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Abstract

If the aggregate response of the economy to an exogenous shock is a superposition of effects
which develop over different time scales, then the statistical estimation of low frequency
components is difficult. In fact highly persistent shocks have generally low instantaneous
volatility and are hidden by those shocks with high instantaneous volatility and fast decay.
We refer to this situation as heterogeneity of persistence levels phenomenon. This paper
introduces a new spectral approach which is applicable to the analysis of time series in
the presence of persistence heterogeneity. A new linear decomposition of a time series is
introduced which generalizes the Wold decomposition for stationary time series and the
Beveridge-Nelson permanent transitory decomposition for non stationary integrated ones.
In order to prove the relevance of this new methodology for financial valuation, we apply
it to clarify some open issues which arise in the empirical analysis of gdp and inflation
forecasting.
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1 Introduction

Shocks that impinge an economy can be classified along two competing dimensions: their

size as measured by their instantaneous volatility and their persistence as measured by their

half life. Short run risk is determined by transitory risk components with large volatility

which are expected to have a fast decay over a characteristic time horizon determined by

their half-life. Long-run risk instead is dominated by highly persistent components with

small size. There are many empirical tests in economics and finance that are complicated

by the presence of effects which develop over different time scales. In macroeconomics the

chief measurement issue concerns how to separate data into trends and cycles. The em-

pirical literature contains a wide variety of competing methods. The seminal contribution

of Beveridge and Nelson (1981) proposed a non structural approach to this decomposition.

More recently research on financial valuation has proved that also the risk-return trade-off

profile which describes efficient investment opportunities in the market is strongly depen-

dent on the holding period (Campbell and Viceira (2005) and Bandi and Perron (2008)).

A formal and systematic analysis of the long term risk valuation can be found in Hansen

and Sheinkman (2009a) and Hansen and Sheinkman (2009b). Their approach builds on a

multiplicative version of the Beveridge and Nelson (1981) permanent-transitory decompo-

sition.

This paper proposes a spectral (linear) decomposition of the economic shocks which provides

an effective method to represent a time series as a linear combination of uncorrelated shocks

(the innovations) which are classified by the time of their arrival, as in the standard Wold

decomposition, and by an additional index which measures their level of persistence.

A specific component accounts for those shocks which do not show a decay within any time

interval smaller than the observation sample. This component is the permanent compo-

nent as defined by Beveridge and Nelson (1981) but the new decomposition produces an

alternative more efficient scheme for its identification. Transitory shocks are further split

in orthogonal components. This splitting provides an effective method to represent a time

series as a linear combination of innovations classified by their level of persistence. Shocks

with different levels of persistence and the same arrival time define the term structure of in-

novation shocks. The empirical relevance of the term structure of innovations is illustrated

by analyzing its implications for the cycle measures of GDP and Inflation. A separate com-

panion paper (see Ortu, Tamoni and Tebaldi (2011)) is devoted to the analysis of the Long

Run Risks model in a Bansal and Yaron (2004) economy set-up.

While traditional linear time series analysis is based on Fourier spectral analysis, our



extended approach is based on spectral multiresolution analysis (see Daubechies (1990),

Daubechies (1992), Mallat (1989a) and Mallat (1989b) for an introduction to the topic).

Far from being the first attempt to use a multiresolution approach to economic analysis,we

mention among many the contributions of Ramsey and Lampart (1998) which analyze

the relation between money and income decomposed across time and scales using a mul-

tiresolution and Gencay and Fan (2008), Gencay and Gradojevic (2009), Gencay, Selcuk

and Whitcher (2001) for a specific analysis of unit roots and filtering using multiresolu-

tion analysis. A thorough discussion of the econometric issues involved in the detection of

low frequency structural relations can be found in Muller and Watson (2008) and Muller

and Watson (2009). The role of the Beverigde-Nelson decomposition for characterizing the

nature of macroeconomic fluctuations, and its relation to other unobserved components

models, are discussed in Watson (1986), Morley, Nelson and Zivot (2003), Proietti (2006),

Oh, Zivot and Creal (2006), and Morley (2011), among others.

The paper is organized as follows. Section 2 discusses the motivations which lead to the

necessity of a persistence based classification of shocks, Section 3 states the main result of the

paper, the Persistence Based Decomposition (PBD). Section 4 analyzes the spectral origins

and the relation of the PBD with previously known decompositions and basic asymptotic

limit theory. Section 5 is devoted to applications of the decomposition to gdp and inflation

forecasting . All the proofs are collected in the Appendix.

2 A Persistence Based Classification of Shocks

There are many measures of the degree of persistence of an economic shock. Some of

them are based on the time series representation, other rely on a frequency representation.

In this section a measure of persistence is constructed by making use of a multiresolution

filter4, a class of filters which achieves an optimal ”tradeoff” between a time and a frequency

representation. The filter preserves the advantages of a time series representation because

the decomposition is non-anticipative and can be computed using only past observations

and the filtered components are represented by a time series.

Simultaneously the Fourier spectrum of each component is optimally concentrated on a nar-

row band of frequencies, thus legitimating a classification based on the level of persistence,

which uniquely determines the mean reversion timescale i.e. the inverse of the characteristic

frequency.

4For the basic definitions and notational conventions employed we refer to Hayashi (2000).
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A multiresolution filter can be simply obtained through the recursive application of a well

known object in financial econometrics: the moving average filter. This class of filters is

explicitly designed to remove some systematic ”distortions” which complicate the statistical

detection of the low frequency components of random signals. The starting point of this

analysis is the following:

Definition 1 The dyadic mean operator acting on the time series of observations up to

time t, xt = {xt−k}k∈0,..,+∞, is defined by:

M : xt → π
(1)
t =

{
π
(1)
t−k

}
k∈0,..,+∞

π
(1)
t−k =

xt−k + xt−k−1
2

Iterated application of the operator M to the original time series xt defines the sequence of

time series π
(J)
t whose elements can be computed recursively:

π
(J)

t−2Jk =
(
Mπ

(J−1)
t

)
t−2Jk

=
π
(J−1)
t−2Jk + π

(J−1)
t−2J−1(2k+1)

2
(1)

therefore the element π
(J)

t−2Jk corresponds to the sample mean over a window of past obser-

vations with size 2J .

From the point of view of spectral methods, a moving average filter is a low pass filter,

in fact the elements of π
(J)
t are 2J -period moving averages of the original time series, thus

fluctuations with characteristic time scale smaller than 2J are averaged out and leave the

elements of π
(J)
t unaffected.

The effect of the moving average filter on a generic time series is easily visualized in terms

of the Fourier spectrum of the time series. The top subplot of Figure 1 shows the Fourier

spectrum of the aggregate consumption growth time series; the shadowed region in the

bottom left panel identifies the part of the spectrum which survives after the first application

of the moving average filter, namely the spectrum of
{
π
(1)
t−k

}
k∈N

. The unshadowed, high

frequency part of the spectrum is removed by the application of the filter. In fact in

the frequency representation, a 2j-period moving average operator works as a low band

pass filter which removes all those components whose frequency is larger than 2πfmax/2
j

where fmax = 2π/h is the maximum frequency appearing in the spectrum generated by the

application of the Fourier transform to a time grid of observations with minimum spacing

h.
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[Insert Figure 1 about here.]

The illustration shows that the difference between π
(J−1)
t and π

(J)
t identifies the component

of the original time series with half life with a Fourier spectrum localized in the finite

interval of frequencies
[
fmax
2J

fmax
2J−1

)
corresponding to the interval of characteristic timescales[

2J−1, 2J
)
. This intuition suggests the following:

Definition 2 Assume the following notational convention: π
(0)
t = xt. The time series

δ(J) =
{
δ
(J)

t−2Jk

}
k∈N

with elements

δ
(J)

t−2Jk = π
(J−1)
t−2Jk −

π
(J−1)
t−2Jk + π

(J−1)
t−2J−1(2k+1)

2
(2)

=
π
(J−1)
t−2Jk − π

(J−1)
t−2J−1(2k+1)

2

is called the J-th detail component of the time series xt. The index J is called the level

of persistence of the component. 2J is called the characteristic “timescale” of the J-th,

component. In fact the half life of the J − th component is shorter than 2J and longer than

2J−1.

Figure 1 inset 3 shows the spectrum of the details δ1t as extracted by the time series for

consumption growth. A simple recursive procedure is practically used for the iterative com-

putation of the decomposition. The details at scale 2j are formed by the first differences of

a moving average over 2j periods of the original time series. Continuing the exemplification

in Figure 1 the insets in the second column show the Fourier spectra of each term (namely

the details δ
(1)
t and δ

(2)
t and of the persistent component π

(2)
t obtained by a decomposition

truncated at level J = 2.

Thanks to the recursive nature of the definition of π
(J)
t and δ

(J)
t it is immediate to verify

that:

Corollary 3 The element xt of the original time series can be decomposed as:

xt =

J∑
j=1

δ
(j)
t + π

(J)
t (3)

Each element of the decomposition can be computed using only observations prior to time t.
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We are now ready to introduce the following

Definition 4 The ”redundant” Persistence Based Decomposition (PBD hereafter) trun-

cated at level J of xt is the vector
(
δ
(J)
t , π

(J)
t

)′
, where δ

(J)
t denotes the sequence of details

δ
(J)
t ≡

{
δ
(j)
t

}
j=1,..,J

and π
(J)
t the level J scale component.

