Price Level and Inflation Dynamics With Persistent Deficits: Lessons from Heterogeneous Agent Economies

Greg Kaplan University of Chicago, e61 Institute and NBER

> Georgios Nikolakoudis Princeton University

Gianluca Violante Princeton University, CEPR and NBER

Bank of Finland and CEPR Joint Conference Monetary Policy in Times of Large Shocks 16-17 June 2023

Fiscal Theory of the Price Level

- FTPL: Framework for price level and inflation dynamics
 - Government issues nominal debt to finance real expenditure
 - Central bank sets nominal interest rate
- Representative Agent (RA): FTPL extensively studied
- Heterogeneous Agent (HA): FTPL less studied
 - 1. Natural setting to study inflation with persistent deficits and r < g \bigcirc Data
 - 2. Household heterogeneity key to recent inflation episode

Fiscal Theory of the Price Level

- FTPL: Framework for price level and inflation dynamics
 - Government issues nominal debt to finance real expenditure
 - Central bank sets nominal interest rate
- Representative Agent (RA): FTPL extensively studied
- Heterogeneous Agent (HA): FTPL less studied
 - 1. Natural setting to study inflation with persistent deficits and r < g \bigcirc Data
 - 2. Household heterogeneity key to recent inflation episode
- TODAY: extend FTPL to HA in flexible price endowment economies
 - Theory contribution: Conditions for price-level and inflation uniqueness
 - Policy messages: Role of heterogeneity for inflation and deficits

Preview of Findings: Policy Insights

- Economic forces in heterogeneous agent models matter for policy
 - MPC heterogeneity + redistribution of real wealth
 - Precautionary motive for holding government debt

Preview of Findings: Policy Insights

- Economic forces in heterogeneous agent models matter for policy
 - MPC heterogeneity + redistribution of real wealth
 - Precautionary motive for holding government debt
- 1. Expanding deficits:

🖾 CHICAGO

- Source of deficit matters: more social insurance \Rightarrow lower maximum deficit
- Larger deficits lower real rate, higher inflation: secular stagnation
- 2. New debt issuance: fiscal helicopter drops
 - Redistribution amplifies short-run inflation
 - Targeted helicopter are even more inflationary
- 3. Pure redistribution: budget neutral redistribution is inflationary

Outline

1. Model Environment

- 2. Steady State Equilibria
- 3. Dynamic Equilibria: Price-Level Determination
- 4. Options to Rule Out Multiplicity
- 5. Calibration
- 6. Quantitative Exercises
- 7. Policy Lessons and Next Steps

Model Overview

- Endowment economy + flexible prices ⇒ monetary neutrality
- No aggregate uncertainty \Rightarrow perfect foresight dynamics
- Continuum of infinitely-lived households
 household problem
- Uninsurable idiosyncratic risk
- Risk-free asset: nominal government bonds
- Government intertemporal budget constraint
- Fiscal policy rule for real surpluses
- Monetary policy rule for nominal interest rate

Government Budget Constraint

- Fiscal authority sets tax function $\tau_t(z) \Rightarrow$ real primary surpluses $s_t = \int \tau_t(z_{jt}) dj$
- Budget shortfalls are financed by issuing short-term nominal debt:

$$dB_t = [i_t B_t - s_t P_t y_t] dt,$$

Initial nominal debt B_0 given

Government Budget Constraint

- Fiscal authority sets tax function $\tau_t(z) \Rightarrow$ real primary surpluses $s_t = \int \tau_t(z_{jt}) dj$
- Budget shortfalls are financed by issuing short-term nominal debt:

$$dB_t = [i_t B_t - s_t P_t y_t] dt$$

Initial nominal debt B_0 given

• Normalized real government debt:

$$b_t = \frac{B_t}{P_t e^{gt}}$$

• Real government budget constraint:

$$db_t = [r_t b_t - s_t] dt$$
 for $t > 0$

Initial real debt b_0 : jump variable

Monetary and Fiscal Policy

- Baseline:
 - Fiscal policy sets constant primary surpluses: $s_t = s^* = \int_{j=0}^1 \tau^*(z_{jt}) dj$
 - Monetary policy sets a nominal interest rate peg: $i_t = i^*$

Monetary and Fiscal Policy

- Baseline:
 - Fiscal policy sets constant primary surpluses: $s_t = s^* = \int_{j=0}^1 \tau^*(z_{jt}) dj$
 - Monetary policy sets a nominal interest rate peg: $i_t = i^*$
- Alternative policy rules:
 - Fiscal policy responds to real rates, real debt or real interest payments

$$s_{t} = s^{*} + \phi_{b} (b_{t} - b^{*})$$

$$s_{t} = s^{*} + \phi_{r} (r_{t} - r^{*})$$

$$s_{t} = s^{*} + \phi_{s} (r_{t}b_{t} - s^{*})$$

Monetary policy responds to the inflation rate

$$di_t = -\theta [i_t - i^* - \phi_m (\pi_t - \pi^*)] dt, \quad \theta > 0$$

Perfect Foresight Equilibrium

Given:

- Fiscal policy, i.e. a time-invariance tax function $au^* \Rightarrow s^*$
- Initial household distribution $f_0(\omega, z)$

a real equilibrium consists of:

- Paths of value functions $V_t(a, z)$ and consumption functions $c_t(a, z)$
- Paths of distributions and implied real aggregate household wealth $f_t(\omega, z), g_t(a, z), a_t$
- Path of real government debt b_t and real interest rates: r_t

such that for all $t \ge 0$:

- Households optimize: $V_t(a, z)$ and $c_t(a, z)$ solve the recursive formulation of the household problem
- Distribution is generated from consumption function and real rate: KFE is satisfied given initial distribution
- Government budget constraint holds: $db_t = [s^* r_t b_t] dt$
- Asset market clears $a_t = b_t$ and goods market clears $\int c_{jt} di = 1$

Perfect Foresight Equilibrium

Given:

- Fiscal policy, i.e. a time-invariance tax function $au^* \Rightarrow s^*$
- Initial household distribution $f_0(\omega, z)$

a real equilibrium consists of:

- Paths of value functions $V_t(a, z)$ and consumption functions $c_t(a, z)$
- Paths of distributions and implied real aggregate household wealth $f_t(\omega, z), g_t(a, z), a_t$
- Path of real government debt b_t and real interest rates: r_t

such that for all $t \ge 0$:

- Households optimize: $V_t(a, z)$ and $c_t(a, z)$ solve the recursive formulation of the household problem
- Distribution is generated from consumption function and real rate: KFE is satisfied given initial distribution
- Government budget constraint holds: $db_t = [s^* r_t b_t] dt$
- Asset market clears $a_t = b_t$ and goods market clears $\int c_{jt} di = 1$

For a given real equilibrium, nominal variables P_0 , π_t are determined by:

- Initial nominal debt B_0 : $P_0 = \frac{B_0}{b_0}$
- Monetary policy and Fisher equation: $\pi_t = i^* r_t g$

Outline

1. Model Environment

2. Steady State Equilibria

3. Dynamic Equilibria: Price-Level Determination

4. Options to Rule Out Multiplicity

5. Calibration

6. Quantitative Exercises

7. Policy Lessons and Next Steps

Real Steady State with Surpluses \Rightarrow *r* > 0

- Household real asset demand: $\mathbf{a}(r) \ge 0$: $\lim_{r \to \rho} \mathbf{a}(r) = +\infty$ and $\lim_{r \to -\infty} \mathbf{a}(r) = 0$
- Government real asset supply: $\mathbf{b}(r) = \frac{s^*}{r} > 0$
- Unique steady-state: lower r and higher b than in RA economy

Real Steady States with Deficits \Rightarrow *r* < 0

- Household real asset demand: $\mathbf{a}(r) \ge 0$ (unchanged)
- Government real asset supply: $\mathbf{b}(r) = \frac{s^*}{r} > 0$ if r < 0CHICAGO 8

Maximum Level of Deficits

- Larger deficits: raise or lower real rates depending on which steady-state
- Maximum deficit: tangency of $\mathbf{a}(r; s^*)$ and $\mathbf{b}(r; s^*) \Rightarrow$ Laffer curve for govt debt CHICAGO 9

Outline

- 1. Model Environment
- 2. Steady State Equilibria
- 3. Dynamic Equilibria: Price-Level Determination
- 4. Options to Rule Out Multiplicity
- 5. Calibration
- 6. Quantitative Exercises
- 7. Policy Lessons and Next Steps

Price Level Determination: RA Economy

- Household transversality condition: $db_t = [\rho b_t s_t^*] dt \Rightarrow b_t = b^{RA}$ for all t
- Unique price-level and inflation : $P_0 = \frac{B_0}{b^{RA}}$ and $\pi^{RA} = i^* \rho g$

CHICAGO

Dynamic Equilibria in HA Economy

- Aggregate state: $\Omega_t = \{f_t(\omega, z), b_t\}$
 - $f_t(\omega, z)$: backward looking variable \Rightarrow cannot jump
 - b_t : determined by nominal debt B_t and price level $P_t \Rightarrow$ jump variable

Dynamic Equilibria in HA Economy

- Aggregate state: $\Omega_t = \{f_t(\omega, z), b_t\}$
 - $f_t(\omega, z)$: backward looking variable \Rightarrow cannot jump
 - b_t : determined by nominal debt B_t and price level $P_t \Rightarrow$ jump variable
- Local saddle-path stability: given initial $f_0(\omega, z) \Rightarrow$ unique real equilibrium
 - 1. Initial real debt b_0
 - 2. Unique paths of aggregate state: $\Omega_t = \{b_t, f_t(\omega, z)\}$
 - 3. Associated path of real rates r_t
 - \Rightarrow Equilibrium converges to r^* , b^* , $f^*(\omega, z)$
- Unique real equilibrium \Rightarrow unique price level P_0 and inflation π_t

CHICAGO

real rate functional saddle path stability

Dynamic Equilibrium with Surpluses

• HA: dynamics of (b_t, r_t, π_t, P_t) depend on dynamics of wealth distribution

RA Bonds-In-Utility

Dynamic Equilibria with Deficits

- b_{H}^{*} steady state high debt, high real rate (low inflation) : locally saddle-path
- b_L^* steady state low debt, low real rate (high inflation): locally stable

Dynamic Equilibria with Deficits

- Unique equilibrium leading to b^{*}_H, continuum of real equilibria leading to b^{*}_L
- P_t , π_t not determined, but price level bounded below: $P_0 \geq \frac{B_0}{b_t^*}$.

