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Abstract

After stressing the importance of analyzing the various basis
spaces, the exposition evaluates the alternative bases available to
wavelet researchers I demonstrate the impact of choice of basis for
the projection of the regressand which forms a linear space. This
development is followed by a very brief overview of articles using
wavelet tools. The comparative advantage of wavelets relative to
the alternatives considered is stressed.
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1 Introduction

In this paper, I will restrict my evaluation of this past decade�s research
to avenues of thought in which I have had some personal interest. This is
not to deny the worth of the literature not cited, but re�ects my reaction
to assessing the overall enormous impact of wavelet analysis during the
past decade; others will, I am sure, �ll the gap. To those not cited my
apologies.
The paper begins with a review of the main features of wavelet

analysis which are contrasted with other analytical procedures, mainly
Fourier, splines, and linear regression analysis. A review of Percival and
Walden (2000), Bruce and Gao (1996), Crowley (2007), the excellent
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review by Gencay et al. (2002), or the Palgrave entry for Wavelets by
Ramsey before proceeding would be bene�cial to the neophyte wavelet
researcher.
The next section contains a non-rigorous development of the theory

of wavelets and contains discussions of wavelet theory in contrast to
the theory of Fourier series and splines. The third section discusses
succinctly the practical use of wavelets and the last section concludes.
Before proceeding the reader should note that all the approximating

systems are characterized by the functions that provide the basis vectors.
For projections, the orthogonal complement is the null space. For a
regular regression framework, the basis is the standard Euclidean space,
EN . For the Fourier projections we have the frequency scaled sine and
cosine functions that produce a basis of in�nite power, high resolution
in the frequency domain; e.g.

Rei2�ft or alternatively expressed :

1, sin(k!t), cos(k!t), k = 1,2,3,...

are highly di¤erential, but are not suitable for analyzing signals with
discrete changes and discontinuities.
The basis functions for splines are polynomials that are also di¤eren-

tial and are de�ned over a grid determined by the knots; various choices
for the di¤erentiability at the knots determine the �exibility and smooth-
ness of the spline approximation and the degree of curvature between
knots.
Obviously, the analysis of any signal involves choosing both the ap-

proximating function and the appropriate basis vectors generated from
the chosen function.

2 Functional Representation and Basis Spaces

2.1 An Overview of Bases in Regression Analysis
Relationships between economic variables are characterized by two uni-
versal components. Either the variable is a functional de�ned by an
economic equation as a function of itself lagged to its past, i.e. is au-
toregressive; or is a function of time, i.e. is a �time series�; or it is a
projection onto the space spanned by a set of functions, labeled, �regres-
sors�each of which in turn may be autoregressive, or a vector of �time
series�. The projection of the regressand on the regressors provides a
relationship between the variables, which is invariant to permutations of
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the indexing of the variables:

Y =X� + u

Yperm=Xperm� + uperm

where Y is the regressand,Yperm the permuted values of Y, Xperm; rep-
resents a conformable permutation of the rows of X, and uperm; a con-
formable permutation to Yperm:. However, if the formulation of the model
involves an "ordering" of the variables over space, or over time, the model
is then not invariant to permutation of the index of the ordering. It is
known, but seldom recognized as a limitation of the projection approach,
that least squares approximations are invariant to any permutation of
the ordering. Consequently, the projection approach omits the informa-
tion within the ordering in the space spanned by the residuals, which is,
of course, the null space.
The other distinguishing characteristic is that added to the functional

development of the variable known as the �regressand�is an unobserved
random variable, "u", which may be represented by a solitary pulse,
or may have a more involved stochastic structure. Complicating the
situation is the presence of unobservable "error terms" in the observation
of the regressors. In the former case, the regressand vector is contained
in the space spanned by the regressors, whereas in the latter case the
regressand is projected onto the space spanned by the regressors.
The usual practice is to represent regressors and the regressand in

terms of the standard Euclidean N dimensional space; i.e. the ith com-
ponent of the basis vector is "1", the remaining entries are zero; in this
formulation, we can interpret the observed terms, {xi}, {yi}, i=1,2,...k;
as N dimensional vectors relative to the linear basis space, EN .
The key question the analyst needs to resolve is to derive an ap-

propriate procedure for determining reasonable values for the unknown
parameters and coe¢ cients of the system; i.e. estimation of coe¢ cients
and forecasting of declared regressands. Finally, if the postulated re-
lationship is presumed to vary over space or time, special care will be
needed to incorporate those changes in the relationship over time or over
the sample space.
Consider as a �rst example, a simple non-linear di¤erentiable func-

tion of a single variable x, f(xj�); which can be approximated by a Tay-
lor�s series expansion about the point a1in powers of x:

y= f(xj�) = f(a1j�) + f 1(a1j�)(x� a1) +
f 2(a1j�)(x� a1)