Following the notation of Renaud, Starck and Murtagh (2005), the above decomposition

is qualified as “redundant”. In fact suppose that the above PBD is repeated at any time

t and the information is collected in the array of vectors

{(
δ
(J)
t−k, π

(J)
t−k

)′}
k=0,2J−1

. This

array is redundant because its elements are not linearly independent. The redundant detail

vectors allow to linearly reconstruct the original vector of observations
(
xt−2J+1, ..., xt

)′
in

an infinite number of ways. This implies that in general the redundant details are correlated

even if the original observations are not, i.e. a redundant representation of the time series

generates spurious correlations in the data. An alternative, ”decimated” decomposition

can be defined by selecting a minimal subset of details which is necessary to invert the

transformation and reconstruct the vector of observations
(
xt−2J+1, ..., xt

)′
. Cumbersome

linear algebra considerations, see e.g. Renaud et al. (2005)and references therein, show that

the reduction to the ”minimal subset” is obtained sampling details at scale j on a coarser

grid with time spacing 2jh.

In light of the above observations we can state the following:

Definition 5 The decimated PBD truncated at level J of xt is given by the vector
(
δ
d(J)
t , π

(J)
t

)
where δ

d(J)
t ≡

{
δ
(j)

t−2jkj

}
j=1,..,J, kj=0,.,2J−j−1

and π
(J)
t .

Observe that the collection of vectors
{(
δ
d(J)

t−2Jk, π
(J)

t−2Jk

)}
k∈N

allows the exact reconstruction

of the complete original time series and therefore contains the same information of the array

of redundant PBD

{(
δ
(J)
t−k, π

(J)
t−k

)′}
k∈N

.

The construction of the ”decimated” PBD is easily understood by making use of a matrix

algebra. Consider the decomposition with maximum level J = 2. We first group the

variables {xt−k}k∈N in (disjoint) blocks of length 22.

X
(2)
t =


xt−3
xt−2
xt−1
xt


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The matrix T (2) that maps the the block of 4 observations in the minimum vector of details

is given by:

T (2) =


1
4

1
4

1
4

1
4

−1
4 −1

4
1
4

1
4

−1
2

1
2 0 0

0 0 −1
2

1
2

 (4)

Using equation (1) and (2) we get

X̃
(2)
t =


π
(2)
t

δ
(2)
t

δ
(1)
t−2
δ
(1)
t

 =


xt+xt−1+xt−2+xt−3

4
xt+xt−1−xt−2−xt−3

4
xt−2−xt−3

2
xt−xt−1

2


In this example the decimated set of details is δD2,t =

{
δ
(1)
t , δ

(1)
t−2, δ

(2)
t

}
while the redun-

dant one is δ2,t =
{
δ
(1)
t , δ

(2)
t , δ

(1)
t−1, δ

(2)
t−1, δ

(1)
t−2, , δ

(2)
t−2, δ

(1)
t−3, δ

(2)
t−3

}
. The minimal property of the

decimated PBD is proved by the invertibility of the matrix T (2).

It has to be underlined that the redundant and decimated versions of the PBD are per-

fectly consistent and equally relevant for econometric analysis. The redundant PBD can be

computed at any time t, i.e. it is updated with the highest frequency and all the incoming

information is immediately embedded in it. For this reason, the redundant PBD seems to

be useful to improve the out of sample forecasting ability.

On the other hand, by construction, each detail at level j, δ
(j)
t−k, is formed by a moving

average of the observations xt−k over a window of width 2j , hence a spurious autocorre-

lation patterns will appear. In particular, when regressor and regressand are given by the

time series of ”redundant” details, the statistical significance tests on the results obtained

running a linear predictive regression require an explicit modification to take into account

the correlation induced on residuals by the moving average effect over a window of 2j . The

”decimated” PBD removes this spurious pattern at the cost of a large reduction of the

sample size, since innovations with persistence j are then localized on a coarser grid with

spacing 2j .

In conclusion the tension between redundant and decimated PBD reflects the fact that

innovations on the component at level of persistence j are naturally adapted (localized)

on a time grid with time step 2j , thus their measures over shorter time intervals generate

spurious correlations.

The tradeoff between a higher resolution and the absence of spurious correlations is in fact

unavoidable in theory and in practice and has to be considered as part of the identification
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procedure which connects a structural model to the observations of factors in a mixed

frequency framework.

The persistence based decomposition highlights an additional distortion that affects dy-

namic estimation of a model in the presence of heterogeneity of persistence levels. Consider

the case where the original observations form a white noise sequence of unit variance inno-

vations {εt−κ}k∈N, εt ∼ N (0, 1). Then the computation of the decimated persistence based

decomposition produces:

WNt =


εt−3
εt−2
εt−1
εt

 , T (2)WNt =


π
(2)
t

δ
(2)
t

δ
(1)
t−2
δ
(1)
t

 =


επt /2

ε
(2)
t /2

ε
(1)
t−2/
√

2

ε
(1)
t /
√

2


The innovations επt , ε

(j)
t ∼ N (0, 1) are again standard normal innovation processes: επt

describes the innovation on the scale process while the sequence
{
ε
(j)
t

}
j=1,..,J

describe detail

components of a white noise ε
(j)
t = (εt − εt−2j ) /2j/2. Innovations of detail components with

level of persistence j, ε
(j)
t , have standard normal distributions but their spectral densities are

localized on the specific frequency band corresponding to half lives in the interval
(
2j−1, 2j

]
.

The PBD of the innovation εt is then given by:

εt =
ε
(1)
t√
2

+
ε
(2)
t

2
+
επt
2

A key observation is that the contribution to the period variance of the detail component

δ
(2)
t is half the contribution of of the detail component δ

(1)
t :

V ar
(
δ
(2)
t

)
/V ar

(
δ
(1)
t

)
= V ar

(
ε
(2)
t

2

)
/V ar

(
ε
(1)
t√
2

)
=

1

2

hence the higher the level of persistence of the component, the lower its contribution to the

instantaneous variance of the shock.

Hence a statistical analysis based on the short term, single period, variance decomposition

will generally underweight the importance of high persistence shocks compared to the effect

of transitory shocks. This observation provides a strong motivation to the use of a filtering

approach to disentangle the low frequency components in order to avoid a sever error in

variables problem (for related analysis see Ortu et al. (2011)).

This distortion is corrected by introducing the Haar transform see e.g. Renaud et al.

(2005), a mild modification of the transformation T (J). The elements of the exact Haar
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Transformation matrix are obtained by rescaling the matrix elements of T (J) in order to

generate an equivalent linear transformation which has also the isometric property. The

isometric Haar matrix for J = 2 is given by:

T (2)
Haar =


1
2

1
2

1
2

1
2

−1
2 −1

2
1
2

1
2

− 1√
2

1√
2

0 0

0 0 − 1√
2

1√
2




xt−3
xt−2
xt−1
xt

 (5)

Let Y
(2)
t be the vector of the Haar transform

Y
(2)
t = T (2)

HaarX
(2)
t ,

Comparing Y
(2)
t with X̃

(2)
t it is immediate to verify that:

X̃
(2)
t =


π
(2)
t

δ
(2)
t

δ
(1)
t−2
δ
(1)
t

 , Y
(2)
t =


(√

2
)2
π
(2)
t(√

2
)2
δ
(2)
t(√

2
)1
δ
(1)
t−2(√

2
)1
δ
(1)
t


and the application of the Haar Transform to the white noise sequence gives:

T (2)
HaarWNt =


επt
ε
(2)
t

ε
(1)
t−2
ε
(1)
t


and the distortion factors disappear.

In conclusion the introduction of the decimated PBD and of the isometric transform high-

light the two ”distortions” which complicate the statistical filtering of the low frequency

components of random signals: shocks at scale of persistence j are naturally adapted on

a scale 2j and their filtration at higher frequencies induces spurious correlation effects in

the observation, the instantaneous variance underweights the contribution to long run in-

tegrated variance of high persistence components. In the above analysis the PBD was

truncated at a finite maximum level J corresponding to a maximum averaging window of

2J periods. In the next section we prove that the iteration of the above recursive scheme

converges in the limit J → +∞ and produces the non truncated PBD.

3 The Persistence Based Decomposition of a Time Series

In this section we state the two main results of the paper. The next theorem characterizes

the the full, non truncated PBD of the time series {xt−k}k∈N of observations of a stationary
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stochastic process.

Theorem 6 Consider the PBD of a stationary time series {xt−k}k∈N with Wold decompo-

sition xt = µ+ ψ (L) εt. Then:

1. the sequence of random variables {π(J)t }
+∞
J=0 converges a.s. to a constant equal to the

mean:

π
(∞)
t ≡ lim

J→+∞
π
(J)
t = µ

and the following decomposition holds for xt:

xt =

+∞∑
j=1

δ
(j)
t + µ (6)

2. the variance of the rescaled permanent component π
(J)
t converges to the long run vari-

ance.

lim
J→∞

√
V ar

[√
2Jπ

(J)
t

]
= ψ (1)

3. the details δ
(j)
t as defined by eq.(2) are first differences of stationary processes and the

corresponding time series have zero long run variance.

Proof. The proof is provided in Appendix B.