Helicopter Drop: Representative Agent

• Representative Agent: jump in price level, no change in inflation or real rate

• Price jump:
$$\frac{P'_0}{P_0} = 1 + \frac{M}{P_0 b^{RA}}$$
, Inflation: $\pi^{RA'} = \pi^{RA}$

Ð

CHICAGO

example: permanent surplus reduction

Helicopter Drop: Heterogeneous Agents

- Heterogeneous Agent: jump in price level and real rate, followed by lower inflation
- Redistribution from low to high MPC households: raises real rate in short run

CHICAGO

example: permanent surplus reduction

Outline

- 1. Model Environment
- 2. Steady State Equilibria
- 3. Dynamic Equilibria: Price-Level Determination

4. Options to Rule Out Multiplicity

- 5. Calibration
- 6. Quantitative Exercises
- 7. Policy Lessons and Next Steps

Options for Price Level Determination

Option 1: eliminate stable steady-state with fiscal policy rules

- $s_t = s^* + \phi_b (b_t b^*)$ Deficits respond to real debt: ▶ real debt rule
- Deficits respond to real rates: $s_t = s^* + \phi_r (r_t r^*)$ (real rate rule)
- Deficits respond to interest payments: $s_t = s^* + \phi_s (r_t b_t s^*)$ interest payment rule ٠

Options for Price Level Determination

Option 1: eliminate stable steady-state with fiscal policy rules

- Deficits respond to real debt: $s_t = s^* + \phi_b (b_t - b^*)$ ▶ real debt rule
- Deficits respond to real rates: $s_t = s^* + \phi_r (r_t r^*)$ (real rate rule)
- Deficits respond to interest payments: $s_t = s^* + \phi_s (r_t b_t s^*)$ interest payment rule

Option 2: eliminate stable steady-state with inelastic foreign demand for govt debt

- Foreign demand function $\mathbf{d}(r)$
- Steady-state equilibrium condition becomes: $\mathbf{a}(r) + \mathbf{d}(r) = \mathbf{b}(r)$ fixed demand elastic demand

Options for Price Level Determination

Option 1: eliminate stable steady-state with fiscal policy rules

- Deficits respond to real debt: $s_t = s^* + \phi_b (b_t b^*)$ real debt rule
- Deficits respond to real rates: $s_t = s^* + \phi_r (r_t r^*)$
- Deficits respond to interest payments: $s_t = s^* + \phi_s (r_t b_t s^*)$ interest payment rule

Option 2: eliminate stable steady-state with inelastic foreign demand for govt debt

• Foreign demand function $\mathbf{d}(r)$

CHICAGO

• Steady-state equilibrium condition becomes: $\mathbf{a}(r) + \mathbf{d}(r) = \mathbf{b}(r)$ • tixed demand • elastic demand

Option 3: eliminate unwanted equilibria by anchoring long-run inflation expectations

Iong-run inflation anchoring

▶ real rate rule

Outline

- 1. Model Environment
- 2. Steady State Equilibria
- 3. Dynamic Equilibria: Price-Level Determination
- 4. Options to Rule Out Multiplicity
- 5. Calibration
- 6. Quantitative Exercises
- 7. Policy Lessons and Next Steps

Calibration

CHICAGO

- Two extensions:
 - Unsecured borrowing: 16%pa wedge
 - Long-term debt: average duration of 5 years
- Key parameters: full calibration table
 - Tax function: $\tau(z) = -\tau_0 + \tau_1 z \Rightarrow$ deficits: $s^* = -3.3\%$
 - Liquid wealth calibration: discount rate ρ to match $a^* = 110\% \times \text{GDP}$
- Steady states: steady states figure
 - High steady state: $b_{H}^{*} = 110\% \times \text{GDP}, r_{H}^{*} = -1\%, \pi_{H}^{*} = 2.5\%$
 - Low steady state: $b_L^* = 17.5\% \times \text{GDP}$, $r_L^* = -18\%$, $\pi_L^* = 19.5\%$
- Low inflation steady state consistent with US liquid wealth distribution:
 - 27% households with \leq \$1,000. Mean MPC out of \$500 is 13%

Outline

- 1. Model Environment
- 2. Steady State Equilibria
- 3. Dynamic Equilibria: Price-Level Determination
- 4. Options to Rule Out Multiplicity
- 5. Calibration
- 6. Quantitative Exercises
- 7. Policy Lessons and Next Steps

