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Abstract

The zero lower bound on interest rates has prompted policymakers to consider raising their inflation

target to regain policy room. We show that the gains generated by this strategy are not one-to-one:

Because a higher inflation target leads to a steeper Phillips curve, to effectively get, for instance, 2

percentage points of extra room, policymakers need to raise their inflation target from 2% to 5%. In

fact, raising the target from 2% to 4% delivers an effective extra room significantly smaller than 2

percentage points. Taking this mechanism into consideration delivers an optimal inflation target 1

percentage point higher than the optimal target obtained by conventional, earlier, calculations.
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1 Introduction

The threat of repeated liquidity traps is a serious macroeconomic challenge for developed

economies. Even though the post-pandemic recovery has been strong, structural factors, such

as demographic change and excess global demand for safe assets, suggest that future liquidity

traps may remain a systematic threat in the medium to longer term. Liquidity traps are a major

problem because the ensuing zero lower bound (ZLB) of the nominal interest rate leaves central

banks without their key instrument to fight recessions. A prominent proposal to remedy such

a situation has been to increase the inflation target, thereby raising the level of the nominal

interest rate and creating more room to lower interest rates again when needed.1 In short, the

proposal is to move the economy away from the ZLB.2

The current global rise in inflation conveniently puts this strategy on the table at no extra

cost, given that it presents an opportunity for policymakers to settle for a higher target going

forward without having to get there first. But, as we argue in this paper, such a strategy comes

attached with a particular constraint for the policymaker. This constraint severely hampers the

usefulness of this strategy, or has even the potential to undo it completely. The constraint is

rooted in the response of the private sector – an increase in the inflation target constitutes a

significant policy change, and firms will respond to it. In particular, firms will adjust prices more

frequently with higher trend inflation. This plausible channel was first considered in a classic

paper by Ball, Mankiw, and Romer (1988).3 Empirically, there is indeed a clear relationship

between the frequency of price changes and trend inflation over the 1970–2015 period, as we

show in this paper.

This theoretical mechanism, which arises as a result of increased price flexibility under a

higher inflation target, is straightforward: The slope of the Phillips Curve steepens and the

potency of monetary policy decreases. Therefore, a central bank is forced to lower the policy

rate by more in recessions to counteract a given demand shock. Hence, a central bank will push

the rate closer to the ZLB than it would do under constant price flexibility. Part of the extra

room gained by raising the target is lost due to the way the private sector adapts to the new

environment: the effective extra room is smaller that the intended extra room.4

By the nature of this mechanism, our paper mainly focuses on the positive aspects of the

1Throughout the paper, “policy room” refers to the percentage point difference between the steady-state nominal interest
rate and zero.

2See, for instance, the discussions in Blanchard, Dell’Ariccia, and Mauro (2010), Mishkin (2018), and Cechetti and Schoen-
holtz (2017). These authors differ with respect to their preferred solution. For small open economies, Svensson has suggested
an alternative way to escape liquidity traps through the exchange rate, which in the later stage also includes inflation target-
ing (Svensson 2003; Jeanne and Svensson 2007).

3See also Romer (1990).
4To be clear, our point is about the behavior of the nominal interest rate away from the ZLB. A different implication of

increased price flexibility is that, at the ZLB, the real interest rate is more affected by deflationary spirals (Eggertsson and
Woodford 2003; Werning 2012). Whereas this latter point has important implications for our calculations of the optimal
inflation target, it is not our focus of attention in this paper.
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constraint faced by a central bank attempting to gain more policy room away from the ZLB.

Given the immediate policy implications of our focus, we start off by analyzing the increased

price flexibility channel in a 3-equation New Keynesian (NK) model. This allows us to derive

a set of simple theoretical results that highlight how increased price flexibility interacts with a

higher target to deliver a gap between intended and effective policy rooms. For example, our

analysis allows us to derive a formal result showing how a monetary authority can raise the

inflation target without losing policy room. It also allows us to understand the role of optimal

monetary policy in our context. We then calibrate a set of benchmark quantitative models,

matching the observed relation in the data between the inflation target and the frequency of

price adjustment. There, we use both a NK model and a model with state-dependent price

stickiness. A methodological contribution of our work in this context is to discipline the extent

of increased price flexibility using the micro data put together by Nakamura, Steinsson, Sun,

and Villar (2018). The relevant question answered with these calibrated models is about the

strength of these theoretical effects in practice.

