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1 Introduction

From a macroeconomic perspective the question of productivity growth is re-
lated to the effects that productivity gains may display on the overall behav-
ior of the economy (e.g. output, employment, wages, costs, and prices) and,
furthermore, as a source of a rising standard of livings. But if economists
generally agree on the long run positive effects of labor productivity on real
wages and output growth, much more controversial is the issue whether pro-
ductivity growth is good or bad for employment: Does productivity growth
increase unemployment or does it reduce it? The empirical and theoretical
results have been mixed.

Empirically there is the literature on the employment and productivity
differentials between Europe and the US since 1970. The early literature
states a possible trade-off between employment and productivity growth
(Gordon, 1997). But such empirical findings have been complicated by the
recent behavior of (un)employment and productivity growth in the Europe
and the US in the 90’s: The increase of productivity growth in the US in
the second half of the 90’s can be shown to be associated with low and
falling unemployment (Staiger et al. 2001) and with rising employment.
Yet, in Europe there was the opposite tendency visible: Productivity growth
seems to have reduced employment and increased unemployment. Over the
business cycle the empirical evidence seems to show strong pro-cyclical co-
movements of employment and productivity with output (counter-cyclical
for unemployment).1

The nexus of productivity and employment is also important for the
empirical study of Okun’s Law. If employment is correlated with output,
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1See Backus and Kehoe (1992) among the others.
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but does not reveal a one-to-one relationship as Okun (1962) states it, the
relationship may change over time, due to changing growth rates of pro-
ductivity. Thus, the study of the impact of productivity on employment
becomes a relevant issue here too. After Okun’s study was published in
1962, many authors have been involved in this discussion of the relationship
of productivity and employment either from the short run or long run per-
spective. Particularly relevant authors are Tobin (1993), Kaldor (1985) and
Solow (1997).

The relationship between productivity and employment has also become
important in recent evaluations of Real Business Cycle (RBC) models. RBC
theorists have postulated technology shocks as driving force of business cy-
cles. In RBC models technology shocks, output and employment (measured
as hours worked) are then predicted to be positively correlated. This claim
has been made the focus of numerous econometric studies. 2 Employing
the Blanchard and Quah (1989) research agenda by using VAR estimates,
studies by Gali (1999), Gali and Rabanal (2005), Francis and Ramey (2004)
and Basu et al. (2006) find a negative correlation of employment and pro-
ductivity growth, once the technology shocks have been purified, taking out
demand shocks affecting output. Yet most of the econometric work has
studied the effects of productivity growth on employment (hours worked) in
a “one time scale model”—for aggregate time series data.

Although our paper is relevant for the above mentioned empirically as
theoretically controversies, we here focuses not on employment but unem-
ployment. Although the nexus of unemployment and productivity growth
rates may be impacted by population growth, demographic shifts, changing
labor market participation rates of certain segments of the population and
so on, one might presume that the demand side of labor, the offered em-
ployment by firms, is the most essential factor for driving the unemployment
rate. By following up this line of thinking, we want to study the relationship
of unemployment and productivity growth at multiple time scales.

The idea that time scales can be relevant in this context has already
been expressed in Landmann (2004, p.3) who states that “it is useful to
distinguish between an analysis of the forces shaping long-term equilibrium
paths of output, employment and productivity on the one hand and the
forces causing temporary deviations from these equilibrium paths on the
other hand. However, ..., the need for this distinction is not universally
accepted by macroeconomists.” and that (Landmann, 2004, p.35) “the na-
ture of the mechanism that link them [cfr.(un)employment and productivity
growth] changes with the time frame adopted”. In this perspective it may
be useful to distinguish between the short, medium and long-run effects of
changes in productivity growth, as their effects of productivity growth may
appear contradictory, as it is, for example, in the case of the process of job

2For details, see Gong and Semmler (2006)
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creation (see Landmann, 2004 and Walsh, 2004). 3

The labour market provides an example of a market in which the agents
involved, firms and workers (through unions), interact at different time hori-
zons, and thus both the time horizon of economic decisions and the strength
and direction of economic relationships among labor market variables, i.e.
wages, prices and (un)employment, are likely to vary across time scales.4

Thus, the long run effects of technological decisions maybe different from
short run effects. In the short run new technology is likely to be labor reduc-
ing, and thus adding to unemployment, 5 as was visible in Europe since the
1990s. In the long run, however, new technology replacing labor increases
productivity and makes firms and the economy more competitive and may
reduce unemployment, and thus increase employment. 6

Such relationships, and, in particular, the medium and long-run rela-
tionships between productivity growth and unemployment are generally an-
alyzed in the empirical literature looking at average aggregate data, gener-
ally decades, because from a time series perspectives the rate of growth of
labor productivity is a very volatile series whose implications in terms of
the movements of the other supply-side variables are difficult to interpret,
particularly in the short-run. 7 There a number of econometric techniques,
both in time series and frequency domain, that have been used to disentangle
short-term from long-term changes in productivity growth.