Inflationary Consequences of Fiscal Policy

- Deficit expansion:
 deficit expansion diagram
 - Maximum sustainable deficit
 maximum deficit
 - Larger deficits \Rightarrow lower real rate: secular stagnation secular stagnation taxes vs transfers labor supply
- Fiscal helicopter drop: helicopter drop
 - Redistribution amplifies inflation in short run
 targeted vs untargeted
 decomposition
 - Minimal effect of fiscal rules
 Helicopter fiscal rules
 - Looser monetary policy adds to inflation
 helicopter monetary response
- Pure redistribution

 - Permanent increase in progressivity: persistent inflation

Outline

- 1. Model Environment
- 2. Steady State Equilibria
- 3. Dynamic Equilibria: Price-Level Determination
- 4. Options to Rule Out Multiplicity
- 5. Calibration
- 6. Quantitative Exercises
- 7. Policy Lessons and Next Steps

Policy Lessons: FTPL + HA + Deficits

- 1. Multiple equilibria: importance of central bank credibility
- 2. Secular stagnation: 'indebted demand' hypothesis inconsistent with deficits and r < g
- 3. Fiscal space: reduced by redistribution and social insurance
- 4. Long-run deficit expansion:
 - Permanently lower real rates: a source of secular stagnation?
 - Permanently higher inflation rate
 - More progressive deficit expansions are more inflationary
- 5. Fiscal helicopter drop:
 - Redistribution amplifies inflation in the short run
 - Looser monetary policy adds to inflation
- 6. One time wealth taxation: induces temporary burst of inflation
Next Steps

- Production:
 - Endogenous output with elastic labor supply
- Two asset mode with captial:
 - Households hold high-return real assets as well as low-return nominal assets
 - Consistent with micro evidence on MPCs and hand-to-mouth households
- Sticky prices:
 - Smooth price level responses
 - Monetary policy matters for price level determination in addition to path of inflation

THANK YOU !!

US Primary Surpluses and Deficits

Preview of Findings: Theory

- Surpluses and r > 0:
 - Unique saddle path stable steady state
 - Unique price level and inflation
 - RA vs HA: Different real rate and inflation dynamics
- Deficits and r < 0:
 - Two steady states: different real rates, real debt and inflation
 - Maximum sustainable level of deficits
 - Options to restore uniqueness: (i) fiscal rules, (ii) foreign demand, (iii) long-run anchoring

Household Problem: Nominal Variables

• Continuum of infinitely lived households, $i \in [0, 1]$ maximize:

$$\max \mathbb{E}_0 \int_{t=0}^{\infty} e^{-\tilde{\rho}t} \frac{c_{jt}^{1-\gamma}}{1-\gamma} dt \quad \text{subject to} \quad dA_{it} = [i_t A_{jt} + z_{jt} Y_t - \tau_t(z_{jt}) Y_t - P_t c_{jt}] dt$$
$$A_{jt} \ge 0, \quad A_{j0}, z_{j0} \quad \text{given}$$

- Individual j variables at time t:
 - c_{jt} : real consumption
 - A_{jt} : nominal assets

CHICAGO

• z_{jt} : share of nominal output

$$\int_{j=0}^{1} z_{jt} dj = 1 \quad \forall \ t$$

N-state Poisson process with switching intensities $\lambda_{z,z'}$ and $z_{min} > 0$

• Aggregate variables: Y_t , i_t , P_t , τ_t : nominal output, nominal interest rate, price level, tax function

Household Problem: Real Variables

• Inflation:

$$\frac{dP_t}{P_t} = \pi_t dt \quad \text{ for } t > 0$$

- Real output: $\frac{Y_t}{P_t}$ grows at constant rate *g*, normalized to 1 at t = 0
- Define real normalized variables in lower case: $a_{jt} = \frac{A_{jt}}{P_t e^{gt}}, \ldots$
- De-trended real household budget constraint:

$$da_{jt} = [r_t a_{jt} + z_{jt} - \tau_t(z_{jt}) - c_{jt}] dt$$

• Growth-adjusted real interest rate: $r_t = i_t - \pi_t - g$

Household Problem: Real Variables

• Inflation:

CHICAGO

$$\frac{dP_t}{P_t} = \pi_t dt \quad \text{ for } t > 0$$

- Real output: $\frac{Y_t}{P_t}$ grows at constant rate *g*, normalized to 1 at t = 0
- Define real normalized variables in lower case: $a_{jt} = \frac{A_{jt}}{P_t e^{gt}}, \ldots$
- De-trended real household budget constraint:

$$da_{jt} = [r_t a_{jt} + z_{jt} - \tau_t(z_{jt}) - c_{jt}] dt$$

- Growth-adjusted real interest rate: $r_t = i_t \pi_t g$
- Real aggregate wealth: $a_t = \int_j a_{jt} dj$
- Relative wealth shares: $\omega_{jt} = \frac{a_{jt}}{a_t} \Rightarrow$ distribution of shares $f_t(\omega, z)$

back to model overview

Household Problem: Recursive Formulation

- Given paths of (i) real rates r_t , (ii) tax functions $\tau_t(z)$, solution to household problem satisfies:
 - 1. Hamilton-Jacobi-Bellman equation:

$$\rho V_t(a, z) = \max_c \frac{c^{1-\gamma}}{1-\gamma} + \partial_a V_t(a, z) \left[r_t a + z - \tau_t(z) - c \right] + \sum_{z' \neq z} \lambda_{z, z'} \left[V_t(a, z') - V_t(a, z) \right] + \partial_t V_t(a, z)$$

where $ho = ilde{
ho} - (1-\gamma)g$

- 2. Borrowing constraint $a \ge 0$: $\partial_a V_t ((0, z) \ge [z \tau_t (z)]^{-\gamma}$
- 3. Boundedness condition: $\lim_{t\to\infty} \mathbb{E}\left[e^{-\rho t}V_t(a_{jt}, z_{jt})\right] = q0.$

is a solution to the original household sequence problem

Household Problem: Recursive Formulation

- Given paths of (i) real rates r_t , (ii) tax functions $\tau_t(z)$, solution to household problem satisfies:
 - 1. Hamilton-Jacobi-Bellman equation:

$$\rho V_t(a, z) = \max_c \frac{c^{1-\gamma}}{1-\gamma} + \partial_a V_t(a, z) \left[r_t a + z - \tau_t(z) - c \right] + \sum_{z' \neq z} \lambda_{z, z'} \left[V_t(a, z') - V_t(a, z) \right] + \partial_t V_t(a, z)$$

where $ho = ilde{
ho} - (1-\gamma)g$

- 2. Borrowing constraint $a \ge 0$: $\partial_a V_t ((0, z) \ge [z \tau_t (z)]^{-\gamma}$
- 3. Boundedness condition: $\lim_{t\to\infty} \mathbb{E}\left[e^{-\rho t}V_t(a_{jt}, z_{jt})\right] = q0.$

is a solution to the original household sequence problem

- Consumption policy function: $c_t(a, z) = [\partial_a V_t(a, z)]^{-\frac{1}{\gamma}}$
- Kolmogorov Forward Equation (KFE) for evolution of household distribution:

$$\partial_t g_t(a,z) = -\partial_a \left[g_t(a,z)(r_t a + z - \tau_t(z) - c_t(a,z)) \right] - g_t(a,z) \sum_{z' \neq z} \lambda_{z'z} + \sum_{z' \neq z} \lambda_{z'z} g_t(a,z').$$

back to household problem

Representative Agent Bonds-In-Utility Economy

• Representative agent economy with

$$u(c, a) = \frac{c^{1-\gamma} - 1}{1-\gamma} + \zeta \log(a)$$

• Euler equation:

CHICAGO

$$\frac{1}{c_t}\frac{d}{dt}c_t = \frac{1}{\gamma}\left(r_t^g - \rho + \zeta \frac{c_t^{-\gamma}}{a_t}\right)$$

combine with market clearing condition

$$c_{t} = 1$$

 \Rightarrow relationship between real assets and interest rate holds $\forall t$, in and out of steady-state

$$r_t^g =
ho - rac{\zeta}{a_t} \quad \Rightarrow \mathbf{a}^{BIU}(r_t^g)$$

• $\mathbf{a}^{BIU}(r_t^g)$ qualitatively similar to HA economy but simple to study out of steady-state dynamics

Dynamics in RA-BIU Economy: Surpluses

- Economy always on $\mathbf{a}^{BIU}(r_t^g)$: one explosive eigenvalue
- $b_0 = b^{BIU}$ is unique value of initial real debt consistent with equilibrium
- Any other b_0 ruled out by eventual violation of transversality condition or borrowing constraint

Dynamics in RA-BIU Economy: Surpluses

- FTPL: B_0 given \Rightarrow initial price level P_0 is uniquely pinned down as $P_0 = \frac{B_0}{b_0}$
- Subsequent inflation pinned down by monetary policy as $\pi = i^* r^g g$
- Real debt constant: B_t , P_t grow at rate π

Dynamics in RA-BIU Economy: Deficits

- Economy always on $\mathbf{a}^{BIU}(r)$: can determine dynamics from $\mathbf{a}^{BIU}(r) \mathbf{b}(r)$
- High real rate, low inflation steady-state (b_{HIGH}^*, r_{HIGH}^*) : locally unstable
- Low real rate, high inflation steady-state (b_{LOW}^*, r_{LOW}^*) : locally stable CHICAGO

Dynamics in RA-BIU Economy: Deficits

- Price level and inflation not uniquely determined without additional assumptions
- Any real debt $b_0 \leq b^*_{HIGH}$ consistent with equilibrium

