of 1,000 observations and 5,000 replications. Under the alternative, we

discard the first 1,000 observations as transients. We have purposely chosen ρ values of 0.99

and 0.98 to seek the power of the tests for very near unit root alternatives.

In Tables 2 and 3, we examine the size and power properties of the wavelet tests for

ŜLM
T,1 and ŜLd

T,1 with serially correlated errors. The error process is a stationary AR(1) with

a parameter (γ) in the range of -0.8, -0.5, 0, 0.5, and 0.8. We set the bandwidth for the

long-run variance to 20 with the Bartlett kernel for the ŜLM
T,1 and ŜLd

T,1 tests to ensure that

the empirical sizes are close to their nominal ones across these ranges of serially correlated

errors.10 As illustrated in Table 2, the wavelet test with demeaned series has higher power

relative to ERS and MPP tests when γ < 0. At the 5% level, γ = −0.8, and ρ = 0.99,

the ŜLM
T,1 , ERS and MPP tests have powers of 99.7%, 40.1% and 40.2%, respectively. For

γ = −0.5, ρ = 0.99, and at the 5% level, the ŜLM
T,1 , ERS and MPP tests have powers of

87.1%, 39.6% and 39.3%, respectively. When γ < 0, the contribution of the error persistence

concentrates in higher frequencies and it becomes easier for the wavelet test to separate such

persistence from low frequency ones. For γ > 0, the simulation results between three tests

are in the same order of magnitude for up to γ = 0.5. For γ = 0.8, the ERS and MPP tests

perform better for certain critical levels. This is partly due to the fact that the wavelet test

under-rejects for our choice of the bandwith for γ = 0.8.

A similar type of performance comparison is observed in Table 3 for ŜLd
T,1. The wavelet

9In the following tables, we report empirical size and power and do not adjust the empirical power for
slight variations in empirical size.

10It might be possible to choose the bandwidth according to a criterion, but this is beyond the scope of
this paper. We intend to investigate this issue in future work.
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test does much better for γ < 0. For γ = −0.8, ρ = 0.99, and at the 5% level, the ŜLd
T,1, ERS

and MPP tests have powers of 96.8%, 18.5% and 16.3%, respectively. On the other hand,

ERS and MPP tests do better than the wavelet test for γ = 0.8. For γ = 0.8, ρ = 0.99,

and at the 5% level, the ŜLd
T,1, ERS and MPP tests have powers of 6.9%, 26.0% and 24.5%,

respectively. This is partly due to the fact that the wavelet test under-rejects for our choice

of the bandwith for γ = 0.8.

5 Conclusions

Our unit root tests provide a novel approach in disbalancing the energy in the data by con-

structing test statistics from its lower frequency dynamics. We contribute to the unit root

literature on three different fronts. First, we propose a unified wavelet spectral approach

to unit root testing; second, we provide a wavelet spectral interpretation of existing Von

Neumann variance ratio tests, and finally, we propose higher order wavelet filters to capture

low-frequency stochastic trends parsimoniously and gain power against near unit root alter-

natives in finite samples. In our tests, the intuitive construction and simplicity are worth

emphasizing. The simulation studies demonstrate the comparable power of our tests with

reasonable empirical sizes.

Several extensions of our tests are possible. First, our tests make use of the unit scale

DWT only (J = 1) and hence of the energy decomposition of {yt} into frequency bands

[0, 1/2] and [1/2, 1]. Heuristically, these tests are suitable for testing a unit root process

against alternatives that have most energy concentrated in the frequency band [1/2, 1]. To

distinguish between a unit root process and a ‘strongly’ dependent process that has sub-

stantial energy in frequencies close to zero, we need to further decompose the low frequency

band [0, 1/2]. DWT of higher scales (J > 1) provides a useful device. The choice of J thus

depends on the energy concentration of the alternative process against which the unit root

hypothesis is being tested. Second, we show in the paper that the Sargan and Bhargava test

is a special case of wavelet based tests with MODWT using unit scale Haar wavelet filter.