The next theorem states the most general version of the PBD which applies to a (possibly)

non stationary integrated process:

Theorem 7 Consider an integrated time series yt = {yt−k}k∈0,..,+∞ such that E
[
y20
]
<

+∞ and let the time series of the first differences xt = ∆yt admit the Wold representation

xt = µ+ ψ (L) εt with
∑+∞

j=0 jψj < +∞. Then:

yt − y0 = π̃
(∞)
t +

+∞∑
j=1

δ̃
(j)
t (7)

where:
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1. the details δ̃
(j)
t at any level of persistence j are stationary and their Wold decomposi-

tions are given by

δ̃
(j)
t = −

+∞∑
kj=0

(
T (∞)
Haarψ̃

)
j,kj

εj,t−2jkj εj,t−2jkj =
+∞∑
k=0

(
T (∞)
Haar

)
j,kj ;k

εt−k

(
T (∞)
Haarψ̃

)
j,kj

=
+∞∑
k=0

(
T (∞)
Haar

)
j,kj ;k

ψ̃k, ψ̃k ≡

∑
j>k

ψj


where T (∞)

Haar
5 is the (infinite) matrix which implements the Haar transform.

2. the time series of the asymptotic scale component equals a random walk plus a deter-

ministic trend:

π̃
(∞)
t = µt+ ψ (1)

t∑
s=1

εs.

3. the sequence of stationary details δ̃
(j)
t j ∈ N can be computed using the recursive

definition (2) for the integrated time series yt = {yt−k}k∈0,..,+∞.

Proof. The theorem is proved in Appendix C.

It is important to remark that the above decompositions result from a purely spectral

classification and should not be confused with a parametric assumption. Drawing an

analogy with the traditional statement of the Wold Theorem, the possibility to decompose

a process as an infinite moving average of uncorrelated innovations does not preclude the

use more parsimonious parametric models, in the same way the PBD does not prevent from

adopting more traditional time series models whose evolution involves only a small number

of details.

As a consequence the use of the above spectral decomposition must be motivated by proving

in a structural approach that details with different level of persistence are different channels

of transmission of independent information. In particular when the information conveyed

by details with high level of persistence and relevant over the long run is relevant for the

economic analysis, the PBD is necessary in order to remove the distortions analyzed in

5The Haar Transform matrix T (∞)
Haar can be formally defined as the direct limit:

lim
J→+∞

T (J)

Haar|δ = T (∞)
Haar

where T (J)

Haar|δ is the matrix which is obtained by T (J)
Haar, the matrix which implements the transform trun-

cated at level J but restricted to the vector space spanned by details (without the first line).
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Section 2. Hence the use of a multiresolution approach is necessary in order to produce a

good description of low frequency high persistence economic factor’s properties.

In the next section we provide a more extended discussion of the spectral definition of the

PBD and its relation with well known decomposition approaches.

4 The Spectral Definition of the Persistence Based Decom-
position

The above decomposition can be obtained by an application of the abstract Wold theorem

(Wold 1938) which is reviewed in Appendix A.

Abstract Wold theorem states that any isometric operator F in an Hilbert space H produces

an orthogonal decomposition of the Hilbert

H = HS ⊕H(∞)

HS = W ⊕ FW ⊕ F 2W ⊕ . . . =

∞⊕
n=0

FnW

where W, the wandering subspace is defined as:

W ≡ HS 	 FHS

and H(∞) is defined by

H(∞) ≡ ∩nFnH

The abstract theorem produces the traditional Wold decomposition (see e.g. Brockwell and

Davis ) if the isometric operator is identified with the lag operator L and the Hilbert space

H is identified with the Hilbert space of covariance stationary processes. The derivation of

the traditional Wold decomposition for stationary time series from the abstract version is

reviewed in the Appendix. Within our analysis it will be assumed that the stationary time

series {xt−k}k∈N is regular, i.e. there’s no non constant component which is orthogonal to

all past innovations. Hence it admits an square summable standard Wold representation:

xt = µ+ ψ (L) εt
+∞∑
j=0

ψ2
j < +∞

11



The PBD eq.(6) is obtained by an application of the abstract Wold Theorem to a different

isometry operator acting on a different Hilbert space. The Hilbert space and the Isometric

operator which are necessary in order to characterize the PBD are introduced in the next:

Definition 8 Let

H (xt) =

{
Z =

∑
k∈N

αkxt−k,
∑
k∈N
|αt−k|2 < +∞,

〈
Z1, Z2

〉
=
∑
k∈N

α1
kα

2
k

}

Let the dyadic dilation operator centered at time t be defined by:

D : H (xt)→ H (xt)

x̃ = {x̃t−k}k∈N → x
(1)
t =

{
x
(1)
t−k

}
k∈N

= Dx̃

x
(1)
t−k =

√
2x̃t−2k

Then the rescaling operator, R, centered in t is defined by:

R = D ◦M (8)

i.e. it is the composition of the dyadic dilation operator D with the dyadic mean M .

and it is possible to state the following:

Theorem 9 R acts as an isometric operator in H (xt). By abstract Wold theorem it is

possible to decompose H (xt) as follows:

H (xt) =

+∞⊕
j=1

RjWR
t ⊕H

(∞)
t,R

WR
t = RH (xt)	Ht (xt) (9)

RjWR
t =

〈
δ
(j)
t

〉
is the linear subspace generated by the time series of details with level of

persistence j.

H(∞)
t,R is the largest vector subspace of Ht (x) spanned by eigenvectors of R with eigenvalue

larger or equal than 1. It satisfies the fixed point equation:

RH(∞)
t,R = H(∞)

t,R

12



Proof. The theorem is proved in Appendix B.

In light of the above operator decomposition we are now ready to state the following con-

vergence result under suitable parametric assumptions.

Theorem 10 Consider the PBD of a stationary time series {xt−k}k∈N with Wold decompo-

sition xt = µ+ψ (L) εt and denote by PH the orthogonal projection onto the linear subspace

H, then the PBD decomposition is determined by the decomposition induced by the isometric

operator R through the following equalities:

P
RjWR

t
xt = δ

(j)
t

PH(∞)
t,R

xt = µ

Proof. The proof is provided in Appendix B.

The stationary hypothesis plays a central role in the characterization of H(∞)
t,R . By definition

H(∞)
t,R = ∩j=0,..,+∞R

jHt (x)

Note that the fixed point property pertains to the vector space and not necessarily to its

elements. Consider for example the linear space of constant processes, this one dimensional

space is invariant as a whole with respect to rescaling, in fact the image under a rescaling

R of a constant process µ = (µ, µ, µ, ..) is still a constant process:

Rµ =
√

2µ

but each constant process is not a fixed point for the rescaling operator, in fact Rµ 6= µ.

This proves that the space of constant processes is a subspace of H(∞)
t,R . Then additional

independent generators of H(∞)
t,R are to be found in the set of zero mean stationary processes.

Let xt a zero mean stationary process with summable covariances and consider the image

of xt under the application J times of the rescaling operator RJxt, in the limit of J → +∞.

Then application of the CLT for stationary time series with summable covariances, see Hall

and Heyde (1980), yields immediately the result:

(
s
(∞)
t

)
k
≡ lim

J→+∞

(
RJxt

)
k

= lim
J→∞

√
2Jπ

(J)

t−2Jk = lim
J→∞

(∑2J

n=0 xt−k2J−n√
2J

)
d
= ψ (1) εt−k

(10)
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where ψ (1) is the long run variance of xt which is finite given the summability of the

covariances and εt−k is a normally distributed standard innovation. Hence the limit process

s
(∞)
t is a fixed point process for the rescaling R:

Rs
(∞)
t

d
= s

(∞)
t (11)

The corresponding linear subspace belongs to H(∞)
t,R and exhausts all the possible limiting

expressions that can be obtained from a a zero mean stationary time series with summable

covariances x and thus the zero mean elements of H(∞)
t,R .

While the contribution of s
(∞)
t to the PBD of a stationary time series becomes negligible

as J → +∞, it plays a key role when the decomposition is applied to a nonstationary unit

root process. In fact it is possible to prove that this component is the stochastic trend as

defined in Beveridge and Nelson (1981) (BN hereafter).

Definition 11 (Hayashi pg. 562) The permanent component (stochastic trend) pBNt of a

unit root non stationary process yt process is that component whose effect is not expected to

decay but “persists” at any horizon. A transitory component of a process is that component

which becomes negligible when looked at a sufficiently large horizon. Hence for a time series

yt the BN permanent component is defined by:

pBNt = lim
h→+∞

yt + E

[
h∑
k=1

∆yt+k − µh | Ωt

]
(12)

µ = E [∆yt]

where Ωt is the information set available at time t.