• Price level bounded below:
$$P_0 \geq \frac{B_0}{b_{HIGH}^*}$$

Useful Characterization of Equilibrium Real Rate

• Add up Euler equations across household and impose market clearing:

$$0 = \underbrace{\frac{\mathcal{C}_{t}^{u}}{\gamma}(r_{t} - \rho)}_{\text{intertemporal motive}} + \underbrace{\frac{\mathcal{C}_{t}^{u}}{\gamma}\tilde{\mathbb{E}}_{t}^{u}\left[\sum_{z'}\lambda_{z_{j}z'}\left(\frac{c\left(\omega_{j}, z', \Omega_{t}\right)}{c_{jt}}\right)^{-\gamma}\right]}_{\text{precautionary motive}} + \underbrace{\mathbb{E}_{t}\left[\sum_{z'}\lambda_{z_{j}z'}\left\{c(\omega_{j}, z', \Omega_{t}) - c_{jt}\right\}\right]}_{\text{endowment shocks}}$$

where C_t^u is aggregate consumption of non-constrained households

- Equilibrium real rate balances three source of consumption dynamics
- Implicitly define a time-invariant relationship between Ω_t and real rate that holds in equilibrium

$$r_t = \mathbf{r} \left[\Omega_t \right]$$

▶ saddle path stability details) ▶ back to summary

Local Saddle-Path Stability

• Dynamics of aggregate state Ω_t making use of real rate functional **r** [Ω_t], PDE system:

$$\partial_t f_t(\omega, z) = -\partial_\omega \left[f_t(\omega, z) \frac{1}{b_t} \left\{ z - \tau^*(z) - c(\omega b_t, z, \Omega_t) + s^* \omega \right\} \right]$$
$$-f_t(\omega, z) \sum_{z' \neq z} \lambda_{zz'} + \sum_{z' \neq z} \lambda_{z'z} f_t(\omega, z')$$
$$\frac{db_t}{dt} = \mathbf{r} [\Omega_t] b_t - s^*$$

• To make progress: characterize local stability of discretized system around steady-state

real rate functional

Dynamics of Discretized Economy

• Discretized approximation of $f_t(\omega, z)$: $N \times 1$ vector f_t , $N = N_\omega \times N_z$

Dynamics of Discretized Economy

- Discretized approximation of $f_t(\omega, z)$: $N \times 1$ vector f_t , $N = N_\omega \times N_z$
- Dynamics of discretized state (f_t, b_t) is ODE system:

$$\frac{d\mathfrak{f}}{dt} = \mathbf{A}_{\omega} [\mathfrak{f}_t, b_t]^T \mathfrak{f}_t + \mathbf{A}_z^T \mathfrak{f}_t$$
$$\frac{db}{dt} = \mathbf{r} [\mathfrak{f}_t, b_t] b_t - s^*$$

- Matrices $\mathbf{A}_{\omega} [\mathbf{f}_t, b_t]^T$ and \mathbf{A}_z^T : finite difference approximations to linear operators in KFE
- Dependence on $[f_t, b_t]$: (i) rescaling of wealth, (ii) general equilibrium effects through optimal consumption

Local Saddle Path Stability

• Linearized system:

$$\begin{pmatrix} \frac{d\mathbf{f}}{dt} \\ \frac{d\mathbf{b}}{dt} \end{pmatrix} \approx \begin{pmatrix} \mathbf{A}_{\omega}^{T} \left[\mathbf{f}^{*}, b^{*} \right] + \mathbf{A}_{z}^{T} & \nabla_{b} \mathbf{A}_{\omega}^{T} \left[\mathbf{f}^{*}, b^{*} \right] \\ 0 & b^{*} \left\{ \partial_{b} \mathbf{r} \left[\mathbf{f}^{*}, b^{*} \right] - \left(-\frac{r^{*}}{b^{*}} \right) \right\} \end{pmatrix} \begin{pmatrix} \mathbf{f}_{t} - \mathbf{f}^{*} \\ b_{t} - b^{*} \end{pmatrix}$$

where $\nabla_b \mathbf{A}_{\omega}^T [\mathbf{f}^*, b^*]$ is the $N_{\omega} \times 1$ vector of derivatives with respect to b

Local Saddle Path Stability

• Linearized system:

CHICAGO

$$\begin{pmatrix} \frac{d\mathbf{f}}{dt} \\ \frac{d\mathbf{f}}{dt} \end{pmatrix} \approx \begin{pmatrix} \mathbf{A}_{\omega}^{T} \left[\mathbf{f}^{*}, b^{*} \right] + \mathbf{A}_{z}^{T} & \nabla_{b} \mathbf{A}_{\omega}^{T} \left[\mathbf{f}^{*}, b^{*} \right] \\ 0 & b^{*} \left\{ \partial_{b} \mathbf{r} \left[\mathbf{f}^{*}, b^{*} \right] - \left(-\frac{r^{*}}{b^{*}} \right) \right\} \end{pmatrix} \begin{pmatrix} \mathbf{f}_{t} - \mathbf{f}^{*} \\ b_{t} - b^{*} \end{pmatrix}$$

where $\nabla_b \mathbf{A}_{\omega}^T$ [f*, b*] is the $N_{\omega} \times 1$ vector of derivatives with respect to b