2

2!
(1)

+
f 3(a1j�)(x� a1)

3

3!
+
R(�)

4!
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for some � value. This equation approximately represents the varia-
tion of y in terms of powers of x. Care must be taken in that the derived
relationship is not exact as the required value for � in the remainder term
will vary for di¤erent values for a1; x, and the highest derivative used in
the expansion. Under the assumption that R(�) is approximately zero,
the parameters � and the coe¢ cient a1can be estimated by least squares
using N independent drawings on the regressand�s error term, assuming
the regressors are observed error free; one has:

min
�;a1
f�N1 (yi � f(xij�))2g (2)

A single observation,i, on this simple system is:

yi fxi; x2i x3i g (3)

i=1; 2; 3::::N (4)

This model is easily extended to di¤erential functions which are
themselves functions of multivariate regressors. The key aspect of the
above formulation is that the estimators are obtained by a projection
onto the space spanned by the regressors. Other, perhaps more suitable
spaces, can be used instead. The optimal choice for a basis, as we shall
see, is one that reduces signi�cantly the required number of coe¢ cients
to represent the function {yig with respect to the chosen basis space.
Di¤erent choices for the basis will yield di¤erent parameterizations, the
research analyst is interested in minimizing the number of coe¢ cients;
actually the dimension of the supporting basis space.
An alternative, ancient, procedure is provided by the monomials:

f1; t2; t3; t4; t5; :::g (5)

that is, we consider the projection of a vector y on the space spanned
by the monomials,{t0;t1,...tk}, or as became popular as a calculation
saving device, one considered the projection of y on the orthogonal
components of the sequence in equation (5), see Kendall & Stuart, Vol
2 (1961).
These �rst two procedures indicate that the underlying concept was

that insight would be gained if the projections yielded approximations
that could be speci�ed in terms of very few estimated coe¢ cients. Fur-
ther very little structure was imposed on the model, either in terms of
the statistical properties of the model or in terms of the restrictions im-
plied by the underlying theory. The results obtained by these procedures
are best described as "exploratory."
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2.2 Exponential and Power Bases
Two other simple basis spaces are the exponential:

fe�1t; e�2t; e�3t:::::e�ktg (6)

and the power base:

ft�1 ; t�2 ; t�3 ; :::::::t�kg (7)

The former is most useful in modeling di¤erential equations, the lat-
ter in modeling di¤erence equations.

2.3 Fourier Bases
The next procedure in terms of longevity of use is Fourier analysis. The
basis for the space spanned by Fourier coe¢ cients is given by:

1; sin(k!t); cos(k!t); (8)

k=1; 2; 3; :::

The approximating sequences are given most simply by:

y = f(t) �=
KX
k=1

ck�k (9)

where the sequence {ck }speci�es the coe¢ cients chosen to minimize
the squared errors between the observed sequence and the known func-
tions shown in equation (9), �k is the basis function as used in equation
(8). And the coe¢ cients are given by:

ck =

Z
f(t)�k(t)dt (10)

We note three important aspects of this equation. We gain in under-
standing if the number of coe¢ cients are few in number; i.e. K is
"small". We gain if the function "f" is restricted to functions of a class
that can be described in terms of the superposition of trigonometric func-
tions and their derivatives. The �t for functions that are continuous, but
not every where di¤erential can only be approximated using many basis
functions. The equations generating the basis functions, �k; based on
the fundamental frequency, !, are re-scaled versions of that fundamen-
tal frequency. The concept of re-scaling a "fundamental" function to
provide a basis will occur in many guises.
Fourier series are useful in �tting global variation, but respond to lo-

cal variation only at very high frequencies thereby substantially increas-
ing the required number of Fourier coe¢ cients. For example, consider
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�tting a Fourier basis to a "Box function", any reasonable degree of �t
will require very many terms at high frequency; see Bloom�eld (1976).
Economy of coe¢ cients can be obtained for local �tting by using

windows; that is, instead of:

ĥ(!) =
1

2�

1X
�1

R̂(s) cos(s!)

where R̂(s) is the sample covariance at lag "s". We consider:

ĥ(!) =
1

2�

MX
�M

�(s)R̂(s) cos(s!) (11)

where �(s) is given by:

�(s) =

�
1; jsj �M
0; jsj > M

(12)

�(s) is the "window function" which has maximum e¤ect at s = 0,
+-2k�; k=1,2,3,...Distant correlations are smoothed, the oscillations of
local events are enhanced; see Bloom�eld (1976).

2.4 Spline Bases
A very versatile basis class is de�ned by the spline functions. A standard
de�nition of a version of the spline basis , the B-spline, S(t), is:

S(t) =
m+L�1X
k=1

ckBk;(t;�) (13)

where S(t) is the spline approximation, {ckg; are the coe¢ cients of
the projection, Bk;(t;�) is the B-spline function at position k, with knot
structure, � : The vector � designates the number of knots, L, and their
position which de�nes the subintervals that are modeled in terms of
polynomials of degree m. At each knot the polynomials are constrained
to be equal in value for polynomials of degree 1, agreement for the �rst
derivative for polynomials of degree 2, etc. Consequently, adjacent spline
polynomials line up smoothly.
B-Splines are one of the most �exible basis systems, so that it can

easily �t locally complex functions.
An important use of splines is to interpolate over the grid created by

the knots in order to generate a di¤erential function, or more generally,
a di¤erential surface. Smoothing is a local phenomenon, see de Boor
(2001).
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2.5 Wavelets
Wavelets provide one of the most �exible sets of basis functions.
The methodology is based on an analysis that enables us to de-

compose any time series into their time scale and periodic components.
Wavelets are based on particular types of function 	(t);�(t) that are
localized both in time and frequency domain and used to decompose
a function f(t) (i.e. a signal, a surface, a series, etc.) into more ele-
mentary functions. Unlike the Fourier transform, which uses the sum
of certain basis functions (sines and cosines) to represent a given func-
tion may be seen as a decomposition on a frequency-by-frequency basis,
the wavelet transform utilizes some elementary functions (father, � and
mother wavelets,	) that, being well-localized in both time and scale,
provide a decomposition on a scale-by-scale basis as well as on a fre-
quency basis. The inner product � with respect to f is essentially a low
pass �lter that produces a moving average; indeed we recognize the �lter
as a linear time-invariant operator. The corresponding wavelet �lter is
a high pass �lter that produces moving di¤erences; Strang and Nguyen
(1996). Separately, the low pass and high pass �lters are not invertible,
but together they separate the signal into frequency bands. Correspond-
ing to the low pass �lter there is a continuous time scaling function �(t):
Corresponding to the high pass �lter is a wavelet w(t):
Consider the following equation:

w(t) =
p
2
X

d(k)�(2t� k)

where d(k) are the high pass coe¢ cients.
This gives wavelets a distinct advantage over a purely frequency do-

main analysis. Because Fourier analysis presumes that any sample is
an independent drawing, Fourier analysis requires "covariance station-
arity", whereas wavelet analysis may analyze both stationary and long
term non-stationary signals. This approach provides a convenient way
to represent complex signals. Expressed di¤erently, spectral decompo-
sition methods perform a global analysis whereas wavelet methods act
locally in both frequency and time. Fourier analysis can relax local non-
stationarity by windowing the time series as was indicated above. The
problem with this approach is that the e¢ cacy of this approach depends
critically on making the right choice of window and, more importantly,
presuming its constancy over time.
For wavelet analysis however, as we have observed, there are two ba-

sic wavelet functions, father and mother wavelets, �(t) and  (t). The
former integrates to 1 and reconstructs the smooth part of the signal
(low frequency), while the latter integrates to 0 (similarly to sine and
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cosine) and can capture all deviations from the smooth trend (high fre-
quency). The mother wavelets, as said above, play a role similar to sines
and cosines in the Fourier decomposition. They are compressed or di-
lated, in the time domain, to generate cycles to �t actual data. The
approximating wavelet functions �J;k(t) and  J;k(t) are generated from
father and mother wavelets through scaling and translation as follows:

�J;k(t) = 2
�J
2 �

�
t� 2Jk
2J

�
(14)

and

 J;k(t) = 2
�J
2 

�
t� 2Jk
2J

�
(15)

where j indexes the scale, so that 2j is a measure of the scale, or
width, of the functions (scale or dilation factor), and k indexes the trans-
lation, so that 2jk is the translation parameter.
Given a signal f (t), the wavelet series coe¢ cients, representing the

projections of the time series onto the basis generated by the chosen
family of wavelets, are given by the following integrals:

dj;k =
R
 j;k(t)f(t)dt

sJ;k =
R
�J;k(t)f(t)dt

(16)

where j = 1; 2; :::; J is the number of scales and the coe¢ cients djk
and sJk are the wavelet transform coe¢ cients representing, respectively,
the projection onto mother and father wavelets. In particular, the detail
coe¢ cients dJk; ::::; d2k; d1k represent progressively �ner scale deviations
from the smooth behavior (thus capturing the higher frequency oscil-
lations), while the smooth coe¢ cients sJk correspond to the smooth
behavior of the data at the coarse scale 2J (thus capturing the low fre-
quency oscillations).
Finally, given these wavelet coe¢ cients, from the functions

SJ;k =
X
k

sJ;k�J;k (t) and Dj;k =
X
k

dJ;k J;k (t) (17)

we may obtain what are called the smooth signal, SJ;k, and the detail
signals, Dj;k, respectively. The sequence of terms SJ ; DJ ; ::Dj; :::; D1 for
j = 1; 2; :::; J represents a set of signal components that provide represen-
tations of the original signal f(t) at di¤erent scales and at an increasingly
�ner resolution level.
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It is useful to note that whether we are examining wavelets or sinu-
soids or Gabor functions we are in fact approximating f(t) by "atoms";
a collection of atoms is a "dictionary". We seek to obtain the best M
atoms for a given f(t) out of a dictionary of P atoms. There are three
standard methods for choosing the M atoms in this over sampled situ-
ation. The �rst is matching pursuit in which the M atoms are chosen
one at a time; this procedure is referred to as greedy and sub-optimal.
An alternative method is the best basis algorithm which begins with a
dictionary of bases. The third method is known as basis pursuit where
the dictionary is still over complete. The synthesis of f(t) in terms of
�i (t) is under-determined. This brief discussion indicates that the essen-
tial objective is to choose a good basis. A good basis depends upon the
resolution of two characteristics; linear independence and completeness.
Independence represents uniqueness of representation and completeness
ensures that any f(t) is represented. Adding vectors will destroy inde-
pendence, removing vectors will destroy completeness. If every vector v
or function v(t) can be represented uniquely as:

v=
X

bivi (18)

or

v(t)=
X

bivi(t)

If the coe¢ cients bi satisfy:

Ajjvjj2 �
X

jbij2 � Bjjvjj2 with A > 0: (19)

This is the de�ning property of a Riesz basis.
Much of the usefulness of wavelet analysis has to do with its �exi-

bility in handling a variety of nonstationary signals. Indeed, as wavelets
are constructed over �nite intervals of time and are not necessarily ho-
mogeneous over time, they are localized in time and scale.
Any moderately experienced "Waveletor" knows to choose his wavelet

function so as to maximize the "number of zero moments", to ascertain
the number of continuous derivatives, and to worry about symmetry of
the underlying �lters. The more experienced Waveletor knows also to
consider the shape of the function at zero scale. While many times the
choice of wavelet function makes little or no di¤erence there are times,
when such considerations are important for the analysis in hand; for
example, the inappropriate use of the Haar function for resolving con-
tinuous smooth functions, or using smooth functions to represent sam-
ples of discontinuous paths. Wavelets provide a vast array of alternative
wavelet functions; e.g. Gaussian, Gaussian 1st derivative, Mexican hat,
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the Daubechies series, the Mallat series, and so on. The key to the im-
portance of the di¤erences lies in choosing the appropriate degree and
nature of the oscillation within the supports of the wavelet function. I
have previously stated that at each scale the essential operation is one
of di¤erencing using weighted sums; the alternative rescalable wavelet
functions provide an appropriate basis for such di¤erences. The astute
listener would have noted that the concept of re-scaling the primitive
function to provide a linear space with respect to which the function
can be represented is not restricted to wavelets, but is also critical in
constructing a basis space for Fourier series.
It is very useful to view the use of wavelets in "regression analysis"