Yet, while standard econometric techniques (both time and frequency
domain) may face some difficulties in separating long-run trends from short-
run phenomena, other analytical tools, such as wavelets, may reveal useful,
as wavelet analysis with respect to other filtering methods is able to decom-
pose macroeconomic time series and data in general, into their time scale
components. After the first applications of wavelet analysis in economics
and finance provided by Ramsey and his co-authors (Ramsey and Zhang,
1995, 1996, Ramsey and Lampart, 1998a, 1998b), the number of wavelet
applications in economics is rapidly growing in the last few years as a result
of the increasing interest in this new tool to study economic relationships at
different time scales.

3Most of the attention of economic researchers who work on productivity has been
devoted to measurement issues and to resolve the problem of data consistency, as there
are many different approaches to the measurement of productivity linked to the choice of
data, notably the combination of employment, hours worked and GDP (see for example
the OECD Productivity Manual, 2001).

4E.g. in Gallegati et al. (2009), (2011) where wavelet analysis is applied to the wage
Phillips curve for the US.

5A statement like this gos back to David Ricardo who has pointed out that if machinery
is substituted for labor unemployment is likely to increase.

6This point is is made clear in a simple text book illustration by Blanchard (2005)
7Indeed, the relationship between productivity and the unemployment rate may appear

weaker when we reduce the time period used for aggregating data (see Steindel and Stiroh,
2001).
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The objective of this paper is to provide evidence on the nature of the re-
lationship between labor productivity growth and the unemployment rate on
a scale-by-scale basis for the US, as it may help to isolate some key relation-
ships over different times scales and thereby may provide some information
about the challenging theoretical frameworks and the conduct of monetary
policy. Thus, after decomposing both variables into their time-scale compo-
nents using to the maximum overlap discrete wavelet transform (MODWT),
we analyze the relationship between labor productivity and unemployment
at the different time scales using parametric and nonparametric approaches,
as this latter framework may enable us to characterize the dynamic relation-
ships among these variables without making any a priori explicit or implicit
assumption about the shape of the relationship.

The paper proceeds as follows. In Section 2, we apply the Continu-
ous Wavelet Transform tools, which include the Wavelet Power Spectrum,
Wavelet Coherency and Phase-Difference, to productivity growth and the
unemployment rate. In Section 3, we apply the MODWT to analyze the
scale-by-scale relationships between the unemployment rate and productiv-
ity by using parametric and nonparametric time scale regression analyses.
Section 4 concludes the paper.

2 Continuous wavelet transform

The role of wavelets has by now become familiar in empirical economic
analysis. Wavelets, their generation,and their potential use are discussed
in intuitive terms in Ramsey {Palgrave}. Gencay et al. (2002) generate
an excellent development of wavelet analysis and provide many interesting
economic examples. Percival and Walden (2000) provides a more technical
exposition with many examples of the use of wavelets in a variety of fields,
but not in economics. A variety of economic examples of the use of wavelets
can be obtained from reviewing the list of joint articles shown below. In par-
ticular, see Ramsey and Zhang (1995, 1996), Ramsey and Lampart (1998a,
1998b), Ramsey et al. (2010) and Gallegati et al. (2006, 2009, 2011).

The essential characteristics of wavelets are best illustrated through the
development of the continuous wavelet transform (CWT). We seek functions
ψ(t) such that:

∫
ψ(u)du = 0∫
ψ(u)2du = 1

The cosine function is a ”large wave” because its square does not con-
verge to 1, even though its integral is zero; a wavelet, a ”small wave” obeys
both constraints. An example would be the Haar wavelet function:
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ψH(u) =


− 1√

2
−1 < u < 0

1√
2

0 < u < 1
0 otherwise

Such a function provides information about the variation of a function, f(t),
by examining the differences over time of partial sums. As will be illus-
trated below general classes of wavelet functions compare the differences of
weighted averages of the function f(t). Consider a signal, x(u) and the
corresponding ”average”:

1
b− a

∫ b

a
x(u)du = α(a, b)

Let us choose the convention that we assess the value of the ”average” at
the center of the interval and let λ ≡ b− a represent the scale of the partial
sums. We have the expression:

A(λ, t) ≡ α(t− λ/2, t+ λ/2)

=
1
λ

∫ t+λ/2

t−λ/2
x(u)du

A(λ, t) is the average value of the signal centered at ”t” with scale ”λ”.
But what is of more use is to examine the differences at different values for
λ and at different values for ”t.” We define:

D(λ, t) = A(λ, t+ λ/2)−A(λ, t− λ/2)

=
1
λ

∫ t+λ

t
x(u)du− 1

λ

∫ t

t−λ
x(u)du

This is the basis for the continuous wavelet transform, CWT, as defined
by the Haar wavelet function. For an arbitrary wavelet function, ψ the
wavelet transform is:

W (λ, t) =
∫ ∞
−∞

ψλ, t(u)x(u)du

ψλ, t(u) ≡ 1√
λ

(
u− t
λ

)
see Percival and Walden (2000).
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2.1 Wavelet power spectrum

Time-scale analysis using continuous wavelet transform (CWT) can provide
us with the (local) wavelet power spectrum (sometimes called scalogram or
wavelet periodogram) which can be interpreted as the energy density in the
time-frequency plane. Let Wx(s, τ) be the continuous wavelet transform of
a signal x(t), with respect to the wavelet ψ, where s is a scaling or dilation
factor that controls the length of the wavelet and τ a location parameter
that indicates where the wavelet is centered, |Wx|2 represents the wavelet
power which depicts the local variance of x(t). Among the several types of
wavelet families available such as, Morlet, Mexican hat, Haar, Daubechies,
etc. we choose to employ a widely used wavelet such as the Morlet wavelet,8

defined as

ψη(t) = π−
1
4 eiηt − e−

t2

2 .

The Morlet wavelet is a complex wavelet that produces complex trans-
forms and thus can provide us with information on both amplitude and
phase.9 We use the Morlet wavelet with ω0 = 6 (where ω0 is dimension-
less frequency) since this particular choice provides a good balance between
time and frequency localization (see Grinsted et al. 2004) and also simpli-
fies the interpretation of the wavelet analysis because the wavelet scale, s,
is inversely related to the frequency, f ≈ 1/s.

In Figures 1 and 2, we see the continuous wavelet power spectra of the
labor productivity growth and the unemployment rate, respectively.10 Time
is recorded on the horizontal axis and the vertical axis gives us the periods
(and the corresponding scales of the wavelet transform). Reading across the
graph at a given value for the wavelet scaling, one sees how the power of the
projection varies across the time domain at a given scale, while reading down
the graph at a given point in time, one sees how the power varies with the
scaling of the wavelet (see Ramsey et al., 1994). The wavelet power spectrum
provides time varying analysis of the characteristics of a process in the scale-
space plane and can be quite revealing about the structure of a particular
process. Because wavelets indicate the presence of multiscale features, one
can identify their temporal locations. The power of the projection of the
signal onto the wavelet transform at the indicated level of scaling is indicated
by color coding, so that we may evaluate the scaling characteristics of the

8The Morlet wavelet has optimal joint timefrequency concentration as it attains the
minimum possible uncertainty of the corresponding Heisenberg box.

9As will be shown in the next subsection, detecting the phase difference is important
because the phase difference characterizes phase relationships between two time series.

10We use quarterly data for the US between 1948:1 and 2010:4 from the Bureau of Labor
Statistics. Labor productivity is defined as output per hour of all persons of the Nonfarm
Business Sector (Index 2005 = 100) and measured as percentage change quarter ago at
annual rate. Unemployment rate is defined as percent Civilian Unemployment Rate.
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data by examining the color plots of the continuous wavelet transform. This
color coding can provide an objective method for determining the principal
timescales present in a signal and also for providing information about the
scales at which important features provide a significant contribution. The
color code for power ranges from blue (low power) to red (high power).
Regions with warmer colors (red, orange and bright green) correspond to
areas of high power, that is regions with wavelet transform coefficients of
large modulus.

The statistical significance of the results obtained through wavelet power
analysis was first assessed by Torrence and Compo (1998) by deriving the
empirical (chi-squared) distribution for the local wavelet power spectrum of
a white or red noise signal using Monte Carlo simulation analysis. A black
contour line testing the wavelet power 5% significance level against the null
hypothesis that the data generating process is generated by a stationary
process is displayed, as is the cone of influence, represented by a shaded
area corresponding to the region affected by edge effects.11

The first thing we can note is that the two series have very different
wavelet power spectra. In the case of labor productivity growth there is evi-
dence of highly localized patterns at certain scales, with high power regions
concentrated in the first part of the sample (until late eighties) and at scales
corresponding to periods up to 4 years. Otherwise, for the unemployment
rate high power regions reveal the presence of dominant scales of variation
at scales corresponding to the medium and long-run periods, since the co-
efficients of maximal energy are concentrated at the highest scales (lowest
frequencies) and, starting from the seventies, also at intermediate scales, i.e.
scales 3 and 4.

Although useful for revealing potentially interesting features in the data
like characteristic scales, the wavelet power spectrum is not the best tool to
deal with the time-frequency dependencies between two time-series. Indeed,
even if two countries share a similar high power region, one cannot infer
that their business cycles look alike. To detect and quantify relationships
between variables, cross-wavelet tools like wavelet coherency and wavelet
phase-difference have to be used.