This purely formal definition requires the specification of a probabilistic time series model to

produce an effective identification and estimation procedure. The simplest computational

scheme of the permanent component pBNt assumes that the first difference process xt = ∆yt

admits a (standard) Wold representation with summable coefficients:

∆yt = xt = µ+ ψ(L)εt (13)

ψ(L) =

+∞∑
j=0

cjL
j

then:

∆yt = xt = µ+ ψ(L)εt

= µ+ ψ(1)εt + [ψ(L)− ψ(1)] εt (14)
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and using the telescopic relation yt − y0 =
∑t

t′=0 ∆yt′ , the process yt can be written as:

yt − y0 = µ · t+ ψ (1) zt + ψ∗(L)εt

zt = zt−1 + εt

ψ∗(L) = [ψ(L)− ψ(1)] [1− L]−1 = −
∞∑
k=0

ψ∗kL
k

ψ∗k =

∑
j>k

ψj


hence yt is decomposed as a sum of a linear deterministic trend µt, a stochastic trend

(martingale component) ψ (1) zt and a transitory (stationary) component represented by

ψ∗(L)εt. Recall that ψ (1) determines the Long Run Variance of the I(0) process xt. In this

framework the permanent component coincides with the stochastic trend, hence:

pBNt ≡ µt+ ψ (1) zt

pCYt = yt − pBNt = ψ∗(L) = − [ψ(1)− ψ(L)] [1− L]−1 εt (15)

In order to relate BN analysis with the PBD, the natural starting point is the observation

that the first differences of the BN permanent component are fixed points of the rescaling

operator R:

Theorem 12 Let yt = {yt−k}k∈N a zero mean unit root process such that its increments

xt−k = ∆yt−k admit a representation xt = µ+ψ (L) εt. Let pBNt and pCYt the BN permanent

and transitory components of yt, let ∆pBNt :=
{
pBNt−k − pBNt−1−k

}
k∈N the time series of first

differences of the stochastic trend component and s
(∞)
t defined by (11). Then the following

equalities hold:

∆pBNt = s
(∞)
t

thus time series of the persistent component increments satisfies the fixed point equation:

R∆pBNt
d
= ∆pBNt (16)

where R is the rescaling operator defined in eq.(8).

Proof. Apply the rescaling transformation to eq.(14), then it is immediate to verify that

∆pBNt = ψ (1) εt. It is directly implied by the stability of the Gaussian distribution with

respect to the scaling operator.
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Hence in the space Ht (x), the shocks driving the BN ”permanent” component belong to

H(∞)
R,t (x), i.e. to the scale component of the PBD, and the theorem formalizes the intuition

that the permanent component is driven by shocks which ”do not show a decay over any

timescale”.

The substantial improvement achieved by making use of the abstract Wold theorem is

determined by the action of the PBD on the transitory component. The detail components

δ
(j)
t ∈ RjWR

t appearing in the PBD of xt are by definition orthogonal to the permanent

component which belongs to H(∞)
R,t (x) and by Theorem (6) each detail time series is the

first difference of a stationary process. Hence the detail components selected by the PBD

of xt contribute to the transitory component pCYt of the integrated process yt.

The above results critically hinge on the possibility to have an infinite number of observa-

tions. A sharper characterization of the finite sample version of the PBD is analyzed in the

next section.

5 The asymptotic limit theory for T → +∞ of the PBD.

In this section a sample of observations of size T is thought to be the T − th row of a tri-

angular double array random process

{{
x
(T )
t

}T
t=1

}+∞

T=1

, in order to analyze the asymptotic

properties of the PBD as T → +∞.

Within this framework, following Stock (1994), Davidson (1999,2002), White (2001, p.179)

and Breitung (2002) it is natural to introduce:

Definition 13 The process
{
yTt−k

}T
k=1

is a zero mean I (1) process if:

∃σ > 0 : T−1/2σ−1y
(T )
brT c

T→+∞
=⇒ W (r)

where b·c is the largest smaller integer function, W (·) is a standard Wiener process in the

unit interval and
T→+∞
=⇒ denotes weak convergence6 as T → +∞.

The process
{
xTt−k

}T
k=1

is a zero mean I (0) process if it is the first difference of an I (1)

process, hence:

∀r ∈ [0, 1] , ∃σ > 0 : T−1/2σ−1
brT c∑
t=1

x
(T )
t

T→+∞
=⇒ W (r)

6Convergence has to be understood as the weak convergence in the space of cadlag processes in the unit
interval equipped with the Skorohod topology.
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The weak limit procedure fixes r in the unit interval and imposes that the fraction of

observations with (discrete) time index t < rT as T → +∞ converge to a Wiener process

on the unit interval, the unique process with continuous paths having increments that are

stationary, normally distributed and uncorrelated.

This asymptotic limit has important implications for the asymptotic expression of the scale

component in the PBD. The limit T → +∞ and J → +∞ are not independent and can be

simply related thanks to the following observation:

Proposition 14 Consider the time series of observations
{
xTt−k

}T
k=1

with sample size T .

The maximum scale component corresponding to a level of persistence Jmax (T ) = blog2 (T )c
is determined by the time series

{
π
(Jmax)
t (ω)

}
0≤t≤T

, with elements:

π
(Jmax)
t =

1

2Jmax(T )

t∑
k=0

x
(T )
k 0 ≤ t ≤ T

and cannot be further decomposed on the basis of the finite set of observations. Hence

the detail components δ
(j)
t with level of persistence j > Jmax = blog2 (T )c and the scale

component π
(∞)
t cannot be disentangled on the basis of the finite sample of T observations.

On the basis of Definition 13 and of the previous observation, it is immediate to state the

following:

Corollary 15 Apply the PBD to a zero mean I (0) process, then the triangular array of

random variables {
{√

2Jπ(J)
t

(ω)
}
0≤t≤2J

}+∞J=1 weakly converges as J → +∞ to the limit:

√
2Jπ

(J)

b2Jrc ⇒ ψ (1)W (r)

where ψ (1) is the long run variance of the I (0) process.

Apply the PBD to a zero mean I (1) process, then the triangular array of random variables

{
{
π(J)
t

(ω) /
√

2J
}
0≤t≤2J

}+∞J=1 weakly converges as J → +∞ to the limit:

π
(J)

b2Jrc/
√

2J ⇒ ψ (1)

∫ 1

0
W (r)dr

where ψ (1) is the long run variance of the first difference process.
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Proof. Fix T (J) = 2J , then the triangular array generated by
√

2Jπ
(J)

b2Jrc, J → ∞, is a

subsequence of the triangular array with elements y
(T )
brT c = 1√

T

∑brT c
k=0 x

(T )
k where we recall

that x
(T )
k are observations extracted from a I (0) processes. Hence the two triangular arrays

have the same limiting process and by the functional central limit theorem for I (1) processes

T−1/2y
(T )
brT c

T→+∞
=⇒ W (r) and the thesis is proved.

The second part of the theorem is also derived through a simple application of the functional

limit theorem. For any driftless random walk yt, the functional 1

T
3
2

∑T
t=1 yt−1 converges to:

1

T
3
2

T∑
t=1

yt−1
T→+∞⇒ σ

∫ 1

0
W (r)dr

The theorem is very important for practical applications when the order of integration is

unknown. Then the computation of the scale component at different levels of persistence

offers a non parametric procedure to discriminate between the I (0) and I (1) alternatives

based on the growth rate of volatility of the scale component π(J)
t

is
(
2J
)1/2

for an I (0)

process and
(
2J
)3/2

for a I (1) process and offers the opportunity to design accurate tests.

5.1 Simulation analysis

5.1.1 The scale component and the long run variance in a AR(1) process

In this section we analyze the convergence of the scale coefficient under the nonisometric

PBD and under the isometric Haar transform.7 We simulate a series of length T = 10248

for an AR(1)

xt+1 = ρxt + k + εt+1

with εt+1 ∼ i.i.d.N(0, 1) and for each process we compute the scaling coefficient obtained

both under the isometric transform and the not-isometric transform. We choose k = 0.3,

φ = 0.89 and we repeat the experiment on a sample of 1000 paths. The theory suggests that

the scaling coefficient πt obtained under the non-isometric transform should converge to the

unconditional mean. This is in fact the case as it is shown in Figure 3 where we plot the

scaling coefficient obtained using the Non Isometric Transform. We see that the coefficients

7See Appendix B.
8We also simulate sample of length T = 512 and T = 2048 and results are virtually the same.
9We also check results using φ = 0, 0.7, 0.9, 0.95.
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wanders around the true unconditional mean µ = k
1−φ = 1.5 of our AR(1) process with a

standard deviation equal to 0.073.

We now study the behavior of the Isometric Haar transform. Results are shown in Figure 4

where we plot the isometric scaling coefficient at time T for the autoregressive process. As

Theorem ... suggests, the variance of the scale coefficient for the PBD for the AR(1) case

converges to the long run variance. In fact we compute the analytical long run variance

for our AR(1) process and we obtain Avar(xt) = 25.00 whereas the variance of our scaling

coefficient is equal to V ar(πx(T )) = 23.72.10 Figure 6 illustrates the result of the central

limit theorem for stationary stochastic processes, i.e.

√
T
(
X̄T − µ

)
→ N

0,

∞∑
j=−∞

γj

 (17)

In particular the top panel of Figure 6 shows the V ar(
√
Tπx(T )) for T = 64, 128, 256, 512, 1024.

We see that V ar(
√
Tπx(T )) converges to the long run variance of our AR(1) process.

[Insert Figures 3 and 4 about here.]

5.1.2 The stochastic trend of the random walk process.

In this section we analyze the properties of the scaling coefficients under the Isometric Haar

transform for a non stationary pure Random Walk process. For an I (1) this component

corresponds to the scale component selected by the I (1) version of the PBD. We simulate

a series of length T = 102411 for a random walk

yt+1 = yt + εt+1

Figure 5 determines the isometric scaling coefficient at time T ,i.e. πy(T ). In the first panel

we see that the variance is huge. In the second panel we show the coefficient πy(T )/T
3
2

whose variance instead is equal to 0.3.