MODWT has proven to have advantages over DWT in various situations including wavelet

variance estimation. It would be interesting to see if it also has advantages in the context

of testing unit root. Thirdly, the unit root tests developed in this paper can be extended

to residual-based tests for cointegration in the same way that other unit root tests have

been extended, see e.g., Phillips and Ouliaris (1990) and Stock (1999). This is also being

investigated by the authors.
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Appendix: Technical Proofs

Proof of Lemma 3.1. Suppose H0 holds. Then yt = yt−1 + ut. Equations (9) and (10)

imply:

Wt,1 =
1√
2
u2t and Vt,1 =

1√
2
(2y2t−1 + u2t). (17)

Using Equation (17), together with Equation (11), we obtain

ŜT,1 =

∑T/2
t=1 V

2
t,1∑T/2

t=1 V
2
t,1 + 1

2

∑T/2
t=1 u

2
2t

, (18)

where

T/2∑

t=1

V 2
t,1 =

1

2
{4

T/2∑

t=1

y2
2t−1 + 4

T/2∑

t=1

u2ty2t−1 +

T/2∑

t=1

u2
2t} ≡ 2AT + 2BT +

1

2
CT , (19)

in which AT =
∑T/2

t=1 x
2
t , BT =

∑T/2
t=1 u2txt, and CT =

∑T/2
t=1 u

2
2t with xt ≡ y2t−1 for t =

1, 2, . . . , T/2.

Below, we show that under H0,

AT = Op(T
2), BT = Op(T ), CT = Op(T ). (20)

Let T1 = T
2
. By Proposition 17.2 in Hamilton (1994), we have

xt = x0 +
t∑

j=1

vt = x0 +
2t−1∑

j=0

uj = x0 +

{
u0 + ψ(1)

2t−1∑

j=1

εj + η2t−1 − η0

}
.

Define the partial sum process associated with {vt} as XT1
(r) = 1

T1

∑[T1r]
t=1 vt, 0 ≤ r ≤ 1.Then

it follows that

XT1
(r)

L
=

1

T1
ψ(1)

2[T1r]−1∑

j=1

εj = 2ψ(1)
1

T

[Tr]−1∑

j=1

εj.

By the functional Central Limit Theorem (CLT), we obtain
√
TXT1

(·) =⇒ 2ψ(1)σW (·). Ob-

serving that
∑T1

t=1 x
2
t =

T 2

1

2

1∫
0

{
TX2

T1
(r)
}
dr, we obtain by the Continuous Mapping Theorem

(CMT),

1

T 2
1

T1∑

t=1

x2
t =⇒ 1

2
λ2

v

1∫

0

W 2(r)dr,

where λv = 2ψ(1)σ. As a result, we get

T−2
1 AT =⇒ 1

2
λ2

v

∫ 1

0

[W (r)]2dr. (21)
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We now look at BT . Recall thatBT =
∑T1

t=1 u2ty2t−1. Simple algebra shows that E (BT ) =
1
2

∑T−1
s=1 (T − s − 1)γs = O(T ) and V ar(T−1BT ) = o(1), where γj = σ2

∑
∞

s=0 ψsψs+j , for

j = 0, 1, 2, . . .. Hence BT = Op(T ). The order of CT follows from the Law of Large Numbers

(LLN).

Hence under H0, we get
∑T1

t=1 V
2
t,1 = Op(T

2) and
∑T1

t=1W
2
t,1 = Op(T ), implying that the

energy of the scaling coefficients dominates that of the wavelet coefficients as mentioned

above. Consequently,

ŜT,1 =
T−2

∑T1

t=1 V
2
t,1

T−2(
∑T1

t=1 V
2

t,1 +
∑T1

t=1W
2
t,1)

= 1 + op(1). (22)

Now consider what happens under H1. In this case, |ρ| < 1 so that yt = ρyt−1 + ut and

{yt} is a stationary short memory process. Thus, under H1, both {Vt,1} and {Wt,1} are

stationary, short memory processes. Moreover,

2

T1

T1∑

t=1

W 2
t,1 =

1

T1

T1∑

t=1

y2
2t +

1

T1

T1∑

t=1

y2
2t−1 −

2

T1

T1∑

t=1

y2ty2t−1 =
2γ0

1 + ρ
+ op (1) ,

implying
∑T1

t=1W
2
t,1 = Op(T ). Similarly, we obtain

∑T1

t=1 V
2
t,1 = Op(T ), since 2

T1

∑T1

t=1 V
2
t,1 =

2γ0

1−ρ
+ op (1). As a result, we obtain

ŜT,1 =
T−1

1

∑T1

t=1 V
2
t,1

T−1
1

∑T1

t=1 V
2
t,1 + T−1

1

∑T1

t=1W
2
t,1

=
E(V 2

t,1)