11As with other types of transforms, the CWT applied to a finite length time series
inevitably suffers from border distortions; this is due to the fact that the values of the
transform at the beginning and the end of the time series are always incorrectly computed,
in the sense that they involve missing values of the series which are then artificially pre-
scribed; the most common choices are zero padding extension of the time series by zeros
or periodization. Since the effective support of the wavelet at scale s is proportional to
s, these edge effects also increase with s. The region in which the transform suffers from
these edge effects is called the cone of influence. In this area of the time-frequency plane
the results are unreliable and have to be interpreted carefully (see Percival and Walden,
2000).
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Figure 1: Wavelet power spectrum for labor productivity growth
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Figure 2: Wavelet power spectrum for the unemployment rate
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2.2 Wavelet coherency

Wavelet tools suitable for the analysis of time-frequency dependencies be-
tween two time series are the cross-wavelet power, wavelet coherency and
wavelet phase difference. Let Wx and Wy be the continuous wavelet trans-
form of the signal x(t) and y(t), the cross-wavelet power of the two series
is given by |Wxy|=|WxWy| and depicts the local covariance of the two time
series at each scale and frequency (see Hudgins et al.,1993). The wavelet co-
herence is defined as the modulus of the wavelet cross spectrum normalized
to the single wavelet spectra and is especially useful in highlighting the time
and frequency intervals where two phenomena have strong interactions. It
can be considered as the local correlation between the time series in time
frequency space. Finally, the phase difference can be useful to characterize
the phase relationships between two time series as a function of frequency,
i.e. phase synchronization of two time series.

As for the wavelet power spectrum, the wavelet coherency power is in-
dicated by color coding. The color code for power ranges from blue (low
coherency) to red (high coherency), with regions of high coherency between
two time series corresponding to areas of strong local correlation. The sta-
tistical significance level of the wavelet coherence is estimated using Monte
Carlo methods. The 5% significance level against the null hypothesis of red
noise is shown as a thick black contour. The cone of influence is marked
by a black thin line: again, values outside the cone of influence should be
interpreted very carefully, as they result from a significant contribution of
zero padding at the beginning and the end of the time series.

The phase difference between the two series is indicated by arrows. In-
deed, the ”phase arrows” show the relative phasing of the two time series and
can also be interpreted as a lead/lag relationship. Right arrow means that
the two variables are in-phase. If the right arrow points up (down) means
that unemployment rate is lagging (leading). At the opposite, left arrow
means that the two variables are out-of-phase (in-antiphase). If the left
arrow points down (up) means that unemployment rate is lagging (leading).

Regions of strong coherency are evident at business cycles scales, i.e.
at scales corresponding to periods between 2 and 8-years, except for the
mid80s-mid90s period. The phase difference reveals that around the 4-year
frequency the two series are generally in phase, while at frequencies approx-
imating 2- and 8-years we can see that the unemployment rate was leading
in the mid60s-mid80s period. Otherwise, in the last decade of the sample
productivity growth is, respectively, leading and slightly leading the unem-
ployment rate at scales corresponding to periods between 4- and 8 years .
That both series are highly correlated at the longest scale (corresponding to
periods greater than 16 years) with a stable antiphase relationship until mid
80s is also revealed by the high coherency (about 0.6) emerging throughout
the sample around these frequencies.
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Figure 3: Wavelet coherency between the unemployment rate and produc-
tivity growth
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In sum, we can conclude that not only the wavelets are adequate to
capture characteristic scales and transient relations, but that they can also
distinguish between different relations that occur at the same time but at
distinct frequencies.

3 Discrete wavelet transform

So far we have considered only continuously labeled decompositions. But
there are several difficulties with the CWT, since the CWT is a highly in-
formation redundant transform representing each datum by a pair of data,
designing time, or space, and scale. First, it is computationally impossible
to analyze a signal using all wavelet coefficients. Second, as noted by Gencay
et al. (2002), W (τ ; s) is a function of two parameters and as such it contains
a high amount of redundant information. As a consequence, although the
CWT provides a useful tool for analyzing how the different periodic com-
ponents of a time series evolve over time, both individually (single wavelet
power spectrum) and jointly (cross-wavelet power, wavelet coherency and
phase-difference), in practice a discrete analogs of these techniques is devel-
oped. We therefore move to the discussion of the discrete wavelet transform
(DWT), since the DWT, and in particular the MODWT, a variant of the
DWT, is largely predominant in economic applications.12

The DWT is based on similar concepts as the CWT, but is more par-
simonious in its use of data (Gencay et al., 2003). In order to implement
the discrete wavelet transform on sampled signals we need to discretize the
transform over scale and over time through the dilation and location param-
eters. Indeed, the key difference between the CWT and the DWT lies in
the fact that the DWT uses only a limited number of translated and dilated
versions of the mother wavelet to decompose the original signal. The idea
is to select τ and s so that the information contained in the signal can be
summarized in a minimum number of wavelet coefficients. The number of
observations at each scale is given by N/2j j = 1, 2, ...J. The discretized
transform is known as the discrete wavelet transform, DWT.