In the second panel of Figure 6 we show that controlling for the rate of convergence 2
3
2
J then

the long-run variance of our driftless random walk goes to a constant value. In conclusion

the presence of a stochastic trend generates a growth of order 2
3
2
J variance as the sample

of observations is increased.
10We also compute the long run variance using the Newey-West estimator with 300 lags for the bandwidth

kernel and we obtain Avar(xt) = 18.1661
11We also simulate sample of length T = 512 and T = 2048 and results are virtually the same.
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[Insert Figures 5 and 6 about here.]

5.1.3 Persistence based decomposition and the cointegration of dividends and
prices.

To illustrate the performance of the filter we apply the decomposition to the time series of

log prices pt and log dividends dt
12. The empirical exercise is based upon quarterly data

series of the return on the value portfolio of all US stocks — NYSE, AMEX and NASDAQ

— with and without dividends13. From these two series we are then able to obtain the price

and dividend ones. The dataset is collected from CRSP and the sample spans from the first

quarter of 1926 to the fourth quarter of 2007. We report the log dividend and the log price

series in Figure 7 and their complete decomposition in Figure 8.

[Insert Figure 7 and Figure 8 about here.]

Each inset numbered from 1 to 9 shows the corresponding detail components ordered by

an increasing level of persistence. The last inset shows the permanent component. By

definition each of these components has an increasing level of persistence that determines

the decrease of the speed of mean reversion which can be observed in the figure.

Two important observations are in order: Figure 9 and 10 compares the first detail δ
(1)
t of

the Persistence Based Decomposition (PBD) with the transitory component of a standard

univariate Beveridge Nelson (BN) decomposition, both time series selected through the

standard first order differencing procedure. Visual inspection reveals immediately that they

almost overlap. Since the BN permanent component is defined as the difference between

the original time series and the transitory part, it is immediate to verify that all the detail

components from 2 to J = 9 of the PBD are included in the BN permanent component.14

[Insert Figure 9, 10 and 11 about here.]

On the contrary the permanent components selected by the PBD for the log dividend and

log prices corresponds only to the component which persists beyond scale J = 9. According

12Lower-case letters will be used to denote variables in logs.
13In particular we have vwretd = (Pt +Dt)/Pt−1 − 1, vwretx = Pt/Pt−1 − 1.
14See Figure 11 for the log price series; analogous results are obtained for the dividends series and are

available upon request from the corresponding author
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to the the Campbell and Shiller log-linear approximation the permanent components of pt

and dt should be cointegrated with cointegration vector β = [1 − 1].

We consider the estimation of the cointegrating vector β considering two separate procedures

to analyze the deterministic trend and the stochastic trend.

5.1.4 Deterministic trend

Using a simple OLS regression of the finite sample permanent component of the log-dividend

πdt on the finite sample permanent component of the price πpt :

πdt = β0 + β1π
p
t + ut

selects a cointegrating vector 15 β = [1 − 1.01] very close to the theoretical expectations.

5.1.5 Stochastic trend

We now investigate whether the scaling coefficients for the series of log prices and log

dividends grow at rate T
3
2 as it is the case for an I(1) process. In Figure 12 we plot for

each series the scaling coefficient properly rescaled with the rate of convergence of T 1.5

together with the best linear fit. This linear hypothesis is verified by the behavior of the

scaling coefficients surprisingly well and supports the thesis of a unit root behavior for prices

and dividends and identifies a cointegration relation for the stochastic component given by

β = [1 − 1.01] very close to the theoretical expectations and identical to the one obtained

for the deterministic trend.

[Insert Figure 12 about here.]

6 Empirical test (DRAFT VERSION): forecasting GDP and
Inflation using the PBD decomposition

One important finding, also remarked in Nelson (2008), is that most of the variation in

macroeconomic time series can be ascribed to permanent shocks, which are largely unpre-

15Note that the estimated coefficients β0 and β1 from the cointegrated regression are superconsistent
according to Stock (1987) and dynamic misspecification is not a problem in this regression. Moreover we
obtain an R2 of almost 98% suggesting that if there is any bias due to small sample then this is going to be
small.
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dictable, whereas the transitory component has very little amplitude. This section will

re-examine such finding using our suggested decomposition.

In particular the section presents two illustrations dealing with two relevant macroeco-

nomic indicators of the U.S. economy: quarterly real gross domestic product (GDP, 100

x logarithms, sample period: 1947.q1-2010.q4) and quarterly inflation obtained as πt =

ln (CPIt/CPIt−1), where CPI is the consumer price index for all urban consumers released

by the U.S. Bureau of Labor Statistics (seasonally adjusted, January 1947 - December 2008).

The series were downloaded from the FRED (Federal Reserve Economic Data) database.

In both cases we apply the predictive validity test proposed by Cogley (2002) and Nelson

(2008), which aims at evaluating whether the transitory components extracted through our

proposed decomposition contain information that is useful for predicting the future growth

of both GDP and inflation.

6.1 U.S. Gross Domestic Product

To validate the predictive content of the transitory components we run the OLS regression

of

∆xt+1 = α+
J∑
j=1

βjxt,j + εt+1 (18)

where ∆xt+1 = xt+1 − xt is the next period change in US GDP and xt,j is the transi-

tory component at level of persistence j. Importantly note that the forecast comparisons

presented here are limited to univariate methods so the information set for predicting the

growth of GDP is only past GDP.

It is important to stress that our measures of cycle are obtained for any given historical

quarter only using the observations up to the historical date. Therefore unlike many other

approximations to low-pass filters filters, such as those advocated by Baxter and King (1999)

or Hodrick and Prescott (1997), this filter is one sided into the past and can be implemented

in real time.

The first column in Table 1 presents the estimated regression coefficient and the associated

t-value, and finally the coefficient of determination, R2 of the regression.

[Insert Tables 1 about here.]
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The first thing to note is that the components that are significant in the regression and that

contribute to the R2 of 14% are the ones at short horizon.16

Next we try to understand how successful is our decomposition compared to competing

decompositions in predicting quarterly growth in GDP one quarter ahead. Among the

most popular method of trend-cycle decomposition is the filter of Hodrick and Prescott

(1997) which seeks to balance smoothness of the cycle against variance of the measured

cycle. Further analysis of the ‘HP filter’ is given by Harvey and Jaeger (1993). Also highly

influential have been the Unobserved Component models of Harvey (1985), Watson (1986)

and Clark (1987) which both model the trend as a random walk and the cycle as an AR

process; here we use the latter which allows the growth rate of the trend to evolve as a

random walk as well.

In what follows we will estimates the competing cycles with the benefit of all the subsequent

data in revised form. Similar to Nelson (2008) we find that the BN estimates is inherently a

one-sided estimate of cycle, so future data only influences estimation of the ARMA param-

eters. However in the case of GDP growth, the model is AR(1) as suggested by lag selection

based on SIC, and the AR parameter is very stable over the sample period. However future

data matters the most for the HP filter we will use both a two-sided and one-sided filter.

The next columns in Table 1 presents the results from the regression in (18) augmented

with cycle estimates using Beveridge-Nelson, Clark, one-sided and two-sided HP filters.

This exercise is in the spirit of Granger’s composite prediction and is intended to suggest

the marginal information content of cycle estimates. Explanatory power is low, R-square

is only .14 for our decomposition alone and none of the other cycle estimates are able to

raise this number. None of the other cycle estimates is significant in the presence of our

transient components. Note that the difference between R-squared in the last two columns

is a measure of the value of hindsight for the HP filter. However as noted by Bryan and

Cecchetti (1993), two-sided filters are less useful to monetary policy makers because they

reduce the timeliness of incoming inflation data. In contrast, our filter is one-sided into the

past, so its output would be available to policymakers as soon as new inflation data became

available.

The figure 14 shows the results from a regression of h-period change in GDP, ∆hxt+h =

xt+h − xt on the transitory component(s). Panel (a) shows for each forecast lead time h

16Exclusion of the components with j > 3 would not change the R2 of 14%. Results are available upon
requests.
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on the horizontal axis, the adjusted R2, whereas panel (b) plots the efficiency of the OTTb

decomposition measured by

G(h) = 100×

(
1− M̂SFE(h)OTT

M̂SFE(h)TC

)
i.e. percent gain in forecast accuracy arising from our suggested decomposition compared

to alternative TC (trend-cycle) measures.

The R2 for our suggested decomposition increases up to 45% for horizons around 8 years

(32 quarters).

[Insert Figures 13 and 14 about here.]

Our decomposition is able to capture at short horizons, namely h = 1, 2 quarters, as much

predictability as the Beveridge Nelson decomposition. The results confirm Nelsons overall

conclusion that when h = 1 only a small fraction of future GDP growth is predictable

using the BN transitory component. However our decompositon plays differential role in

explaining the GDP fluctuations at longer horizons. In fact, contrary to a body of recent

empirical work that finds that fluctuations in GDP are permanent, our evidence shows

that GDP does, in fact, revert toward a “trend” following a shock. However, confirming

the results in Cochrane (1988), that reversion occurs over a time horizon characteristic of

business cycles-several years at least. Therefore, quoting from Cochrane (1988) “the short-

run properties of GDP are consistent with a model with very persistent shocks, and one

can incorrectly infer a great deal of long-horizon persistence by fitting a time-series model

to this short-run behavior”.