E(V 2
t,1) + E(W 2

t,1)
+ op (1)

=
E(y2t + y2t−1)

2

E(y2t + y2t−1)2 + E(y2t − y2t−1)2
+ op (1) . (23)

Proof of Theorem 3.2. Under H0, we note that

ŜT,1 − 1 = − CT/2 − T
4
γ0

2AT + 2BT + CT
−

T
4
γ0

2AT + 2BT + CT
,

where AT , BT , CT are defined in (19). Note that CT =
∑T1

t=1 u
2
2t and E(CT ) = T1E(u2

2t) =

T1γ0, in which γ0 = σ2
∑

∞

s=0 ψ
2
s . We obtain T−1

1 CT − γ0 = op (1). This, (21), and the fact

that BT = Op(T ) imply:

T1(ŜT,1 − 1) = − T−1
1

(
CT /2 − T1

2
γ0

)

2T−2
1 (AT +BT + CT/2)

−
1
2
γ0

2T−2
1 (AT +BT + CT /2)

= − op(1)

λ2
v

∫ 1

0
[W (r)]2dr

−
1
2
γ0

λ2
v

∫ 1

0
[W (r)]2dr

= − γ0

2λ2
v

∫ 1

0
[W (r)]2dr

+ op(1),
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where λ2
v = 4ω2.

Proof of Theorem 3.3. (i) Under H0 : ρ = 1. We now show that T−1
1

∑T1

t=L1
W 2

t,1 =

E
(
W 2

t,1

)
+ op(1) and T−2

1

∑T1

t=L1
V 2

t,1 = Op(1). Hence, under H0, we obtain

ŜL
T,1 =

1

1 +
PT1

t=L1
W 2

t,1
PT1

t=L1
V 2

t,1

=
1

1 +
Op(T )

Op(T 2)

= 1 + op(1).

To show T−1
1

∑T1

t=L1
W 2

t,1 = E
(
W 2

t,1

)
+ op(1), we note:

Wt,1 = y2t+1−L

L−1∑

l=0

hl +
L−2∑

l=0

hl

{
L−2−l∑

j=0

u2t−j−l

}
=

L−2∑

l=0

hl

{
L−2−l∑

j=0

u2t−j−l

}
,

implying that Wt,1 is a finite linear combination of {ut}. The claim follows immediately from

Assumptions 1 and 2.

Now we consider the order of
∑T1

t=L1
V 2

t,1. Noting that

Vt,1 = y2t+1−L

L−1∑

l=0

gl +

L−2∑

l=0

gl

{
L−2−l∑

j=0

u2t−j−l

}
=

√
2y2t+1−L +

L−2∑

l=0

gl

{
L−2−l∑

j=0

u2t−j−l

}
,

we obtain

1

T 2
1

T1∑

t=L1

V 2
t,1 =

1

T 2
1

T1∑

t=L1

[
√

2y2t+1−L +
L−2∑

l=0

gl

{
L−2−l∑

j=0

u2t−j−l

}]2

=
2

T 2
1

T1∑

t=L1

y2
2t+1−L +

1

T 2
1

T1∑

t=L1

[
L−2∑

l=0

gl

{
L−2−l∑

j=0

u2t−j−l

}]2

+
2
√

2

T 2
1

T1∑

t=L1

y2t+1−L

[
L−2∑

l=0

gl

{
L−2−l∑

j=0

u2t−j−l

}]

=
2

T 2
1

T1∑

t=L1

y2
2t+1−L + op(1)

= Op(1).

If |ρ| < 1, then {yt} is a stationary short memory process. Since both {Wt,1} and {Vt,1}
are obtained from finite linear combinations of {yt}, we can show that T−1

1

∑T1

t=L1
W 2

t,1 =

E
(
W 2

t,1

)
+op(1) and T−1

1

∑T1

t=L1
V 2

t,1 = E
(
V 2

t,1

)
+op(1), implying ŜL

T,1 =
E(V 2

t,1)
E(V 2

t,1)+E(W 2

t,1)
+op(1).