We find that the variation of the degree of price stickiness observed in the U.S. micro data

since the 1970s has quantitatively relevant, powerful implications for the assessed potency of

monetary policy and the implied loss of monetary policy room with higher targets. Using a

modern medium-scale DSGE model (Coibion, Gorodnichenko, and Wieland 2012), our first

illustrative exercise is the following: Suppose the inflation target in the U.S. were to be raised,

from the average rate of inflation prevailing in the last few decades (2.25%) to the observed

average inflation rate during the late 1970s (6.73%). Given the available micro price data

produced by Nakamura, Steinsson, Sun, and Villar (2018), we can compute the average frequency

of price changes during this period and calibrate our model to match these data to gauge the

corresponding potency of monetary policy, and resulting extra room. We find that raising the

target to 6.73% would only generate 3.32 percentage points (pp.) of effective extra room, whereas

the intended room would be 4.48 pp. Hence, the monetary authority would only gain 74% of

room in effective terms. The conclusion is that the higher price flexibility observed in the 1970s

has quantitatively relevant implications for the potency of monetary policy, and for the gap

between effective and intended extra room.

We extend our key result in two ways. First, we look across a range of models, calibrated

to match the observed statistical relation between the target and price flexibility. Second, in an

effort to better capture this relation, we assume a functional form linking the Calvo parameter

to the inflation target and estimate it. We use several sources to measure the inflation target,

including Cogley and Sbordone (2008) and Fuhrer and Olivei (2017). We find a strong, positive

relationship between the probability of price adjustment and trend inflation during the 1970-2015

period. The economic magnitude is large: Our most conservative estimate indicates that a 1%

increase in the inflation target is associated with an increase in the average monthly frequency
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of price changes in a given year by 0.98%. According to our estimates, when trend inflation is

2%, the quarterly Calvo parameter is 0.74; when 4%, the parameter falls to 0.70 and when 6%,

it falls to 0.65 (price flexibility increases). As in our illustrative exercise, we use the model by

Coibion, Gorodnichenko, and Wieland (2012) and match this observed relation. We find that an

hypothetical increase in the target from 2% to 4%, as proposed by Blanchard, Dell’Ariccia, and

Mauro (2010), generates an effective extra room of 1.54 pp. Only 76.5% is the intended extra

room is achieved. Furthermore, in order to get 2 pp. of effective extra room, the target needs to

be raised by significantly more than 4%. We also consider a menu cost model a la Dotsey, King,

and Wolman (1999) in which the degree to which price stickiness varies with trend inflation is

now disciplined by the model, and the model is calibrated to match the data. We confirm in all

exercises that our mechanism is strong and quantitatively relevant. The magnitude of the effect

is similar to that in the illustrative exercises above.

What is the intuition behind the large quantitative effect of increased price flexibility for the

effective extra room we have obtained? Our theoretical analysis provides intuition. We derive

an explicit formula for the effective extra room. This formula provides the quantitative insight

that, unless the observed increase in the frequency of price changes is exactly zero, one should

expect the fall in potency effect to be quantitatively relevant for the computation of the extra

room. This is because the combination of shocks that drive the economy to the ZLB has a large

total effect, generating large effects even for small changes in the frequency of price adjustment.

The results of the analysis are robust in several important dimensions. First, they are robust

to parameter uncertainty which we explore for the Coibion et al. (2012) model. How large

the loss in potency effect is, is somewhat sensitive—not surprisingly—to model parameters.

However, as we consider an empirically relevant joint distribution of the main model parameters,

our channel remains always highly relevant quantitatively. We assess the empirical relevance by

generating 10000 draws from the joint parameter distribution estimated in the Smets-Wouters

model. Then, we compute the effective extra room in our main model for each draw, going from

2% to 4% steady state inflation. Our median estimate for effective extra room is 1.416 pp., with

a mean of 1.418 pp. The 25th and 75th percentile of the distribution are 1.371 pp. and 1.430

pp. Clearly, for a wide set of empirically relevant model parameters, the policy-maker is not

able to achieve his or her intended extra room of 2 pp.

Second, we find that the empirical relationship between the frequency of price adjustment

and inflation is robustly positive and stable also in non-U.S. data, specifically Argentine data.