in greater generality than as a simple exercise in "least squares �tting."
As indicated above the use of wavelets involves the properties of the
implicit �lters used in the construction of the wavelet function. Such
an approach to determining the properties of wavelet analysis provides
for a structured, but highly �exible system, that is characterized by a
"scarce transformation matrix;"that is, most coe¢ cients in the trans-
formed space are zero. Indeed, the source of the bene�t from creating a
spanning set of basis vectors, both for Fourier analysis and wavelets, is
the reduction in degrees of freedom from N, in the given Euclidean space,
to K in the transformed space, where K is very much smaller than N;
simple linear regression models illustrate the same situation and perform
a similar transformation.
The argument so far, has compared wavelets to splines and to Fourier

series or integrals. A discussion of the di¤erences is required. Splines
are easily dealt with in that the approximations implied by the spline
procedure is to interpolate smoothly a sequence of observations from a
smooth di¤erential signal. The analysis is strictly local, even though
most spline algorithms average over the whole sample space. The �t is
almost entirely determined by the observed data points, so that, little
structure is imposed on the process. What structure is predetermined is
generated by the position of the knots.
Fourier series, or Fourier integrals, are strictly global over time or

space, notwithstanding the use of windows to obtain useful local es-
timates of the coe¢ cients. Wavelets, however, can provide a mixture
of local and global characteristics of the signal, are easily modi�ed to
incorporate restrictions of the signal over time or space. Wavelets gener-
alize Fourier integrals and series in that each frequency band, or octave,
groups together, frequencies separated by the supports at each scale. A
research analyst can incorporate the equivalent of a windowed analysis
of Fourier integrals and incorporate time scale variations as in Ramsey
and Zhang (1996) and Ramsey and Zhang (1997). Further, as illustrated
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by cosine wave packets, see Bruce and Gao (1996), and the wide choice
for low and high pass �lters, see Strang and Nguyen (1996), consider-
able detail can be captured, or suppressed and basic oscillations can be
incorporated using band pass �lters to generate oscillatory wavelets.

3 Some Examples of the Use of Wavelets

While it is well recognized that wavelets have not been as widely used in
Economics as in other disciplines, I hope to show that there is great scope
for remedying the situation. The main issue involves the gain in insight
to be stimulated by using wavelets; quite literally, the use of wavelets
encourages researchers to generalize their conception of the problem at
hand.

3.1 Foreign Exchange and Waveform Dictionaries
A very general approach using time frequency atoms is especially useful
in analyzing �nancial markets. Consider the equation g(t) where  =
(s; u; �) :

g(t) =
1p
s
g(
t� u

s
)ei�t (20)

We impose the conditions jjgjj=1 where jjgjj is L2 where g(0) 6= 0:
For any scale parameter s, frequency modulation � and translation pa-
rameter u: the factor 1=

p
s normalizes the norm of g(t) to 1; g(t) is

centered at the abscissa u and its energy is concentrated in the neigh-
borhood of u, size is proportional to s; the Fourier transform is centered
at the frequency � and its energy is concentrated in the neighborhood
of � and size is proportional to 1/s. Matching pursuit was used to de-
termine the values of the coe¢ cients. Raw tick by tick data on three
foreign exchange rates were obtained from October 1, 1992 to Septem-
ber 30, 1993. The waveform analysis indicates that there is e¢ ciency of
structure but only at the lowest frequencies equivalent to periods of two
hours with little power. There are some low frequencies that wax and
wane in intensity. Most of the energy of the system seems to be in the
localized energy frequency bursts.
The frequency bursts provide insights into market behavior. One

can view the dominant market reaction to news as a sequence of short
bursts of intense activity that are represented by narrow bands of high
frequencies. For example, only the �rst one hundred structures provides
a good �t to the data at all but the highest frequencies. Nevertheless
the isolated bursts are themselves unpredictable, see Ramsey and Zhang
(1997).
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3.2 Instrumental Variables and "Errors in the Vari-
ables"