6.2 U.S. Inflation

Our second exercise is motivated by a series of papers, Cecchetti (1997), Bryan and Cecchetti

(1993, 1994, 1995), and Bryan, Cecchetti and II (1997) that stress that as the focus of central

banks shifts toward inflation targeting, it becomes increasingly important to have accurate

measures of inflation. In what follows, we show that our proposed method can significantly

improve inflation forecasts over horizons of up to eight years.

Therefore it makes sense to investigates the univariate properties of the proposed measures

by studying the predictive content of the transitory component(s) with respect to the h-

period change in inflation, i.e. the regression of ∆hxt+h = xt+h − xt on the transitory
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component(s) extracted using our suggested decomposition and competing ones proposed

in the literature.

∆hxt+h = αh +

J∑
j=1

βjxt,j + εt+h

where xt = πt.

Among the alternative candidate measures we consider the Beveridge-Nelson component at

time t, xt − m̂t, where mt is the Beveridge-Nelson trend, and the exponential smoother of

inflation proposed in Cogley (2002).17 This last measure computes first a measure of core

inflation18 using a “constant-gain” update measure, i.e.

µt = µt−1 + g0(πt − µt−1)

where µt is the period t estimate of mean inflation and g0 is the gain parameter, which is

assumed to lie between 0 and 1. Then the core deviation, πt − µt is used as a predictor.

This is reasonable since a successful measure of core inflation should purge the transients

from actual inflation and the difference between actual and core inflation should predict

subsequent changes in inflation. That is, when actual inflation is above its core value, infla-

tion should fall as the transients accounting for the high current level die out. Importantly

both our measure and the one in Cogley (2002) can be seen as the output of a one-sided

low-pass filter applied to current and past inflation.

The Figure 15 Panel (a) plots the R2 statistics from these regressions against each fore-

cast lead time h on the horizontal axis, whereas panel (b) plots the efficiency of the PBD

decomposition measured by

G(h) = 100×

(
1− M̂SFE(h)OTT

M̂SFE(h)TC

)
i.e. percent gain in forecast accuracy arising from our suggested decomposition compared

to alternative TC (trend-cycle) measures. Candidates that account for a greater percentage

of subsequent changes in inflation filter out more transient variation and are preferred to

those that account for less.

[Insert Figures 15 and 16 about here.]

17We do not consider in our analysis measures such as the median and trimmed mean price change
among CPI components suggested by Bryan and Cecchetti, since, similar to Cogley (2002), we found that
in regression-based combinations these candidate measures were dominated by the exponentially smoothed
measure.

18According to Bryan and Cecchetti (1994) “core inflation” is defined as “the component of price changes
that is expected to persist over medium-run horizons of several years”.
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Whereas at short horizon we confirm the evidence that the transitory component has a

large predictive power for the next change in quarterly inflation, with an R2 = 0.22, our

decomposition is a superior predictor also of subsequent changes in inflation thanks to the

marginal predictive power of each of the locally mean-reverting components of inflation.

Note that for forecast horizons of one to four quarters, the fit of our decomposition is almost

the same as the one delivered by the measure suggested in Cogley (2002). The reason is

explained in Figure 17 where we plot quarterly data on CPI inflation (shown as a solid

black line), along with the candidate measure of core inflation, πmt, suggested in Cogley

(2002) and the sum of the components with level of persistence j ≥ 5,
∑J

j=5 xt,j . The

correlation between the measure of core inflation and our sum of cyclical components is

about 85%. When we forecast future changes over horizon of 1 − 4 quarters using our

cyclical components, we find that only the first 4 components are significant at standard

levels. Hence our explanatory regressor is

4∑
j=1

β̂jxt,j

On the other hand when we forecast future changes using the core deviation, our regressor

is

πt − πmt ≈ βh
4∑
j=1

xt,j

Overall the Cogley (2002) is a restricted version of our regression where the restriction

amounts to

βj = βh ∀j = 1, . . . , 4

However at longer horizons, our decomposition is the most informative with R2 statistics

between 30 and 50 percent.

[Insert Figure 17 about here.]

26



7 Conclusions
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A The abstract formulation of the Wold Decomposition.

This section provides an orthogonal decomposition of a time series in terms of uncorrelated

innovations which are classified by two indices. The first one accounts for its level of

persistence, the second one accounts for the time at which the shock impinges the economy.

The introduction of this decomposition requires the formulation of Wold theorem in an

abstract Hilbert space, as provided in Sz. Nagy and Foias (Sz.-Nagy and Foias (1970)). This

theorem shows that the Wold decomposition can be formulated in terms of properties which

hold in a generic Hilbert space and its validity extends beyond the traditional probabilistic

model adopted in conventional time series analysis.

For this reason let us consider an abstract Hilbert space H and let L(H) denote the set of

bounded linear operators from H to itself.

Definition 16 The vector space H is said to be the direct sum of its subspaces H1 and H2,

and we write

H = H1 ⊕H2

if H = H1 +H2 and H1 ∩H2 = 0

As a consequence, let H1 and H2 be subspaces of H. Then H = H1 ⊕H2 if and only if for

every h ∈ H there exist unique vectors h1 ∈ H1 and h2 ∈ H2 such that h = h1 + h2.

Definition 17 Let F ∈ L(H). An invariant subspace of F is a subspace V of H such

that F (V ) is contained in V . An invariant subspace of F is also said to be F -invariant. If

V is F -invariant, we can restrict F to V to arrive at a new linear mapping

F |V : V → V

Definition 18 Let H1 ⊂ H and H2 ⊂ H be two Hilbert spaces. Let 〈 , 〉1 be the scalar

product in H1 and 〈 , 〉2 the scalar product in H2. Then the operator F : H1 → H2 with

domain H1 and image H2 is isometric if

〈Fx, Fy〉2 = 〈x, y〉1

for any x, y ∈ H1.
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Definition 19 Given a densely defined linear operator F on H we define its adjoint F ∗ as

follows:

• The domain of F ∗ consists of elements x ∈ H such that

y 7→ 〈x, Fy〉

is a continuous linear functional. By continuity and density of the domain of F , it

extends to a unique continuous linear functional on all of H.

• if x is in the domain of F ∗ then we have19

〈F ∗x, y〉 = 〈x, Fy〉

for all y in the domain of F .

Definition 20 Let F ∈ L(H) and denote F its adjoint. Then F is said to be unitary if it

satisfies

F ∗F = FF ∗ = I

and I : H → H is the identity operator.

Note that a unitary operator in H is a special case of an isometric operator for which

H1 = H2 = H. In fact an isometric operator can be non invertible.

Let F ∈ L(H) be an isometry and define

H(∞) ≡ ∩nFnH

This is invariant under both F and F ∗. Now we can define

HS ≡ H 	H(∞)

This is invariant under F .

Definition 21 Define the detail subspace 20 with respect to F as

W ≡ HS 	 FHS

19This follows thanks to the Riesz representation theorem for linear functionals.
20Sometimes it is also known as wandering subspace .
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Note that

W = (im F |HS )⊥ = ker F ∗

where the second equality comes from the relationship between the image of F and the

kernel of its adjoint21. We then obtain the following decomposition for HS :

HS =W ⊕ FW ⊕ F 2W ⊕ . . . =

∞⊕
n=0

FnW

We are now ready to present the following general decomposition:

Theorem 22 (Wold decomposition, see Sz.-Nagy and Foias (1970) [Theorem 1.1, page 3] )

Let F be an isometry on an Hilbert space H. Then H can be decomposed into an orthogonal

sum

H = HS ⊕H(∞)

of F–invariant subspaces such that the restriction of F on H(∞) is unitary and the restric-

tion of F on HS is a unilateral shift. More precisely, for W = (im F |HS )⊥ ⊂ HS one

has22

FnW ⊥ FmW

for all n 6= m with n,m ∈ N and HS =
⊕∞

n=0 F
nW and we can rewrite

H =
∞⊕
n=0

FnW ⊕H(∞)

where
⊕∞

n=0 F
nW is called the shift part.

Note that the shift part is present if and only if ker F ∗ 6= {0}. Moreover if H(∞) = {0}
then H =

⊕∞
n=0 F

nW and this is why sometimes W is called the generating wandering

subspace for the operator F .

21Indeed take x ∈ ker F ∗. Then

F ∗x = 0⇔ 〈F ∗x, y〉 = 0 ∀y ⇔ 〈x, Fy〉 = 0 ∀y ⇔ x ⊥ im F

22This property gives the reason for calling W the wandering subspace.
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A.1 The traditional realization of the Wold Decomposition

The formulation of the Wold decomposition introduced in the previous section applies in a

generic Hilbert space. Following standard mathematical convention 23, it has been called

“abstract” Wold decomposition to make clear that its validity is not restricted to the stan-

dard framework which is usually considered in the econometrics of time series analysis. In

this section we illustrate the relation between the abstract Wold decomposition and the

classical one.