In our regressions for the U.S., we find that, roughly, the frequency increases by approximately

1 pp. when the target increases by 1 pp. Using the Argentine data of Alvarez et al. (2019),

in a range of inflation that is comparable to the U.S. range, we estimate a slope coefficient

comparable to the one obtained for the U.S.: The frequency increases by approximately 1 pp.

when the target increases by 1pp. Interestingly, the associated semi-elasticity of the frequency
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of price adjustment to inflation at 0% inflation, is also non-zero, equal to 4% (rectifying the

0.04% reported in the influential paper of Alvarez et al. (2019), as we discuss as part of Section

2.4).

Third, the specification of the monetary policy reaction function is of independent theoretical

and policy interest. We investigate variations of the monetary policy rule and find that its

specification is crucial. A rule in which inflation deviations from target are strongly penalized

by the monetary authority alleviates the concerns raised by the loss of monetary policy potency.

Also, if the rule puts a high weight on the output gap, for instance, then monetary policy potency

is not a major concern, either.

Our analysis does not only provide positive insights about monetary policy room, but also

normative insights. This holds specifically for the optimal inflation target in the presence of

the ZLB. Seminal contributions on this topic are by Billi (2011) and Coibion, Gorodnichenko,

and Wieland (2012). Complementary to their work, we analyze what happens if the ZLB is a

chronic threat due to a low level of the natural rate of interest. Specifically, we combine a low

natural rate with our empirically motivated relation between trend inflation and the frequency

of price adjustment. Our main finding is that the optimal target is approximately 1 pp. higher

in a low natural rate environment, such as the one prevalent in the last decade, due to the loss

in potency. The intuition is the following: With more flexible prices and a lower potency, the

nominal interest rate is more volatile. As a result, it falls by more in the presence of negative

demand shocks. This provides a motivation for raising the inflation target by more, even though

this may increase the welfare costs of inflation.5 Our exercise quantifies this tradeoff. The key to

this result is the interaction between a low natural rate and the loss of monetary policy potency.

An important closely related paper by Hazell et al. (2022) estimates the slope of the Phillips

curve using U.S. state-level data. Because their data set goes back to 1978, this allows the

authors to evaluate the extent of the flattening of the curve. Importantly, these authors take

into consideration that average inflation expectations have declined over time. The finding of

the paper is that the Phillips curve is not only flat in recent years, but it appears to have been

quite flat also in the early 1980s. This finding suggests that the flattening of the Phillips curve

(if any) has been moderate (the main estimate by Hazell et al. 2022 suggests that the slope

has decreased roughly by half.) As we discuss in detail in the body of our paper,6 a modest

flattening of the Phillips curve does not render our insights invalid. The simple reason for this is

that we address a combination of negative shocks that have sizable effects on the economy (or a

single, large, shock), which end up magnifying even small differences in the slope of the Phillips

5The literature has recently considered a different approach to generating a positive and sizable optimal inflation target in
NK models. Indeed, Adam and Weber (2019) generate an optimal inflation target between 1 and 3 percent in an environment
that is free of welfare costs related to the ZLB. Their argument relies on differences in firm trend productivities. More recently,
see also Adam and Weber (2022) and Adam, Gautier, Santoro, and Weber (2022). As a result of these different modeling
mechanisms, our analysis is complementary to this approach focused on productivity trends.

6See page 23, and page 29.
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curve. Also, the moderate flattening pointed out by Hazell et al. (2022) is consistent with the

micro data evidence on the frequency of price adjustment that we use in our calibrations.

In related work, Bhattarai, Eggertsson, and Schoenle (2018) study the effects of increased

price flexibility on output, inflation and welfare within the New Keynesian model. While their

analysis explores the intricate implications of increased price flexibility on those variables, our

focus lies on exploring the implications for the interest rate and monetary policy room when

the inflation target changes and flexibility as a derivative result. Our relative contribution also

lies in considering the optimal inflation target. Related work with endogenous contract duration

includes Kiley (2000) and Levin and Yun (2007). There, firms choose the duration of contracts

as a function of the environment. In our paper, we discipline the contract duration empirically

using the newly available data by Nakamura and Steinsson (2008), and also consider a menu

cost framework (where the degree of price stickiness is also endogenous).