To begin the discussion the "errors in variables" problem is still as nearly
unstructured as it has always been; that is, we endeavor to search for a
strong instrumental variable. However it is very di¢ cult to recognize one
when shown a plausible variable. Further, it is as di¢ cult to recognize
a weak instrument that if used would yield worse results. I have labeled
this approach "solution by assumption" since one has in fact no idea if
a putted variable is, or is not, a useful instrumental variable.
Wavelets can resolve the issue; see Ramsey et al. (2010) and Gencay

and Gradojevic (2009) for an extensive discussion of this critical prob-
lem. The task is simple: use wavelets to decompose the observed series
into a "noise" component and a structural component, possibly re�ned
by thresholding the coe¢ cient estimates, Ramsey et al. (2010). The
bene�ts from recognizing the insights to be gained from this approach
are only belatedly coming to be realized. If all the variables in a system
of equations can be factored into a structural component, {itself decom-
posable into a growth term and a oscillation term}, and into a noise
term; e.g.

yi= y
�
i + "i

xi=x
� + �i

zi= z
�
i + !i

where the starred terms are structural and the terms "i; �i; !i are
random variables either modeled as simple pulses or have a far more
complex stochastic structure, including having distributions that are
functions of the structural terms. If we wish to study the structure
of the relationships between the variables, we can easily do so; see Sil-
verman (2000) and Johnstone (2000). In particular, we can query the
covariance between the random error terms, select suitable instrumental
variables, solve the simultaneous equation problem, and deal e¤ectively
with persistent series.
Using some simulation exercises Ramsey et al. (2010) demonstrated

how the structural components revealed by the wavelet analysis yield
nearly ideal instrumental variables for variables observed with error and
for co-endogenous variables in simultaneous equation models. Indeed,
the comparison of the outcomes with current standard procedures indi-
cates that as the nonparametric approximation to the structural compo-
nent improves, so does the convergence of the near structural estimates.
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While I have posed the situation in terms of linear regression, the
bene�ts of this approach are far greater for non-linear relationships. The
analysis of Donoho and Johnstone (1995) indicates that asymptotic con-
vergence will yield acceptable results and convergence is swift.

3.3 Structural Breaks and Outlier Detection
Most economic and �nancial time series evolve in a nonlinear fashion
over time, are non-stationary and their frequency characteristics are of-
ten time-dependent, that is, the importance of the various frequency
components is unlikely to remain stable over time. Since these processes
exhibit quite complicated patterns like abrupt changes, jumps, outliers
and volatility clustering, a locally adaptive �lter like the wavelet trans-
form is particularly well suited for evaluation of such models.
An example of the potential role to be played by wavelets is provided

by the detection and location of outliers and structural breaks. Indeed,
wavelets can provide a deeper understanding of structural breaks with
respect to standard classical analysis given their ability to identify the
scale as well as the time period at which the inhomogeneity occurs.
Speci�cally, based on two main properties of the discrete wavelet trans-
form (DWT), i.e. the energy preservation and approximate decorrela-
tion properties, a wavelet-based test for homogeneity of variance (see
Whitcher, 1998, and Whitcher et al., 2002) can be used for detecting
and localizing regime shifts and discontinuous changes in the variance1.
Similarly, structural changes in economic relationships can be use-

fully detected by the presence of shifts in their phase relationship. In-
deed, although a standard assumption in economics is that the delay
between variables is �xed, Ramsey and Lampart (1998a and 1998b) have
shown that the phase relationship (and thus the lead/lag relationship)
may well be scale dependent and vary continuously over time. Therefore
examining scale-by-scale overlaid graphs between pairs of variables can
provide interesting insights into the nature of the relationship between
these variables and their evolution over time (Ramsey, 2002). A recent
example of this approach is provided in Gallegati and Ramsey (2011)
where the analysis of such variations in phase is proven to be useful
for detecting and interpreting structural changes in the form of smooth
changes, for example, the q-relationship proposed by Tobin.
Finally, wavelets provide a natural way to seek for outliers in that

wavelets allow for local distributions at all scales and outliers are at
the very least a "local" phenomenon (see for a very brief introduction,