The discretization of the continuous time-frequency decomposition cre-
ates a discrete version of the wavelet power spectrum in which the entire
time-frequency plane is partitioned with rectangular cells of varying dimen-
sions but constant area, called Heisenberg cells.13 Higher frequencies can be

12The number of the papers applying the DWT is far greater than those using the CWT.
As a matter of fact, the preference for DWT in economic applications can be explained by
the ability of the DWT to facilitate a more direct comparison with standard econometric
tools than is permitted by the CWT (e.g. time scales regression analysis, homogeneity
test for variance, nonparametric analysis, ).

13Their dimensions change according to their scale: the windows stretch for large values
of s to measure the low frequency movements and compress for small values of s to measure
the high frequency movements.
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well localized in time, but the uncertainty in frequency localization increases
as the frequency increases, which is reflected as taller, thinner cells with in-
crease in frequency. Consequently, the frequency axis is partitioned finely
only near low frequencies. The implication of this is that the larger-scale
features of the signal get well resolved in the frequency domain, but there
is a large uncertainty associated with their location. On the other hand,
the small-scale features, such as sharp discontinuities, get well resolved in
the time domain, even if there is a large uncertainty associated with their
frequency content. This trade-off is an inherent limitation due to the Heisen-
bergs uncertainty principle that states that the resolution in time and fre-
quency cannot be arbitrarily small because their product is lower bounded.
Therefore, owing to the uncertainty principle, an increased resolution in the
time domain for the time localization of high-frequency components comes
at a cost of an increased uncertainty in the frequency localization, that is
one can only trade time resolution for frequency resolution, or vice versa.

	
  

Figure 4: DWT time-scale partition

The general formulation for a continuous wavelet transform can be re-
stricted to the definition of the ”discrete wavelet transform”, the properties
of which can be summarized by the equation:

ψj,k(t) = 2−j/2ψ
(
t− 2jk

2j

)
(1)

which is known as the ”mother wavelet.” This function represents a
sequence of rescaleable functions at a scale of s = 2j , j = 1, 2, ...J, and
with time index k, k=1,2, 3,...N/2j . The wavelet transform coefficient of
the projection of the observed function, f(t), i = 1,2,3, ...N, N= 2J on the
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wavelet ψj,k(t) is given by:

dj,k ≈
∫
ψj,k(t)f(t)dt,

j = 1, 2, ..J (2)

For a complete reconstruction of a signal f(t), one requires a scaling func-
tion, φ(.), that represents the smoothest components of the signal. While
the wavelet coefficients represent weighted ”differences” at each scale, the
scaling coefficients represent averaging at each scale. One defines the scaling
function, also know as the ”father wavelet,” by:

φJ,k(t) = 2−J/2φ
(
t− 2Jk

2J

)
(3)

And the scaling function coefficients vector is given by:

sJ,k ≈
∫
φJ,k(t)f(t)dt, (4)

By construction, we have an orthonormal set of basis functions, whose
detailed properties depend on the choices made for the functions, φ(.) and
ψ(.), see for example the references cited above as well as Daubechies (1992)
and Silverman (1998). At each scale, the entire real line is approximated
by a sequence of ”non-overlapping” wavelets. The deconstruction of the
function f(t) is therefore:

f(t) ≈
∑
k

sJ,kφJ,k(t) +
∑
k

dJ,kψJ,k(t) +∑
k

dJ−1,kψJ−1,k(t) + ...+
∑
k

d1,kψ1,k(t) (5)

The above equation is an example of the Discrete Wavelet Transform,
DWT based on an arbitrary wavelet function, φ(.). Using economic vari-
ables, the degree of relative error is approximately on the order of 10−13 in
many cases, so that one can reasonably claim that the wavelet decomposi-
tion is very good. For the DWT, where the number of observations is N, N
= 2J , the number of coefficients at each scale is:

N = N/2J +N/2J +N/2J−1 + ...N/4 +N/2 (6)

That is, there are N/2J coefficients sJ,k, N/2J coefficients dJ,k, N/2J−1

coefficients dJ−1,k... and N/2 coefficients d1,k.
While it would appear that wavelets involve large numbers of coefficients,

it is also true that the number of coefficients greater than zero is very small;
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the arrays are said to be ”sparse”. In the literature quite complicated func-
tions are approximated to a high level of accuracy with a surprisingly small
number of coefficients. As a corollary to this general statement, other schol-
ars have noted the extent to which the distribution of coefficients under the
null hypothesis of zero effect, rapidly approaches the Gaussian distribution.

Further, the approximation can be re-written in terms of collections of
coefficients at given scales. Define;

SJ =
∑
k

sJ,kφJ,k(t)

DJ =
∑
k

dJ,kψJ,k(t)

DJ−1 =
∑
k

dJ−1,kψJ−1,k(t) (7)

......