Repeating the considerations of Brockwell and Davis (2002) we can introduce a “Universal

Probability Space” assuming that the series of observations possibly starts at t→ −∞ and

is endless. Hence the state space becomes Ω = l2 (Z) the filtration becomes an increasing

sequence of σ algebras {Ft}t∈Z. Standard Wold decomposition applies to wide sense sta-

tionary sequences, i.e. the probability measure P on the sequence X = {Xt}t∈Z is such

that:

EP [Xt−k+1] = 0

EP [X2
t

]
= γ (0) < +∞,

EP [XtXt−k+1] = γ (k − 1) < +∞, k ∈ N

Now we associate an Hilbert space Hγ∞ (X) to each wide sense stationary sequence, it is the

Hilbert space of the square integrable linear combinations of the elements of the sequence

X as follows:

Hγ∞ (X) =

Y =
∑
n∈Z

αnXn |
∑
n,m∈Z

αnγ (n−m)αm < +∞,
〈
Y 1, Y 2

〉
=
∑
n,m∈Z

α1
nγ (n−m)α2

m


We will denote with Hγt (X) the subspace of sequences observed up to time t, i.e. such that

ατ = 0 if τ > t. We can define

Definition 23 The linear prediction LP (Y | K) of a generic element Y ∈ H∞ (X) with

respect to the subspace K ⊂ H∞ (X) is given by the orthogonal projection, of Y on K :

LPγ (Y | K) ≡ arg min
Z∈K
〈Z − Y,Z − Y 〉1/2Hγ∞(X)

23The word “abstract” refers to those properties and statements whose validity does not rely in the specific
choice of the Hilbert space basis (the so called Hilbert space realization) but on intrinsic (defining) properties
of the Hilbert space itself.
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We remark that for a given sequence of observations truncated at n, Xn ≡ {Xk}k≤n then

the best linear predictor of Y is a linear combination of the elements of Xn.24

Within the Hilbert space framework introduced above, the traditional Wold decomposition

for time series can be obtained as a straightforward application of the abstract Wold the-

orem. Consider the linear span of all the observations up to time t and associate to it the

Hilbert space Hγt (X) =
{
Y =

∑
k∈N αt−kXt−k, Y ∈ Hγ∞ (X)

}
and define the lag operator

L as the linear operator on the sequence of observations up to time t, Hγt (X):

L : Hγt (X)→ Hγt (X)

Xt = {Xt−k+1}k∈N → LX = {Xt−k}k∈N

The lag operator L is an isometry in Ht (X) since 〈LZ,LZ〉Hγt (X) = 〈Z,Z〉Hγt (X) and the

sequence is wide sense stationary and infinite. Hence L satisfies all the hypotheses required

by the abstract Wold theorem and we can conclude that:

Hγt (X) =

∞⊕
n=0

LnW ⊕Hdet

In particular the wandering subspace is defined by W = (Im L)⊥ hence: W = Ht (X) 	
LHt (X) and corresponds to the space spanned by the t-th innovation: εt = Xt−LP γ (Xt |LHγt (X)).

Hence the iterated application of the lag operator defines the linear projection of the se-

quence X on the subspaces of orthogonal innovations:

P⊕∞
k=0 L

kWXt =
∞∑
k=0

ψkεt−k

ψk =
1

σ2
〈Xt, εt−k〉Hγt (X)

σ2 = 〈εt, εt〉Hγt (X)

Note that wide sense stationarity grants that ψk do not depend on index t and by definition

of the Hilbert space the sequence {ψk}k∈N is square integrable. The space Hdet is the

deterministic component which is orthogonal to all past innovations defined by

νt = Xt −
+∞∑
k=0

ψkεt−k

hence we obtain the well known Wold decomposition for weakly stationary time series, i.e.

24Hence in general it will differ from the conditional expectation.
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Theorem 24 (Wold decomposition for Weakly Stationary Time Series) If {Xt−k}k=0,..+∞

is a weakly stationary and mean zero process, then it can be expressed as

Xt =
∞∑
k=0

ψkεt−k + νt

with

• εk ∼WN(0, σ2)

• νt ∈ Hdet ≡ ∩n∈NLnHγt (X) and it is deterministic,

•
∑∞

k=0 ψ
2
k <∞

Throughout this paper the deterministic component is assumed to equal a constant νt = µ.
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B The Wold Decompostion of the scaling operator isometry
and Proof of Theorem 6

In this section Theorem 6 is proved. The proof is based on the application of the abstract

Wold theorem. Consider the Hilbert spaces

H∞ (x) =

{
Z =

∑
n∈Z

αnxn |
∑
n∈Z
|αn|2 < +∞,

〈
Z1, Z2

〉
=
∑
n∈Z

α1
nα

2
n

}

Ht (x) =

{
Z =

∑
k∈N

αt−kxt−k, ∈ H2
∞ (x)

}

where H∞ (x) is the Hilbert space of square integrable linear combinations of elements of

the time series xt obtained by considering the observations of the time series x truncated at

time t, with the standard scalar product inherited from l2 (Z). Without loss of generality

we can assume µ = 0. The persistence based decomposition of xt in terms of a linear

combination of uncorrelated innovations is produced applying the abstract Wold theorem

to a different isometric operator. The new isometry operator is given by the composition

of the following operators:

Definition 25 The mean operator M centered at time t is defined by:

M : Ht (x)→ Ht (x)

x = {xt−k}k∈N →Mx = {x̃t−k}k∈N ,

x̃t−k =
xt−k + xt−k−1

2

the dyadic dilation operator centered at time t is defined by:

D : Ht (x)→ Ht (x)

x̃ = {x̃t−k}k∈N → x(1)=
{
x
(1)
t−k

}
k∈N

= Dx̃

x
(1)
t−k =

√
2x̃t−2k

The rescaling operator R centered in t is defined by:

R=D ◦M

i.e. as the composition of the dyadic dilation operator D with the averaging one M .
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The rescaling operator R defines a Wold decomposition of the Hilbert space Ht (x) in fact

the following lemma holds:

Lemma 1 (Isometry Lemma) The rescaling operator is isometric in Ht (x).

Proof. The rescaling operator R can be represented as the composition of two operators:

a rotation matrix Rot obtained as the direct sum of two by two rotation matrices:

Rot :
+∞⊕
k=0

[
1√
2

+ 1√
2

− 1√
2

1√
2

]
and a projection on the odd components

POdd : {α−n}n∈N → {α−2n−1}n∈N

Their joint action produces

POdd ◦Rot : (αt, αt−1, αt−2....)→
(
αt + αt−1√

2
,
αt−2 + αt−3√

2
.....

)
Rot : (αt, αt−1, αt−2....)→

(
αt + αt−1√

2
,
αt − αt−1√

2
,
αt−2 + αt−3√

2
, .....

)
POdd :

(
αt + αt−1√

2
,
αt − αt−1√

2
,
αt−2 + αt−3√

2
.....

)
→
(
αt + αt−1√

2
,
αt−2 + αt−3√

2
.....

)
and this implies that:

R = POdd ◦Rot

Direct verification proves that:

〈Rx, Rx〉Ht(x) = 〈x,x〉Ht(x) ,

in fact by definition: ∥∥∥∥xt−2k + xt−2k−1√
2

∥∥∥∥
Ht(α)

= ‖xt−k‖Ht(x) ∀k ∈ N

As a consequence the abstract Wold theorem admits a realization in Ht (x) where the

rescaling operator R acts isometrically.

Then application of the abstract Wold theorem grants the existence of the following decom-

position:

Ht (x) =
+∞⊕
j=1

RjWR ⊕H(∞)
R
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where

WR = Ht (x)	RHt (x)

The generic element of the “innovation ” subspace in the new decomposition is given by:

δ
(1)
t ∝ xt − LPRxt (xt)

it corresponds to the detail which is removed by dyadic averaging. The detail δ
(1)
t has to

verify the following conditions:

xt = LP{
Rxt,δ

(1)
t

} (xt)

0 =
〈
δ
(1)
t , Rxt

〉
Ht(x)

and for an arbitrary k all the constraints are satisfied by:

δ
(1)
t−k =

xt−k − xt−k−1
2

(B.1)

The detail subspace defines the information of the time series which is “removed” by aggre-

gation or equivalently the ”innovation” which is discovered when the resolution is increased.

Note that the ”normalized innovation” would be
√

2δ
(1)
t−2k. The detail subspace for δ

(2)
t−4k is

determined by the conditions

xt = LP{
δ
(1)
t ,δ

(2)
t ,R2xt

} (xt)

0 =
〈
δ
(1)
t , Rxt

〉
Ht(x)

0 =
〈
δ
(2)
t , R2xt

〉
Ht(x)

hence

δ
(2)
t ∝ π

(1)
t − LP(R2x)t

(xt)

and a possible choice is given by:

δ
(2)
t = π

(1)
t −

π
(1)
t + π

(1)
t−2

2
=
π
(1)
t − π

(1)
t−2

2

The j−th iteration of the above construction implies that at resolution j the (unnormalized)

detail, δ
(j)
t is given by:

δ
(j)

t−2jk =

((
Rjx

)
t−2jk√

2j
−
(
Rj+1x

)
t−2jk√

2j+1

)

δ
(j)

t−2jk = π
(j−1)
t−2jk −

π
(j−1)
t−2jk + π

(j−1)
t−2j(k+1)

2
=
π
(j−1)
t−2jk − π

(j−1)
t−2j(k+1)

2
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By the assertion of the abstract Wold theorem the space H(∞)
R is determined by

H(∞)
R = ∩j=0,..,+∞R

jHt (x)

and can be identified by that component which is not removed by an arbitrary number of

averaging operations. In particular applying the law of large numebrs we can identify this

component as the constant time series µ.

In addition the CLT central limit theorem for stationary processes presented in Hall and

Heyde (1980) Corollary 5.2 pg.135 implies that:

lim
J→∞

√
V ar

[√
2Jπ

(J)
t

]
= ψ (1)

hence point 1 and 2 are proved.