1See Gallegati et al. (2011) for the application to two well known events charac-
terizing the US economy in the early 80s: the so-called Great Moderation and the
change of monetary policy conduct after 1979 (i.e. Volcker disin�ation period).
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Wei, Z. et al., , and Greenblatt, 1996). The idea of thresholding (see
for example, Bruce and Gao, 1996, and Nason 2008), is that the noise
component is highly irregular, but with a modest amplitude of varia-
tion, which is dominated by the variation of the structural component.
Naively, outliers are observations drawn from a di¤erent distribution;
intuitively one tends to consider observations for which the modulus
squared is very large relative to the modulus of the remainder of the
time series, or cross-sectional data. But outliers may be generated in
far more subtle ways and not necessarily reveal themselves in terms of a
single large modulus, but in terms of a temporary shift in the stochastic
structure of the error terms. In these cases, "thresholding, in particular
soft thresholding," Bruce and Gao (1996), Nason (2008), will prove to be
very useful especially in separating the coe¢ cient values of "structural
components" from noise contamination.

3.4 Time scale relationships
The separation of aggregate data into di¤erent time scale components
by wavelets can provide considerable insights into the analysis of eco-
nomic relationships between variables. Indeed, economics is an example
of a discipline in which time scale matters just because di¤erent agents�
decisions are likely to have di¤erent time scales. Consider, for example,
traders operating in the market for securities: some, the fundamentalists,
may have a very long view and trade looking at �rms�or market�funda-
mentals; some others, the chartists, may operate with a time horizon of
weeks or days. A corollary of this assumption is that di¤erent planning
horizons are likely to a¤ect the structure of the relationships themselves,
so that such relationships might vary over di¤erent time horizons or hold
at several time scales, but not at others.
Although the concepts of the "short-run" and of the "long-run" are

central for modeling economic and �nancial decisions, variations in the
relationship across time scales are seldom discussed in economics and
�nance. We should begin by recognizing that for each variable postulated
by the underlying theory we admit the possibility that:

ys = gs(yj;s xi;s);

where ys is the dependent variable at scale "s," gs(.) are arbitrary
functions speci�ed by the theory, which might di¤er across scales, yj;s
represents the codependent variables at scale "s", and xi;s represents
exogenous variables xi at scale "s"; that is, the relationships between
economic variables may well be scale dependent.
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Following Ramsey and Lampart (1998a, 1998b) many authors have
con�rmed that allowing for di¤erent time scales of variation in the data
can provide a fruitful understanding of the complex dynamics of eco-
nomic relationships among variables with non-stationary or transient
component variables. For example, relationships that are veiled when
estimated at the aggregate level, may be consistently revealed after al-
lowing for a decomposition of the variables into di¤erent time scales. In
general, the results indicate that by using wavelet analysis it is possible
to uncover relationships that are at best puzzling using standard regres-
sion methods (e.g. .Ramsey and Lampart (1998a, 1998b), Gallegati et
al. ,2009, 2011).and that ignoring time and frequency dependence be-
tween variables when analyzing relationships in economics and �nance
can lead to erroneous conclusions.

3.5 Comments on Forecasting
The standard concerns about forecasting carry over to the use of wavelets,
but as might have been anticipated wavelets incorporate a degree of re-
�nement and �exibility not available using conventional methods, see
for example, Diebold (1998). With wavelets, one can choose the scale at
which the forecast is to be made, treating each scale level as a separate
series for forecasting purposes. Secondly, one should note that at any
given point in time, the "forecast",will depend on the scales at which
one wishes to evaluate the forecast; for example, at all scales for a point
in time, t0, or for a subset of scales at time t0. Further, one might
well choose to consider, at a given minimum scale whether to forecast a
range, given the chosen minimum scale, or to forecast a point estimate
at time t0:
These comments indicate a potentially fruitful line of research and

indicates that the idea of "forecasting" is more subtle than has been
recognized so far. Forecasts need to be expressed conditional on the
relevant scales, and that the usual forecasts are special cases of a gen-
eral procedure. Indeed, one concern that is ignored in the conventional
approach is to recognize across scales the composition of the variance
involved in term of the variances at each scale level. For examples, see
Gallegati et al (2011a), Youse� et al (2005) and Wei et al.(2006).