The paper is organized as follows. Section 2 presents the empirical evidence given support

to the conclusion that a higher target increases price flexibility. Section 3 presents the simple

analytical model to transparently show the mechanisms at play in our analysis. Section 4

quantifies these mechanisms in several ways, with the goal of measuring the effective gains in

monetary policy room achieved by raising the target. Section 5 looks at the implications of our

mechanism for the optimal inflation target. We then present a few conclusions in Section 6. The

Appendix presents all tables and figures, and the Online Appendix presents extra tables and

figures, complementary exercises and robustness checks.

2 Empirical Evidence: Inflation Target and the Degree

of Price Stickiness

This section presents new empirical evidence establishing a relation between the inflation target

and the degree of price stickiness. Our analysis is comprehensive by presenting four different,

complementary exercises. Taken jointly, these constitute evidence of a strong, positive relation-

ship between these two variables.

Specifically, we build up towards our result by first looking at the relation between the

frequency of price adjustment in the micro data and inflation, rather than the inflation target.

Second, we establish the empirical relation between the frequency of price adjustment and the

inflation target. This main exercise consists of exploring the role of inflation targets by relying

on four different measures produced by other researchers. This set includes the highly cited

measure by Cogley and Sbordone (2008). This is the evidence that our calibration in Section

4 will target. Third, we also consider the relationship between the frequency and inflation in

other data sets. Fourth, we consider structural estimation of a medium-scale DSGE model over

subsamples. Finally, as summarized in the online appendix, we complement this analysis by
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looking at other high-frequency estimates of the inflation target and the probability of price

adjustment (the Calvo parameter) in the literature.

2.1 Data Description

Our data set encompasses a variety of microeconomic and aggregate data. We focus on U.S.

data covering the 1970s, a period in U.S. history with significantly higher inflation.

First, we include into the analysis a new micro-data set on U.S. consumer prices from the

Bureau of Labor Statistics (BLS). These data have recently become available through the work

of Nakamura, Steinsson, Sun, and Villar (2018) and extend back to 1978, including the peak of

inflation at approximately 12% per year. Previous to the work of Nakamura, Steinsson, Sun, and

Villar (2018), the BLS CPI Research Database contained data starting in 1988. The existence

and availability of data going back to 1978 is a remarkable achievement through the digitization

of old microfilm scanners that cannot be read with modern scanners. For more details of the

process, please refer to their paper. Nakamura, Steinsson, Sun, and Villar (2018) have generously

shared with us a series of the annual average of the frequency of price changes (Figure 14 in

their paper). The series is annual, spanning 1978–2014.

Second, we rely on four measures of the inflation target developed by other researchers.

These are obtained using several approaches based either on VARs, structural estimation, or

Kalman filtering. Specifically, we include the estimates that Cogley and Sbordone (2008) obtain

from a two-step VAR procedure and present in their Figure 1. We also use two model-based

estimates: the inflation target series underlying Figure 4 in Ireland (2007), and the inflation

target series underlying Figure 1 in Milani (2019). Finally, we borrow the inflation target series

underlying Figure 3 in Fuhrer and Olivei (2017). This series is obtained using a rich state-space

representation of the target. It includes variables such as estimates of potential growth and the

natural rate of unemployment from the Federal Reserve’s Greenbook and Tealbook, along with

survey and market inflation expectations, among others. In terms of data availability, all of our

inflation target series stop right before the Great Recession (this includes the series by Milani

2019 and Fuhrer and Olivei 2017.)7

Third, we also include several aggregate time series. We use the implicit GDP deflator from

the Bureau of Economic Analysis as our measure of inflation (Series ID GDPDEF). We also

include the other series typically used in DSGE estimation: GDP, consumption, investment,

employment (measured in hours), wage inflation, and the Fed Funds rate (same series IDs as

Smets and Wouters 2007).

7Another piece of work providing data-rich measures of the Federal Reserve’s inflation goals is by Amstad, Potter, and Rich
(2017). Unfortunately, we could not use it since it starts in 1994, and therefore it is too short to assess longer term changes
in the target.

7



2.2 A First Pass: Evidence Based on Micro Data

The first exercise we present is very simple. It exploits the regime change in monetary policy

after the high inflation of the 1970s and the subsequent appointment of Paul Volcker at the

Federal Reserve. We interpret this change of regime as the shift from a ‘high’ to a ‘low’ inflation

target.8 To this end, and following this distinction, we divide the aggregate inflation series

and the frequency of price changes series into two plausible sub-samples: a high trend inflation

sub-sample (1978-1984) and a low trend inflation sub-sample (1985-2014).9

We use the inflation series to measure the (implicit) target in each subsample by simply com-

puting average inflation.10 We then use the frequency of price changes and compute its average

over each subsample. The question is whether we observe any sizable change in the frequency of

price changes over these subsamples, which were chosen according to average inflation. Subse-

quent to this first computation, we want to see whether any difference is consistent with a lower

target being associated with a lower frequency of price changes (more sticky prices).