(ii) Since under the null hypothesis, 1
T 2

1

∑T1

t=L1
V 2

t,1 = 2
T 2

1

∑T1

t=L1
y2

2t+1−L+op(1), the asymp-

totic distribution of 1
T 2

1

∑T1

t=L1
V 2

t,1 is given by that of 2AL
T ≡ 2

T 2

1

∑T1

t=L1
y2

2t+1−L. Similar to the

derivation of the asymptotic distribution of AT in the proof of Lemma 3.1, one can show
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that T−2
1 AL

T =⇒ 1
2
λ2

v

∫ 1

0
[W (r)]2dr. On the other hand, extending the proof of Lemma 3.1,

we can show that T−1
1

∑T1

t=L1
W 2

t,1 − EW 2
t,1 = op(1). Hence under the null hypothesis,

T1(Ŝ
L
T,1 − 1) = −

T−1
1

∑T1

t=L1
(W 2

t,1 − EW 2
t,1)

T−2
1

(∑T1

t=L1
V 2

t,1 +
∑T1−1

t=L1
W 2

t,1

) −
T−1

1 (T1 − L1)EW
2
t,1

T−2
1

(∑T1

t=L1
V 2

t,1 +
∑T1

t=L1
W 2

t,1

)

= − op(1)

λ2
v

∫ 1

0
[W (r)]2dr

−
EW 2

t,1

λ2
v

∫ 1

0
[W (r)]2dr

= −
EW 2

t,1

λ2
v

∫ 1

0
[W (r)]2dr

+ op(1).

Proof of Theorem 3.4. (i) From Theorem 3.3 (i), we know: ŜL
T,1−1 = (cL − 1)+op (1),

where

cL − 1 = −
E
(
W 2

t,1

)

E
(
W 2

t,1

)
+ E

(
V 2

t,1

) < 0.

This, together with the consistency of λ̂2
v and υ̂2

y,1, imply:

T−1
1

(
FGL

1

)
=

λ̂2
v

υ̂2
y,1

[
ŜL

T,1 − 1
]

=
λν

E
(
W 2

t,1

) (cL − 1) + op (1) .

The conclusion follows from this and the fact that λν

E(W 2

t,1)
(cL − 1) < 0.

(ii) For notational simplicity, we present a detailed proof for L = 2, i.e., for FG1. The

general case follows the same arguments with more tedious notation just as Theorem 3.3 (ii)

extends Theorem 3.2. Under (14), yt = exp
(

c
T

)
yt−1 + ut. Using the same arguments as in

the proof of Lemma 3.1 and Lemma 1 in Phillips (1987b), we can show:

1

T 2
1

T/2∑

t=1

y2
2t−1 =⇒ 1

2
λ2

v

∫ 1

0

[Jc(r)]
2dr and

T/2∑

t=1

y2t−1u2t = Op (T ) (24)

where T1 = T/2. Equations (9) and (10) imply:

Wt,1 =
1√
2
u2t − 1√

2

[
1 − exp

( c
T

)]
y2t−1 and Vt,1 =

1√
2

[
1 + exp

( c
T

)]
y2t−1 +

1√
2
u2t.

Thus,

2

T/2∑

t=1

W 2
t,1 =

T/2∑

t=1

u2
2t +

T/2∑

t=1

[
1 − exp

( c
T

)]2
y2

2t−1 − 2

T/2∑

t=1

u2t

[
1 − exp

( c
T

)]
y2t−1

∼
T/2∑

t=1

u2
2t +

c2

T 2

T/2∑

t=1

y2
2t−1 + 2

c

T

T/2∑

t=1

u2ty2t−1

=

T/2∑

t=1

u2
2t +Op (1) ,
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where we have used: exp
(

c
T

)
∼ 1 + c

T
and (24). Similarly, we obtain:

2

T/2∑

t=1

V 2
t,1 =

T/2∑

t=1

u2
2t +

T/2∑

t=1

[
1 + exp

( c
T

)]2
y2

2t−1 − 2

T/2∑

t=1

u2t

[
1 + exp

( c
T

)]
y2t−1

∼
T/2∑

t=1

u2
2t +

T/2∑

t=1

[
2 +

c

T

]2
y2

2t−1 − 2

T/2∑

t=1

u2t

[
2 +

c

T

]
y2t−1

=

T/2∑

t=1

u2
2t + 4

T/2∑

t=1

y2
2t−1 +Op (T ) .