3.6 Some Miscellaneous Examples
Fan and Gencay (2007) have explored the gain in e¢ ciency in discovering
unit roots and applying tests for cointegration using wavelet procedures.
Further, using MODWTmulti-resolution techniques the authors demon-
strate a signi�cant gain in power against near unit root processes. In
addition, the wavelet approach leads to a novel interpretation of Von
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Neumann variance ratio tests.
Gallegati et al (2011) reviewed the literature on the "wage Phillips

curve" using U.S. data. The most signi�cant result of the multiscale
analysis is that in the long run there is a one to one relationship be-
tween wage and price in�ation and the close relationship of nominal
changes with unemployment rate at business cycle scales. Over all, the
paper suggests that allowing for di¤erent time scales of variation in the
data can provide a richer understanding of the complex dynamics of eco-
nomic relationships between variables. Relationships that are puzzling
when tested using standard methods can be consistently estimated and
structural properties revealed using timescale analysis. The authors note
with some humor that Phillips himself can be considered as the �rst user
of wavelets in Economics!
One of the most cogent rationalizations for the use of wavelets and

timescale analysis is that di¤erent agents operate at di¤erent timescales.
In particular, one might examine the behavior of central banks to eluci-
date their objectives in the short and long run. This is done in Aquiar-
Conraria et al (2008) in assessing the relationship between central bank
decision-making and government decision-making. The authors con�rm
that the macro relationships have changed and evolved over time.
In Rua and Nunes (2009) and Rua (2010), interesting results are

obtained in both papers, which concentrate on the role of wavelets in
the analysis of the co-movement between international stock markets. In
addition, the authors generalize the notion of co-movement across both
time and frequency. In Samia et al (2009), a wavelet approach is taken
in assessing values for VaR�s and compared favorably to the conventional
ARMA-GARCH processes.

3.7 Conclusions
The functional representation of regression functions projected onto ba-
sis spaces was elucidated. The �rst step began with standard Euclidean
N space and demonstrated a relationship to Taylor�s series approxima-
tions, monomials, exponential and power bases. Fourier series were used
to illustrate the relationship to wavelet analysis in that both versions in-
cluded a concept of rescaling a fundamental function to provide a basis.
Spline bases were also de�ned and related to wavelets. In the discussion
and development of wavelets a number of aspects not normally consid-
ered were discussed and the concept of atoms was introduced. One can
characterize the research analyst�s objective as seeking to obtain the
best M atoms for a given f(t) out of a dictionary of P atoms; the overall
objective is to choose a good basis which depends upon the resolution
of two characteristics; linear independence and completeness. Indepen-
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dence guarantees uniqueness of representation and completeness ensures
that any f(t) is represented. Adding vectors will destroy independence,
removing vectors will destroy completeness. The generality of wavelet
analysis is enhanced by the choices available of functional forms to suit
speci�c characteristics of the vector space in which the function resides;
for example Haar, Gaussian, Gaussian �rst derivative, Mexican Hat and
so on. In addition, further generalization of the approximation provided
by wavelets is illustrated in terms of the Waveform dictionary which uses
a triplet of parameters to represent translation, scaling, and is centered
around a fundamental frequency ei�t:
While the discussion above has demonstrated the wide usefulness of

the wavelet approach, one might speculate that many more insights are
liable to occur as the implications of this unique space are explored. Not
enough attention has yet been expended on the wide variation in the for-
mation of wavelet forms and their application in practical problems. In
short, attention may well be concentrated in the future on capturing
variation within the function�s supports and thereby providing alterna-
tive determinations of very short run behavior. The implied �exibility
of wavelets provides deconvolution of very short run phenomena as well
as the intermediate run and long run phenomena.
The paper also contains brief reviews of a variety of applications of

wavelets to economic examples which are of considerable importance to
economists interested in accurate evaluations of policy variables A wide
variety of data sources have been examined, including both macroeco-
nomic and �nancial data. In these models the problem of errors in the
variables is critical, but wavelets provide the key to resolving the issue.
Some papers examine data for structural breaks and outliers. Comments
on forecasting were presented. These thoughts indicate that forecasting
is more subtle than is currently believed in that forecasts require to
be calculated conditional on the scales involved in the forecast. Some
forecasts might well involve only a particular subset of the time scales
included in the system.
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