D1 =
∑
k

d1,kψ1,k(t)

Thus, the approximating equation can be restated in terms of coefficient
crystals as:

f(t) ≈ SJ +DJ +DJ−1 + ...D2 +D1 (8)

SJ contains the ”smooth component” of the signal, and the Dj , j=1,2,..J,
the detail signal components at ever increasing levels of detail. SJ provides
the large scale road map, D1 shows the pot holes. The previous equation
indicates what is termed the multiresolution decomposition, MRD.

3.1 Time scale decomposition analysis

The orthonormal discrete wavelet transform (DWT), even if widely applied
to time series analysis in many disciplines, has two main drawbacks: 1) the
dyadic length requirement (i.e. a sample size divisible by 2J), and 2) the
wavelet and scaling coefficients are not shift invariant. Because of the prac-
tical limitations of DWT we perform wavelet analysis by applying the max-
imal overlap discrete wavelet transform (MODWT) using the Daubechies
least asymmetric (LA) wavelet filter of length L = 8 based on eight non-
zero coefficients (Daubechies, 1992), with reflecting boundary conditions.
The MODWT is a non-orthogonal variant of the classical discrete wavelet
transform (DWT) that, unlike the DWT, is translation invariant, as shifts
in the signal do not change the pattern of coefficients, can be applied to
data sets of length not divisible by 2J and returns at each scale a number
of coefficients equal to the length of the original series.
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The application of the maximal overlap discrete wavelet transform (MODWT)
with a number of levels (scales) J = 5 produces six individual crystals14:
one vector of smooth coefficients s5, representing the underlying smooth be-
havior of the data at the coarse scale, and five vectors of details coefficients
d5, d4, d3, d2, d1, representing progressively finer scale deviations from the
smooth behavior. The synthesis or reconstruction operation reassembles the
original signal from the wavelet coefficients, by using the inverse stationary
wavelet transform. We reconstructed detail and smooth components of the
original signals.15 Specifically, with J = 5 we come up with five wavelet
details vectors D5, D4, D3, D2, D1 and one wavelet smooth vector, S5, each
associated with a particular time period 2j−1 In particular, since we use
quarterly data the first detail level D1 captures oscillations between 2 and 4
quarters, while details D2, D3, D4 and D5 capture oscillations with a period
of 1-2, 2-4, 4-8 and 8-16 years, respectively.16
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Figure 5: Phase shift relationships for unemployment (red dotted lines) and
productivity (black solid lines)

14Each set of wavelet transform coefficients is called a crystal in wavelet terminology.
15Since the J components obtained by the application of MODWT are not orthogonal,

they do not sum up to the original variable.
16Detail levels D1 and D2, represent the very short-run dynamics of a signal (and con-

tains most of the noise of the signal), levels D3 and D4 roughly correspond to the standard
business cycle time period (Stock and Watson, 1999), while the medium-run component
is associated to level D5. Finally, the smooth component S5 captures oscillations with a
period longer than 16 years corresponding to the low-frequency components of a signal.
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In Figure 5 we plot the smooth component S5 and the highest level devi-
ations from the smooth component at an increasing level of detail, i.e. D5,
D4 and D3, as a sequence of pairs of time series between the unemployment
rate (red dotted lines) plotted against labor productivity growth (black solid
lines). The visual inspection of the long-run components indicate an anti-
phase relationship between the variables, with productivity growth slightly
leading the unemployment rate. The pattern displayed by the top right
panel in Figure 5 reveals that the two components are mostly in phase at
the D5 scale level, with unemployment slightly leading productivity growth.
Nonetheless, the plot also shows that the two series at this level have been
moving into antiphase at the beginning of the nineties, as a consequence
of a shift in the phase relationship (structural break), and then have been
moving in-phase again in the last part of the sample. At the D4 scale level
unemployment and productivity are in-phase throughout the sample with
the exception of the sixties. Finally, at the D3 level the most notable fea-
ture is represented by the different amplitude of the two components, with
productivity growth displaying the larger amplitude.

3.2 Parametric analysis

Wavelets provide a unique tool for the analysis of economic relationships on a
scale-by-scale basis. Indeed, through the time scale decomposition property
of wavelet analysis it is possible to test directly for parameters instabil-
ity across frequencies in a regression model by using time scale regression
analysis. Time scale regression analysis allows the researcher to examine the
relationship between the variables at each j scale where the variation in both
variables has been restricted to the indicated specific scale. In order to per-
form a time scale regression analysis we need to partition each variable into a
set of different components by using the discrete wavelet transform (DWT),
such that each component corresponds to a particular range of frequencies,
and then run regression analysis on a scale-by-scale basis (e.g. Ramsey and
Lampart, 1998 and Gallegati et al. 2009).17 Therefore, after decomposing
the regression variables into their different time scale components using the
MOWDT we estimate a sequence of least squares regressions using

ur[SJ ]t = αJ + βJ lp[SJ ]t + εt (9)

and
ur[Dj ]t = αj + βj lp[Dj ]t + εt (10)

17Thus, we test for frequency dependence of the regression parameter by using timescale
regression analysis since the approaches used to detect and model frequency dependence
such as spectral regression approaches (Hannan, 1963, Engle, 1974, 1978) present several
shortcomings because of their use of the Fourier transformation. For examples of the use
of this procedure in economics, see Ramsey and Lampart (1998a, 1998b) and Gallegati et
al. (2006), (2009).
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where ur[SJ ]t, and lp[SJ ]t represent the components of the variables at
the longest scale, and ur[Dj ]t, and lp[Dj ]t represent the components of the
variables at each j scale, with j=1,2,....,J .