So, under (14), we have:

ŜT,1 − 1 = −
∑T/2

t=1 W
2
t,1∑T/2

t=1 V
2
t,1 +

∑T/2
t=1 W

2
t,1

=

∑T/2
t=1 u

2
2t +Op (1)

4
∑T/2

t=1 y
2
2t−1 +Op (T ) + 2

∑T/2
t=1 u

2
2t +Op (1)

,

implying:

T1(ŜT,1 − 1) = − T−1
1

∑T/2
t=1 u

2
2t + op (1)

4T−2
1

∑T/2
t=1 y

2
2t−1 + op (1)

= − γ0

2λ2
v

∫ 1

0
[Jc(r)]2dr

+ op(1),

where we have again used (24).

Proof of Theorem 3.5. The proofs are similar to those of Theorem 3.3 (ii) and Theorem

3.4 and are thus omitted.
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Level
1% 5% 10%

FGL
1

-29.04 -17.75 -13.09

ŜLM
T,1

-40.38 -27.38 -21.75

ŜLd
T,1

-50.77 -36.54 -30.23

FGL
1 is the wavelet test for no drift. ŜLM

T,1 and ŜLd
T,1 are the wavelet tests for trend stationary

alternatives without and with linear trends, respectively. Entries are based on one million
Monte Carlo replications.

Table 1: Critical Values of Wavelet Tests
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ρ 1% 5% 10% 1% 5% 10% 1% 5% 10%

ŜLM
T,1 ERS MPP

γ = −0.80

1.00 0.009 0.068 0.119 0.014 0.047 0.097 0.011 0.045 0.099
0.99 0.982 0.997 0.998 0.156 0.401 0.587 0.144 0.402 0.610
0.98 1.000 1.000 1.000 0.451 0.702 0.827 0.443 0.704 0.840

γ = −0.50

1.00 0.006 0.045 0.103 0.011 0.051 0.102 0.011 0.049 0.108
0.99 0.668 0.871 0.937 0.148 0.396 0.569 0.141 0.393 0.592
0.98 0.984 1.000 1.000 0.487 0.746 0.846 0.479 0.748 0.863

γ = 0.00

1.00 0.006 0.046 0.087 0.013 0.052 0.099 0.011 0.052 0.106
0.99 0.153 0.486 0.687 0.163 0.423 0.596 0.156 0.416 0.611
0.98 0.683 0.954 0.991 0.488 0.741 0.846 0.495 0.743 0.855

γ = 0.50

1.00 0.006 0.038 0.085 0.015 0.055 0.112 0.013 0.053 0.118
0.99 0.069 0.316 0.543 0.168 0.422 0.605 0.162 0.417 0.619
0.98 0.374 0.845 0.953 0.475 0.715 0.844 0.473 0.721 0.856

γ = 0.80

1.00 0.007 0.031 0.056 0.013 0.048 0.098 0.011 0.048 0.097
0.99 0.021 0.189 0.386 0.155 0.405 0.585 0.148 0.402 0.601
0.98 0.198 0.668 0.883 0.460 0.708 0.821 0.454 0.712 0.833

Table 2: Size and Power of the ŜLM
T,1 - Demeaned Series with Serially Correlated Errors

The wavelet test statistic is calculated with a unit scale (J = 1) discrete wavelet transformation and with the Haar filter. The
data generating process is yt = µ+ ys

t , where ys
t = ρys

t−1 +ut, ut = γut−1 + εt εt ∼ iidN(0, 1), µ = 1 and y0 = 0. Under the null

ρ = 1 and under the alternative ρ < 1. The asymptotic critical values of the ŜLM
T,1 test are tabulated in Table 1. The bandwidth

is set to 20 with the Bartlett kernel in the calculation of the long-run variance of the wavelet test. The lag length of the ERS
and MPP test regressions are determined by minimizing the modified AIC with the maximum lag length of 12. All simulations
are with 1,000 observations and 5,000 replications.
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ρ 1% 5% 10% 1% 5% 10% 1% 5% 10%