- Bottom left block: small effect of Δf on interest rate given government debt *b* Example: *c* approximately linear
- Local saddle path stability requires:
 - Aggregate real debt b_t : jump variable $\Rightarrow 1$ positive eigenvalue
 - Share distribution f_t : backward-looking $\Rightarrow \begin{cases} N-1 & \text{negative eigenvalues} \\ 1 & \text{zero eigenvalue} \end{cases}$

Eigenvalues of Linearized System

$$\begin{pmatrix} \frac{dp}{dt} \\ \frac{db}{dt} \end{pmatrix} \approx \begin{pmatrix} \mathbf{A}_{\omega}^{T} \left[\mathbf{f}^{*}, b^{*} \right] + \mathbf{A}_{z}^{T} & \nabla_{b} \mathbf{A}_{\omega}^{T} \left[\mathbf{f}^{*}, b^{*} \right] \\ 0 & b^{*} \left\{ \partial_{b} \mathbf{r} \left[\mathbf{f}^{*}, b^{*} \right] - \left(-\frac{r^{*}}{b^{*}} \right) \right\} \end{pmatrix} \begin{pmatrix} \mathbf{f}_{t} - \mathbf{f}^{*} \\ b_{t} - b^{*} \end{pmatrix}$$

- Local dynamics of individual wealth shares:
 - $\mathbf{A}_{\omega}^{T} + \mathbf{A}_{z}^{T}$: irreducible transition rate matrix
 - $\Rightarrow N 1$ negative eigenvalues, 1 zero eigenvalue
- Local dynamics of real government debt: sign determined by relative slopes of:
 - $\partial_b \mathbf{r} [f^*, b^*] > 0$: slope of inverse steady-state household asset demand
 - $\left(-\frac{r^*}{b^*}\right)$: slope of inverse stationary govt budget constraint

 \Rightarrow 1 positive eigenvalue since positive surpluses imply $r^* > 0$

Permanent Surplus Reduction: Representative Agent

• Representative Agent: jump in price level, no change in inflation or real rate

• Price jump:
$$\frac{P'_0}{P_0} = \frac{b^{RA}}{b^{RA'}}$$
, Inflation: $\pi^{RA'} = \pi^{RA}$

Permanent Surplus Reduction: Heterogeneous Agents

- Heterogeneous Agents: jump in price level, followed by falling real rate, rising inflation
- Details of surplus reduction or deficit expansion mattter

Deficit Reacts to Real Debt: $s_t = s^* + \phi_b (b_t - b^*)$

- Unique real steady-state and saddle-path dynamics if: $\phi_b < r^* < 0$
- When debt falls below b^* , must cut deficits aggressively enough CHICAGO

Deficit Reacts to Real Rate: $s_t = s^* + \phi_r (r_t - r^*)$

- Unique steady-state and saddle-path dynamics if: $\phi_r < \frac{s^*}{r^* a(0)} < 0$
- When real rate falls below r^* , must cut deficits aggressively enough CHICAGO 38

Deficit Reacts to Interest Payments

• Fiscal rule:

$$s_t = s^* + \phi_s \left(r_t b_t - s^* \right)$$

Baseline constant surplus policy is $\phi_s = 0$

- Active fiscal rules $\phi_s < 1$: qualitatively same as constant surplus policy
- Passive fiscal rules $\phi_s > 1$:, still multiplicity, but stability properties are reversed
 - b_H^* : locally stable
 - b_L^* : locally saddle path
- With interest payment rules, modifications required for price level determination

Inelastic Foreign Demand for Domestic Debt

• Fixed quantity of real debt demanded by foreigners: $\mathbf{d}(r) = b^{f}$

CHICAGO

• Shift asset demand curve to right, eliminating low r stable steady state

Interest Elastic Foreign Demand for Domestic Debt

• Foreign sector: representative household with bonds-in-utility preferences

$$u(c, b) = \frac{c^{1-\gamma} - 1}{1-\gamma} + \zeta \frac{b^{1-\theta} - 1}{1-\theta}$$

• Steady state demand function for domestic debt

$$\mathbf{d}\left(r\right) = \frac{\rho^{f} - r}{\tilde{\zeta}}^{-\frac{1}{\theta}}$$

• Require interest elasticity of foreign demand to be low: $\theta > 1$

◀ back

Interest Elastic Foreign Demand

Long-Run Inflation Anchoring

- Two pillars of modern central bank policy:
 - Long-run inflation target π^*
 - Interest rate rule with long-run nominal rate anchor i*

• IF:

- 1. Fiscal policy: active interest payments reaction rule, e.g. $s_t = s^*$ or $\phi_s < 1$
- 2. Monetary policy: set (i^*, π^*) consistent with low inflation, high real rate steady state:

$$i^* - \pi^* = r_H^*$$

3. Credibility: central bank successfully coordinates private sector beliefs about long run

THEN:

CHICAGO

Real equilibrium is unique and price level and inflation dynamics pinned down at all t

Calibration

Parameter	Value	Target
Preferences		
γ Inverse EIS	1	
ho Discount rate (annual)	0.028	debt-to-annual GDP ratio of 1.10
Income Process		
$\overline{\lambda}$ Arrival rate of earnings shocks	1.0 p.a.	
σ^2 St. Dev. of guarterly earnings shocks	1.2	
g Real output growth	2.0% p.a.	average US growth 2001-2021
Tax and Transfers: $\tau(z) = \tau_0 - \tau_1 * z$		
τ_1 proportional tax rate	30%	US average
τ_0 lump sum transfer	33.3% of GDP	deficit: $s^* = -3.3\%$
Government Debt		
b* Govt debt to GDP ratio	110 %	$1.1 \times \text{annual GDP}$
δ Maturity rate of govt debt	20% p.a.	average duration of 5 years
Borrowing		
a borrowing limit	\$15,000	70% of quarterly hh earnings
$r^{b} - r$ borrowing wedge	16% p.a.	Av. rate on unsecured credit card debt
Monetary Policy		
<i>i</i> * Nominal rate	1.5%p.a.	average rate pre-pandemic

✓ back

Calibrated Steady States

• Deficits: 3.3% of GDP same in both steady states

- High Steady state: $b_{H}^{*} = 110\% \times \text{GDP}, r_{H}^{*} = -1\%, \pi_{H}^{*} = 2.5\%$
- Low Steady state: $b_L^* = 17.5\% \times \text{GDP}, r_L^* = -18\%, \pi_L^* = 19.5\%$

✓ back

Wealth Distribution and MPC

CHICAGO

	Data	Model
Mean liquid wealth (\$, 000)	116	100
Share with $a < \$0$	21%	13%
Frac. with <i>a</i> < \$1,000	37%	27%
Mean quarterly MPC		13%

✓ back

Maximum Sustainable Deficit

- How deficit is expanded matters
 - Decrease in proportional tax widens disposable income risk: $\mathbf{a}(r)$ shifts out
 - Increase in lump-sum transfers shrinks income risk: $\mathbf{a}(r)$ shifts in
- Weaker precautionary saving motive \Rightarrow smaller max sustainable deficit
 - Raise lump transfer τ_0 from $\tau_1 = 0.3$: 4.6% × GDP (1.4 × baseline)
 - Raise lump transfer τ_0 from $\tau_1 = 0$: 9.5% × GDP (2.9 × baseline)
- · Policy implication: redistribution and social insuraance reduces future "fiscal space"

Real Deficit Expansion

- Permanently lower real rate: secular stagnation
- No change in long-run nominal rate target $i^* \rightarrow$ permanently higher $\pi *$

Deficit Expansion: Secular Stagnation Comparative Statics

- Some existing explanations for persistent low real rates:
 - 1. Rise in income inequality
 - 2. Rise in uninsurable risk
 - 3. Tightening of credit limits post financial crisis
- With surpluses: they all lead to a decline in *r*
- With deficits: comparative statics is reversed!
- Since real debt expands, given constant deficits, (negative) r must rise

Real Deficit Expansion: Taxes vs Transfers

- Increase in primary deficits from 3.3% to 4.0% of GDP
- Bigger effects from increase in lump-sum transfer

Real Deficit Expansion: Endogenous Labor Supply

- Output falls because lower savings and lower interest lead to worse allocation of hours
- · Labor supply and output fall less with tax rate decrease because of work incentive effect

Targeted Fiscal Helicopter Drop

- Nominal transfer of 16% of outstanding debt, 18% of steady-state annual GDP
- Two cases: (i) untargeted, (ii) targeted to bottom half of wealth distribution

Targeted Fiscal Helicopter Drop

- Nominal transfer of 16% of outstanding debt, 18% of steady-state annual GDP
- Two cases: (i) untargeted, (ii) targeted to bottom half of wealth distribution

✓ back

Fiscal Helicopter Drop

THE UNIVERSITY OF CHICAGO

Ð

- Redistribution towards high MPC households: $r \uparrow \Rightarrow$ lower future π_t , larger increase in P_0
- Larger cumulative price increase in HA economy than RA economy

Fiscal Helicopter Drop: Fiscal Rules

· Fiscal rules that deliver uniqueness have small effect on IRF

Fiscal Helicopter Drop: Monetary Rules

• Loosening of monetary policy alongside fiscal helicopter drop: bigger increase in price level

Kaplan, Nikolakoudis and Violante (2023)

One Time Wealth Tax

• One time wealth taxes levied on top 10%, redistributed lump-sum to bottom 40%

Consumption Decomposition

Aggregate Consumption

Impact Effect by Wealth

• Direct effect of helicopter drop: raises c

CHICAGO

- Indirect effect of higher price level: lowers c
- Indirect effect of higher interest rates: initially lowers but then raises c

▲ back

Summary

✓ back