Point 3 is easily verified observing that each detail time series is obtained by a recursive

application of a finite difference filter to the original time series which is stationary and the

polynomial which defines the j− th detail component 2−j
(

1− L2j
)(∑2j−1

i=0 Li
)

is the first

difference of a stationary process and the corresponding spectral density at frequency 0.

C Proof of Theorem 7

Observe that the isometry property for R does not hold in Hγt (X). In fact the space Hγt (x),

where the standard Wold decomposition is applied, is different from Ht (x) because these

two spaces have different definitions of the metric form. The two metric definitions coincide

only when X is a white noise sequence, in which case:

EP [xt−k+1] = 0

EP [x2t ] = γ (0) < +∞,

EP [xtxt−k] = 0, k 6= 0

On the other hand, given any stationary purely nondeterministic sequence, standard Wold

decomposition states that it can be represented as an infinite moving average acting on

a sequence of white noise innovations, i.e. in the space Ht (ε). Hence it is quite natural

to formulate the Persistence Based Decomposition for the innovations process εt and then

analyze the time series xt ∈ Ht (ε). In this space there exists a natural basis of uncorre-

lated shocks
{
εj,t−2jkj

}
j≥1,kj≥0

which are defined by an application of the isometric Haar
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transform to the original sequence of innnovations: let {εt−k}k∈N, the original sequence of

uncorrelated innovations. We are now ready to state the Proof of Theorem 7.

Proof. Consider the decomposition of the Hilbert space Hγt (x)

Hγt (x) =
∞⊕
n=0

LnW

WL = Ht (x)	 LHt (x)

Define now the sequence of white noise innovations {εt−k} such that:

WL = Sp {εt}

LkWL = Sp {εt−k}

and we observe that Hγt (x) is unitary equivalent to Ht (ε). Then, without loss of generality,

we can show that an application of the PBD in Ht (ε) determines the decomposition:

WL : = Ht (ε)	 LHt (ε)

Ht (ε) =
⊕

k=0,..,+∞
LkWL

WR : = Ht (ε)	RHt (ε)

Ht (ε) =
⊕

j=1,..,+∞
RjWR ⊕H(∞)

R

WL,R : =WL 	R
(
WL

)
Ht (ε) =

⊕
j=1,..,+∞

Rj [Ht (ε)	RHt (ε)]⊕H(∞)
R (C.1)

=
⊕

j=1,..,+∞
Rj

 ⊕
k=0,..,+∞

LkWL

	R
 ⊕
k=0,..,+∞

LkWL

⊕H(∞)
R

=
⊕

j=1,..,+∞
Rj

⊕
k=0,..,+∞

[(
LkWL

)
	R

(
LkWL

)]
⊕H(∞)

R

=
⊕

j=1,..,+∞
k=0,..,+∞

RjLk
[
WL 	R

(
WL

)]
⊕H(∞)

R

=
⊕

j=1,..,+∞
k=0,..,+∞

RjLkWL,R ⊕H(∞)
R

where P j,k is the orthogonal projection of xt along Wj,k = RjLkWL,R is the stochastic

trend component of xt. Then if we define εj,t−2jk as the normalized innovation such that:

LP
(
εj,t−2jk

)
=Wj,k
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Consider the standard Wold decomposition xt =
∑

k=0,..,+∞ ψkεt−k and define:

εj,t−2jkj :=

+∞∑
k=0

(
T (∞)
Haar

)
j,kj ;k

εt−k

then application of the PBD to the white noise innovation implies the extended Wold

decomposition:

xt =
∑

k,k′=0,..,+∞
ψk′

((
T (∞)
Haar

)−1 (
T (∞)
Haar

))
k′,k

εt−k

=
∑
j≥1

+∞∑
kj=0

 ∑
k′=1,..,+∞

(
T (∞)
Haar

)
j,kj ;k′

ψk′

 εj,t−2jkj

Recall that the BNdecomposition is determined by

∆yt = µ+ xt = µ+ ψ(L)εt

= µ+ ψ(1)εt + [ψ(L)− ψ(1)] εt (C.2)

Now in order to conclude it is enough to define

δ̃
(j)
t = −

+∞∑
kj=0

(
T (∞)
Haarψ̃

)
j,kj

εj,t−2jkj εj,t−2jkj =
+∞∑
k=0

(
T (∞)
Haar

)
j,kj ;k

εt−k

(
T (∞)
Haarψ̃

)
j,kj

=
+∞∑
k=0

(
T (∞)
Haar

)
j,kj ;k

ψ̃k, ψ̃k ≡

∑
j>k

ψj


zt = zt−1 + εt

π̃
(∞)
t = µ · t+ ψ (1) zt

and conclude that

yt − y0 = π̃
(∞)
t +

+∞∑
j=1

δ̃
(j)
t
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Figure 1: The figure displays the effects of the persistence based decomposition of the
consumption time series applied up to level J = 1 (left panels) and J = 2 (right panels).
In particular the top panels displays the smoothed periodogram the consumption process
for the data. An equally weighted “nearest neighbor” kernel was used to perform the
smoothing, equally weighting the 4 nearest frequencies. The bottom right panel displays

the Fourier spectrum of the time series π
(2)
t whereas the bottom left panel displays the

Fourier spectrum of the time series π
(1)
t .
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Figure 2: The figure displays the smoothed periodogram the consumption process for the

data together with the intervals
[
fmax
2j

fmax
2j−1

)
j = 1, . . . , 8. An equally weighted “nearest

neighbor” kernel was used to perform the smoothing, equally weighting the 4 nearest fre-
quencies. In the top panel linear scale is used for frequencies whereas in the bottom panel
logarithmic scale is used for the X-axis.
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Figure 3: We plot the scaling coefficient for an AR(1) process with unconditional mean 1.5
and autoregressive coefficient equal to 0.8.

Figure 4: We plot the isometric scaling coefficient at time T for the AR(1) process described
in the text.

Figure 5: We plot the isometric scaling coefficient at time T for the Random Walk process
described in the text.
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Figure 6: We plot the variance of the isometric scaling πt for each time instant t for the
AR(1) and the Random Walk process.
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Figure 7: Log dividend and log price, 1926Q3-2007Q4.

Figure 8: Time-scale decomposition for the log price pt and log dividend dt.
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Figure 9: Comparison between the transitory component obtained through Beveridge–
Nelson (BN) decomposition and through the Persistence Based Decomposition (PBD) for

the log price pt, i.e. δ
(1)
t .

Figure 10: Comparison between the transitory component obtained through Beveridge–
Nelson (BN) decomposition and through the Persistence Based Decomposition (PBD) for

the log dividend dt, i.e. δ
(1)
t .
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Figure 11: Comparison between the permanent component obtained through Beveridge–
Nelson (BN) decomposition and through the Persistence Based Decomposition (PBD) for
the log price pt.

Figure 12: We plot the rescaled isometric scaling πt for each time instant t =
16, 32, 64, 128, 256 quarters starting from 1927Q1 for the log prices (top panel) and the
log dividends (bottom panel) process together with the best linear fit. The best linear
fit for the dividends is given by d−1,t = 0.037x + 3.86 whereas for the prices we have
p−1,t = 0.041x+ 4.44.
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(a)

(b)

Figure 13: U.S. real gross domestic product. Panel (a) shows the R̄2 statistics from uni-
variate regressions versus forecast horizon h. Panel (b) shows the percent efficiency gain
versus forecast horizon h.
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Figure 14: Realized h-changes in U.S. real gross domestic product along with (in-sample)
fitted values of the forecast-based regression. The forecast horizon is h = 32 quarters.
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(a)

(b)

Figure 15: U.S. inflation. Panel (a) shows the R̄2 statistics from univariate regressions versus
forecast horizon h. Panel (b) shows the percent efficiency gain versus forecast horizon h.
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Figure 16: Realized h-changes in U.S. inflation along with (in-sample) fitted values obtained
from the forecast-based regression. The forecast horizon is h = 32 quarters.

Figure 17: U.S. inflation.
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Panel A: Final cycle estimates vs. Extended BN

C1 0.568 2.564 0.574 0.186 0.591
(3.62) (1.29) (3.64) (1.758) (4.34)

C2 0.228 0.227 0.218 0.630 0.462
(1.85) (1.84) (1.74) (4.79) (4.19)

C3 -0.172 -0.174 -0.191 0.325 0.050
(-2.32) (-2.34) (-2.22) (1.382) (0.73)

C4 0.031 0.029 0.017 0.273 0.127
(0.60) (0.56) (0.28) (0.66) (2.79)

C5 -0.028 -0.031 -0.031 0.255 -0.020
(-0.78) (-0.85) (-0.84) (0.826) (-0.664)

C6 0.004 0.002 0.006 -0.154 -0.013
(0.16) (0.09) (0.24) ( -0.500) (-0.637)

C7 -0.008 -0.008 -0.008 0.557 0.004
(-0.87) (-0.90) (-0.895) (1.83) (0.489)

C8

Beveridge−Nelson 1.723
(1.01)

Clark 0.341
(0.43)

Hodrick-Prescott 1-sided 0.006
(0.062)

Hodrick-Prescott 2-sided -0.388
(-9.06)

R̄2 0.15 0.15 0.15 0.15 0.35

Table 1: Predictive regressions for real GDP growth using lag of cycle estimates.
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