The answer to both questions is yes, which Figure 1 illustrates. In both panels, the solid line

captures movements of inflation (left axes); the dashed line captures movements of the frequency

of price changes (right axes). In the right panel inflation is measured by the GDP deflator; in

the left panel, it is measured by the CPI. We focus the following description on the right panel

since the left panel presents a very similar picture. An initial observation is that the frequency

of price changes series shows large volatility, peaking at 17.31% in 1980, and with the lowest

observation in 2002 at 7.78%. These numbers imply a change in the duration of price spells of

approximately 6 months to 13 months.11

The flat horizontal lines show the average of each series over the subsamples. Clearly, both

series are lower in the second subsample. The difference, for both, is economically significant:

average inflation drops from 6.73% to 2.25%; the frequency of price changes drops from 13.32%

to 10.08%. Thus, prices change on average approximately every 7 months and a half in the

first sample, and every 10 months in the second subsample. Interpreting average inflation as a

measure of the target, this figure provides support to the view that a lower target is associated

with a lower frequency of price changes. Moreover, under the assumption that the relation

is linear—an assumption not crucial for our analysis but useful for illustrative purposes—the

8Actually, early on, the Federal Reserve did not have an explicit inflation target, so we interpret these as “implicit” targets.
A similar interpretation is the shift from a regime in which long-term inflation was not explicitly targeted and was allowed
to move freely at high levels (anything between, say, 2% and 10%), to a regime in which inflation was pinned down by a low
target (around 2%).

9Later we will also exploit the full variation in our data set to look at the link between the target and the frequency of
price changes.

10For brevity, we shall use the term “target” instead of “implicit target” throughout the paper. See Svensson (2010) for a
comprehensive history of inflation targeting.

11Wulfsberg (2016) documents a similar decline in the mean (median) frequency of price changes from 17.9 (12.8) percent
during high inflation in Norway to 12.1 (8.3) percent during low inflation with a concurrent decline in observed inflation rates.
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observed change implies an elasticity of frequency to target of 0.72.12

2.3 Evidence on the Relation Between the Frequency and the Target

In order to exploit all the time-variation in the micro data, we next regress the frequency of

price changes on measures of the inflation target. We find an economically and statistically

significant, as well as robust relation between the two variables.

As explained above in the data section, we have constructed a data set that joins 4 different

measures of the target produced by other researchers. Our analysis shows that our 4 series for the

inflation target share key dynamics. They are highly correlated with one another with a cross-

correlation coefficient of 0.70-0.90, with the exception of the series of Fuhrer and Olivei (2017)

which shows a positive but more moderate cross-correlation with the other series of 0.17-0.43.

Aside from such commonality, a few noticeable differences emerge from the different measures of

the target. For instance, it is clear that the two most volatile measures are the model-based ones

(by Ireland 2007 and Milani 2019). The two reduced-form measures (by Cogley and Sbordone

2008 and Fuhrer and Olivei 2017) show less volatility. According to these measures, the target

or inflation goal rose to between 5% to 7% in the 1970s. The Cogley and Sbordone (2008)

measure is the least volatile and slightly anticipates the Volcker disinflation, whereas the Fuhrer

and Olivei (2017) measure turns around precisely in 1979. Figure 2 illustrates these findings

while Figure 8 in the online appendix scatter plots the remarkable positive relationship between

the frequency of price changes and the different measures of the inflation target.

As our main step, we estimate the following specification:

ft = β0 + β1πt + εt (1)

where ft is the average monthly frequency of price changes in a given year in percentages, and

πt the annualized inflation target, also in percentages. We estimate this specification separately

for each of the four inflation target series. Table 1 summarizes the results.

We find that the frequency of price changes is statistically highly significantly, positively

associated with the target. In all four specifications, the coefficient on the target is statistically

significant at the 1% level. The magnitudes of this elasticity are economically large, and range

from 0.98 in specification (II) to 2.26 in specification (IV). Among the model-based and Kalman

filtering estimates, the median estimate is 1.04, which means that a 1% increase in the inflation

target is associated with an increase in the annual monthly average frequency of price changes by

1.04%. The average monthly frequency in the data is at 10.69%—prices change approximately

every 9 to 10 months.