ŜLd
T,1 ERS MPP

γ = −0.80

1.00 0.006 0.058 0.121 0.008 0.043 0.093 0.007 0.043 0.084
0.99 0.878 0.968 0.989 0.041 0.185 0.341 0.039 0.163 0.324
0.98 0.996 1.000 1.000 0.224 0.581 0.753 0.232 0.551 0.732

γ = −0.50

1.00 0.052 0.044 0.096 0.013 0.485 0.102 0.012 0.046 0.096
0.99 0.745 0.926 0.971 0.056 0.222 0.383 0.059 0.208 0.363
0.98 0.976 0.998 0.999 0.335 0.672 0.824 0.345 0.649 0.813

γ = 0.00

1.00 0.002 0.041 0.072 0.011 0.049 0.104 0.011 0.048 0.097
0.99 0.332 0.643 0.795 0.069 0.242 0.399 0.073 0.225 0.377
0.98 0.783 0.946 0.978 0.338 0.666 0.815 0.349 0.651 0.801

γ = 0.50

1.00 0.001 0.039 0.056 0.008 0.052 0.103 0.011 0.049 0.096
0.99 0.055 0.245 0.415 0.076 0.262 0.419 0.081 0.246 0.394
0.98 0.267 0.649 0.825 0.312 0.647 0.789 0.320 0.626 0.773

γ = 0.80

1.00 0.005 0.040 0.052 0.014 0.055 0.104 0.015 0.052 0.096
0.99 0.007 0.069 0.175 0.074 0.260 0.389 0.076 0.245 0.367
0.98 0.053 0.303 0.521 0.288 0.594 0.761 0.298 0.582 0.752

Table 3: Size and Power of the ŜLd
T,1 - GLS Detrended Series with Serially Correlated Errors

The wavelet test statistic is calculated with a unit scale (J = 1) discrete wavelet transformation and with the Haar filter. The
data generating process is yt = µ + αt+ ys

t , where ys
t = ρys

t−1 + ut, ut = γut−1 + εt εt ∼ iidN(0, 1), µ = 1, α = 1 and y0 = 0.

Under the null ρ = 1 and under the alternative ρ < 1. The asymptotic critical values of the ŜLd
T,1 test are tabulated in Table 1.

The bandwidth is set to 20 with the Bartlett kernel in the calculation of the long-run variance of the wavelet test. The lag
length of the ERS and MPP test regressions are determined by minimizing the modified AIC with the maximum lag length of
12. All simulations are with 1,000 observations and 5,000 replications.
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Figure 1: Wavelet Variance Decomposition of a White Noise Process
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(b)

The energy decomposition of a white noise process through a six level discrete wavelet decomposition (DWT) with 1024

observations. (a) “Data” represents the total energy of the data which is normalized at one. wi, i = 1, . . . ,6 represents the

percentage energy of the wavelet coefficients. v6 is the percentage energy of the scale coefficients. The energies of the wavelet

and scaling coefficients are equal to the sum of the energy of the data. The energy is the highest at the highest frequency

wavelet coefficient (w1) and declines gradually towards the lowest frequency wavelet coefficient (w6). The percentage energy of

the scaling coefficient (v6) is zero. (b) This figure compares the proportional energy of the data to the proportional energy of

all coefficients. The number of coefficients needed is equal to the number of data points to account for the total energy of the

data. The horizontal axis is on natural logarithmic scale.

24



Figure 2: Wavelet Variance Decomposition of a Unit Root Process
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(b)

The energy decomposition of a unit root process through a six level discrete wavelet decomposition (DWT) with 1024 observa-

tions. (a) “Data” represents the total energy of the data which is normalized at one. wi, i = 1, . . . , 6 represents the percentage

energy of wavelet coefficients. v6 is the percentage energy of the scaling coefficients. The energies of the wavelet and scaling

coefficients are equal to the sum of the energy of the data. The energy is the highest for the scaling coefficients and close to

zero for wavelet coefficients. The percentage energy of the scaling coefficients (v6) is close to the energy of the data. (b) This

figure compares the proportional energy of the data to the proportional energy of all coefficients. The number of coefficients

needed equals 41 (41/1024 = 4%) of the total number of coefficients to account for the total energy of the data. The horizontal

axis is on natural logarithmic scale.
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