Table 1: Time scale regression analysis for unemployment on productivity
growth

Dependent variable: ur
Aggregate ∆lp Adj.R2 s.e.

0.0481 0.0072 1.613
(1.678)

Dependent variable: ur[Dj ]
Details ∆lp[Dj ] Adj.R2 s.e.
D1 -0.0126 0.0203 0.1855

(-2.49)
D2 0.0419 0.0713 0.1961

(4.50)
D3 0.2462 0.3641 0.3854

(12.03)
D4 0.5052 0.3833 0.4203

(12.53)
D5 0.3677 0.1085 0.5717

(5.62)
Dependent variable: ur[SJ ]

Scaling ∆lp[SJ ] Adj.R2 s.e.
S5 -1.4208 0.7345 0.5023

(-26.37)
Note: t-statistics in paranthesis.

In Table 1 we present the results from least squares estimates at the
aggregate and each scale level. First of all, we notice that while the rela-
tionship between the unemployment rate and productivity is insignificant
at the aggregate level, it seems to be significantly different from zero at all
scales. Moreover, the scale-by-scale regressions of the unemployment rate
on labor productivity growth indicates that the effects of productivity on
unemployment rate differ across scales in terms of sign, significance, and
estimated size. Indeed, the effect of productivity on unemployment rate is
positive at the detail scale levels, with the relationship being mostly sig-
nificant at the D3 and D4 scale levels, but negative at the smooth scale
level, thus suggesting that labor productivity growth is associated with an
increase in the unemployment rate in the short and medium term, and to
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a decrease in the long run.18 In sum, the results from timescale regression
analysis indicate the usefulness of disentangling short, medium and long-run
effects of changes in productivity growth.

Finally, as anticipated by some scholars, we find that unemployment is
decreased by an increase in productivity for the very short run and in the
very long run. These are the forces that stimulate innovation and growth
in the economy. These positive effects are offset in part by the increase
in unemployment through productivity gains in the intermediate business
cycle periods.

3.3 Nonparametric analysis

In what follows we apply a methodology that allows us to explore the ro-
bustness of the issues related to the relationship between labor productivity
growth and the unemployment rate without making any a priori explicit or
implicit assumption about the form of the relationship: nonparametric re-
gression analysis. Indeed, nonparametric regressions can capture the shape
of a relationship between variables without us prejudging the issue, as they
estimate the regression function f(.) linking the dependent to the indepen-
dent variables directly, and without providing any parameters estimate. 19

There are several approaches available to estimate nonparametric regres-
sion models,20 and most of these methods assume that the nonlinear func-
tions of the independent variables to be estimated by the procedures are
smooth continuos functions. One such model is the locally weighted poly-
nomial regression, i.e. loess, pioneered by Cleveland (1979). This procedure
fits the model y = f(x1, ..., xk)+ ε nonparametrically, i.e., without assuming
a parametric form for f(x1, ..., xk) The low-degree polynomial, generally first
or second degree (that is, either locally linear or locally quadratic), is fit us-
ing weighted least squares, where the data points are weighted by a smooth
function whose weights decrease as the distance from the center of the win-
dow increases. The value of the regression function is obtained by evaluating
the local polynomial at each particular value of the independent variable, xi
where a fixed proportion of the data is included in each given local neigh-
borhood, called the span of the local regression smoother (or the smoothing
parameter),21 and the fitted values are then connected in a nonparametric

18A similar result is obtained in Chen et al. (2007) which, using three different econo-
metric approaches, find that productivity growth affects unemployment positively in the
short and negatively in the long run.

19The traditional nonlinear regression model introduce nonlinear functions of dependent
variables using a limited range of transformed variables to the model (quadratic terms,
cubic terms or piecewise constant function). An example of a methodology testing for
nonlinearity without imposing any a priori assumption about the shape of the relationship
is the smooth transition regression used in Eliasson (2001).

20See Fox (2000a, 2000b) for a discussion on nonparametric regression methods.
21The smoothing parameter controls the flexibility of the loess regression function: large
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regression curve. The main advantage the local regression (loess) method is
that it does not require the specification of a function to fit a model to all
of the data in the sample. In addition, it provides robust fitting when there
are outliers in the data, support multiple dependent variables and computes
confidence limits for predictions when the error distribution is symmetric,
but not necessarily normal. On the other hand, loess, being a method that
fits models to localized subsets of the data, requires reasonably large, densely
sampled datasets in order to produce good models.