One may be concerned that all these regressions are capturing is the drop in the frequency

120.72 = 13.32−10.08
6.73−2.25
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after the Volcker disinflation. This is not the case. Our results are robust to omitting the 1970s

(by estimating the above specification only for the post-1984 period.) Table 3 in the online

appendix shows the results. Now, the mean and the median estimated coefficients on the target

are both 1.10 for the model-based estimates (Specifications II and III). Including the VAR-based

specification (IV) raises the mean estimated coefficient to 1.32 (the median remains the same

at 1.10.) In all four specifications, the coefficient on the target is again statistically significant

at the 1% level. This finding gives us confidence that the arguably somewhat special period of

the 1970s does not much affect our main relationship: When the inflation target is higher, the

frequency of price changes is higher.

2.4 Related Estimates

A number of papers in the literature have considered a related relation: the relationship between

the frequency of price changes and inflation. The seminal contribution in this context is by

Cecchetti (1986), who was the first to study the frequency of price adjustment, using data on

newsstand American magazines. One of the findings of that earlier paper clearly corroborates our

hypothesis: “[...] it appears that a magazine is more likely to change its price when general price

inflation is high.” (Cecchetti (1986), pp. 257) More recent papers have confirmed this conclusion

using more comprehensive data sets, such as Nakamura and Steinsson (2008), Barros, Carvalho,

Bonomo, and Matos (2009), or Wulfsberg (2016). They all find a positive relationship between

the frequency of price changes and inflation. Important related work by Vavra (2013) and Berger

and Vavra (2018) documents variation of price flexibility over the business cycle.

While these findings are supportive and complementary to our empirical results, we still view

them as quite distinct. The main reason lies in the distinction of one of the objects we analyze:

the inflation target rather than the inflation rate. These two objects embody a major conceptual

difference. For example, this difference leads us to have no negative inflation targets in our data

while the inflation rate can be negative. Furthermore, our interest lies in quantitatively answering

a specific policy question for the U.S. This interest means that related elasticity estimates, for

example from Argentina (Alvarez et al. 2019) or Mexico (Gagnon 2009), become quantitatively

less relevant for our focus.

Nonetheless, when we consider data from Argentina, our main result also finds support also in

this context. We show this by re-estimating our exact empirical specification (1) using the data

for the frequency of price changes and the (expected) inflation rate13 from Alvarez et al. (2019).

As in their paper, we use an inflation rate cutoff of 14% and run the regression for observations

below this cutoff (which also this turns out to be the relevant range for the U.S. economy). As

Table 7 shows, we find a coefficient estimate that aligns closely with our main estimate: The

13They construct an expected inflation series based on the assumption that current inflation approximates expected future
inflation.
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slope coefficient is estimated to be 1.03 and highly statistically significantly different from 0

(first row). Since this relation is linear, this parameter measures the absolute change in the

frequency for an absolute, percentage point change, in inflation. When instead we estimate the

semi-log relation as in their paper, we back out a semi-elasticity of the frequency at 0% inflation

of 3.68%.14

To understand the numerical relation between the two estimates from the linear and semi-

elastic specifications, consider Figure 11, which illustrates the raw data from Argentina in the

relevant inflation range. One can immediately notice the key similarity and the key difference to

our Figure 8: On the one hand, the frequency of price changes increases from 0.25 to 0.27 as one

goes from 2% to 4% inflation, in line with a slope estimate of 1 in our linear specification. On

the other hand, the frequency of price changes starts off at a much high intercept in Argentina

with around 23% compared to the US with around 7%. This higher intercept means that an

estimated semi-elasticity will be lower simply because one starts off at a higher value. It can

be interpreted as evidence of larger idiosyncratic shocks in Argentina. However, the absolute

change in the frequency is comparable to what we observe in the U.S.: approximately 1 pp.

(1.03 pp. to be exact) for 1 pp.15

When one includes observations with negative inflation rates into the regression, the semi-

elasticity is even higher. Table 7 also presents this finding. Furthermore, the table presents a

regression that, as in the original codes by these authors for Argentina, uses monthly inflation.

The table shows that in all of these cases one obtains a semi-elasticity of around 4%.

Ultimately, what alternative estimates mean for the answer to our specific policy question

of interest has to be determined in a model. As we show in Appendix Section C, our results

remain quantitatively robust when we use the estimate based on data from Argentina (albeit

being somewhat diminished). While this might come as a surprise, we present further discussion

on the reasons for this in the modeling section.

2.5 Structural Estimates

To complement our evidence that the inflation target bears a significant relation with the degree

of price stickiness, we turn to structural estimation. We use structural estimation to reestablish

the earlier empirical conclusions using a different data set (because for structural estimation

we will not use the micro data, but an array of aggregate time series.) To do so, we estimate

14This figure is different from the one reported by Alvarez et al. (2019), who erroneously report an elasticity a hundred times
smaller (0.04% instead of 4%). (See code Figure_5.m in their replication package, output variable named ‘lambda_change’.)
This error does not affect their main conclusion that the relation of the frequency to inflation is much stronger at higher rates
of inflation.

15The semi-elasticity at 0% inflation is equal to (frequency(1)−frequency(0))/(frequency(0)) = (0.2379−0.2295)/0.2295 =
0.0084/.2295 = 0.0368 ≈ 4%. This number is consistent with an (absolute) slope estimate of around 1 as in our main
specification: As one increases inflation by 1 pp. from 0% to 1%, the frequency goes up by .84 pp. (The semi-elasticity
corresponds to the slope of 1.03 divided by a factor of 23, approximately.)
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a benchmark DSGE model. Two key parameters in the estimation are the (implicit) target,

denoted by π, and the probability of price adjustment in a time period or the Calvo parameter,

denoted by θ. Our empirical strategy consists of estimating these parameters (among all others

in the model) over the full sample, and the same low-target subsample as above (post-1984).

In order to make our results transparent, we use the benchmark DSGE model developed

by Smets and Wouters (2007) (henceforth SW). We proceed using Bayesian estimation. The

appendix presents the details of the procedure. We estimate a lower inflation target in the

post-1984 subsample compared to the full sample (3.33% versus 2.59%), and a higher Calvo

parameter (0.61 versus 0.71). This is a large increase in the Calvo parameter, indicating stickier

prices in the post-1984 subsample.

Our results are consistent with the results in SW for the pre-1979 versus post-1984 samples.

They also find a higher target and lower value of both Calvo parameters (prices and wages) in

the pre-1979 sample (see Table 5, p. 603).

3 Analytics Based on a 3-Equation New Keynesian Model

We now study theoretically the loss of potency of monetary policy and the implications for the

policy room within a simple model. In particular, we analyze the effect of a contractionary

shock resulting in a demand shortfall. For instance, the aggregate demand effects of the loss of

confidence following the 2008 crisis, or the impact of COVID-19 starting March 2020 embody

such a shortfall. We state several formal results characterizing this loss of potency, and study

its relation to optimal policy.

Due to the widespread familiarity with the three-equation NK model, we only briefly re-

produce the key log-linearized equations.16 The model has an output gap shock which, in this

model, can be thought as resulting from preference or TFP shocks, and a nominal interest rate

shock.

The consumption Euler equation (with log utility) is

ct = E[ct+1]− (it − E[πt+1]) + ζt (2)

where ct is the log-deviation of consumption from steady state at time t, it is the deviation of the

nominal interest rate from the its steady-state value i, πt+1 is the log-deviation of inflation at

t+ 1 from the inflation target π, E[ · ] is the expectation operator, and ζt is an i.i.d. preference

shock. This shock generates deviations of desired consumption away from its steady state c.

Thus, we name it a ‘demand’ shock. This analytical section restricts attention to i.i.d. shocks

for simplicity. It is easy to generalize our results to AR(1) shocks.

16See Woodford (2003) for a detailed exposition.
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In our setup, output yt is equal to consumption:

yt = ct

which allows us to express (2) as an IS equation in terms of the output gap at time t, xt ≡ yt−at,
where at is an i.i.d. shock to log TFP (normalized to zero in steady state). This equation is

xt = E[xt+1]− (it − E[πt+1]) + ηt

where ηt is an output-gap shock which is a linear function of ζt and at: ηt = ζt − at.
The Phillips curve is

πt = βE[πt+1] + κxt

where β is the discount factor, and κ ∈ [0,∞) is the slope of the Phillips curve. Note that κ

depends on the Calvo parameter θ because

κ =
(1− θ)(1− βθ)

θ
· 1 + (ϕ+ α)

1− α + αε

where 1−α is the elasticity of output to the labor input, ϕ denotes the Frisch elasticity of labor

supply, and ε is the elasticity of substitution between goods. At each period t, a fraction 1−θ of

firms is allowed to adjust prices. We use the assumption that firms perfectly index sticky prices

to either past inflation or the inflation target in order to get an expression of the Phillips curve

similar to the baseline case of a zero inflation target. This assumption serves only purposes of

analytical tractability, and we relax it below, in the quantitative section 4.1.