In Figure 5 we report the six scatter plots of the unemployment-productivity
growth relationship at the different scale levels, from S5 (top left panel) to
D1 (top right panel). In each panel of Figure 5 a solid line drawn by con-
necting the points of the fitted values for each function against its regressor
is superimposed on each scatter plot. The smooth plots represented by the
solid lines depict the loess fit using a smoothing parameter value of 2/3.22

These lines can be used to reveal the nature of the estimated relationship
between the dependent (unemployment rate) and the independent variable
(labor productivity).

The loess fits shown on the plots in Figure 5 confirms the conclusions
obtained from the time scale regression results reported in Table 1. Indeed,
the analysis of the nonparametric fitted functions in the top left panel of
figure 5 suggests that the long-run relationships between labor productivity
and the other variables denotes some kind of non-linearity. In particular,
the shape of the nonparametric fitted regression function suggests a negative
long-run relationship of labor productivity with the unemployment rate.
Such long-run relationship between labor productivity and unemployment
rate, in contrast to the medium-term result, do not provide support to the
hypothesis of a trade-off between unemployment and productivity growth.
In this case the sign of the relationship is the one expected as higher labor
productivity growth is expected to be associated with lower unemployment
rates in the long-run.

4 Interpretation

As evidenced by the literature discussed in section 1 the empirical and the-
oretical results on the relationship of labor productivity and unemployment
are quite mixed. Most of the studies are rather inconclusive, or contradicted
by other studies. Yet, most of the studies undertaken have, however, only
employed a “one-time-scale” model and thus employed only aggregate time
series data. As shown in section 3, if we indeed follow this methodology for

values of produce the smoothest functions that wiggle the least in response to fluctuations
in the data, the smaller q is, the closer the regression function will conform to the data

22We use different smoothing parameters, but our main findings do not show excess sen-
sitivity to the choice of the span in the loess function within what appear to be reasonable
ranges of smoothness (i.e. between 0.4 and 0.8).
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a US aggregate time series data set, with quarterly data, we find that the
relationship between productivity and unemployment is insignificant.

Yet if we use wavelets to decompose the time series in multiple frequen-
cies we find in the linear as well as in nonlinear regression analysis that there
is, at certain time scales, a positive relationship between labor productivity
and unemployment. The positive relationship appears to hold for short and
medium run fluctuations, ranging from 2 to 4, 4 to 8 and 8 to 16 years. On
the other hand, at the longest scale we find a negative relationship between
productivity and unemployment. (The fact that there is also a positive rela-
tionship for the very short run, may just reflect some noise in the data). All
in all, unemployment is positively associated with productivity in the short
and medium term, but negatively in the long term. This demonstrates the
usefulness of time scale regression analysis in disentangling short, medium
and long run effects of changes in productivity growth on unemployment.

These results have relevant economic implications. First of all, ss regards
the Okun’s law, the US employment seems to be decoupled from economic
growth. In the US there is a slowly recovering unemployment rate, though
the annual growth rates of productivity are higher than in Europe. Due
to high productivity growth rates, in the US one can observe some kind
of jobless growth. Yet, this might be a short run phenomenon. In the
long term this could be turned into a negative relationship of productivity
and unemployment thus unemployment falling and employment rising with
productivity growth in the long run.

Moreover, as to the controversial hypothesis of the RBC models that
employment is rising with positive productivity shocks, the critics (such as
Basu et al., 2006) are presumably correct to state a nonsignificant rela-
tionship between (purified) technology shocks and employment or even a
negative relationship of those variables. Yet, in the long run, since produc-
tivity makes the firms and the country more competitive, the increase in
productivity may make unemployment falling and employment rising. So in
some sense the RBC postulate of a positive relationship of productivity and
employment seems to be incorrect in the short and medium run, but, given
our results, is likely to hold on a long time scale.

5 Conclusion

In this paper, we used the wavelets methodology to analyze the productivity-
unemployment relationship on a scale-by-scale basis. Specifically, by apply-
ing both continuous and discrete wavelet transform tools we are able to
uncover relationships which would be otherwise very difficult to detect us-
ing classical econometric techniques. In a nutshell, we find that there is, for
the short (long) time scales, a positive (negative) relationship between labor
productivity and unemployment. The positive relationship holds for short
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and medium run fluctuations, from 2 to 16 years, while, for a longer time
scale the relation becomes negative. These results suggest some relevant eco-
nomic implications as to, for example, the Okun’s law and the controversial
hypotheses of the RBC models,

When Thomas More (Utopia, 1561) was asserting: sheep are eating men,
he was, in the short run, right. Due to agriculture innovations, profits in
the primary sector were rising, less labor force was employed in agriculture
and more lands were devoted to pastureland. People had to ”invent” new
jobs, to increase their purchasing power, but it needed time to adjust.
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