The following relation holds for the nominal interest rate in the above equation:

it = φπt + νt (3)

with φ > 1 denoting the systematic reaction of policy to inflation, and νt denoting an i.i.d.

monetary shock.17

Note that in steady state, the Fischer equation holds:

i = r + π (4)

where r is the steady-state real interest rate, and π is steady-state inflation, equal in this model

to the inflation target of the monetary authority. Thus, increasing the inflation target π amounts

to increasing i.

17For a thorough discussion of monetary policy rules and its relation to inflation targeting, see the classic contribution by
Svensson (1999).
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Throughout the paper, our baseline model will not impose the zero lower bound on interest

rates. In fact, our main exercise will consider general, “normal times” and unrestricted interest

rate dynamics where the interest rate is above the lower bound. In this context, we will consider

a negative shock that brings the rate exactly to 0 (but with the lower bound only weakly

binding).18 This setup buys us analytical and computational simplicity. It is however important

to check that our quantitative measures of the effective room away from the zero lower bound

are not meaningfully affected by the explicit presence of the bound in the model, a verification

we explicitly undertake in the quantitative section below. Also, there, in the context of a welfare

computation of the optimal inflation target, the zero lower bound is imposed since it represents

the standard ingredient to obtain a non-zero optimal target.

We define the room away from zero as the nominal interest rate in steady state i. Below, we

will define a shock that completely and exactly erodes this room, and consider different scenarios

for the target and for the degree of price flexibility.

Lemma 1 The unique solution of the model is given by

xt =
1

1 + φκ
ηt −

1

1 + φκ
νt

πt =
κ

1 + φκ
ηt −

κ

1 + φκ
νt

it =
φκ

1 + φκ
ηt +

1

1 + φκ
νt

The proof is standard via the method of undetermined coefficients.

The key departure from the canonical NK approach lies in the assumption that prices are

more flexible for a higher inflation target:

Assumption 1 The Calvo parameter θ is a decreasing function of the inflation target π:

∂θ

∂π
< 0

We justify this assumption mainly on an empirical basis, given the evidence presented earlier.

We also emphasize how easy it is to implement this assumption on the NK model—the economics

of the NK model are unaffected; the same approach goes through with a θ parameter that is

different depending on π.19

Since the slope of the Phillips curve κ is a decreasing function of θ, by Assumption 1 it is

18Conceptually, it would be similar to consider an effective lower bound, or any other chosen bound of interest. Our exercise
consists mainly in asking how sensitive is the nominal interest rate to negative output gap shocks, and what is the space (if
any) remaining before reaching any lower bound.

19Notice that we maintain (consistent with our notation) that the monetary authority chooses policy parameters once and
for all.
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straightforward to establish that κ is an increasing function of the target π:

∂κ

∂π
> 0

Thus, the higher the target, the steeper the Phillips curve, and the more inflation moves with

both shocks η and ν. On the contrary, if the target is low, the Phillips curve flattens, with

muted responses of inflation to the shocks. Of special interest for our purposes is the coefficient

of reaction of the interest rate to demand shocks ηt, which we will write as a function of κ:

g(κ) =
φκ

1 + φκ

Notice two properties of this function. First, g is an increasing function of κ, and thus an

increasing function of π. The higher the target, the more the interest rate reacts to a given

shock ηt. Second, the function g is convex in κ, which suggests that, when the Phillips curve is

fairly flat (small κ), a small change in κ can induce big differences in how much the rate reacts

to demand shocks.

It is interesting to consider what happens when prices become very flexible (θ −→ 0). Since

lim
θ→0

κ(θ) =∞

then, when prices become very flexible, the coefficient of nominal rates tends to 1 from below:

lim
θ→0

g(κ) = 1

The nominal interest rate moves one-to-one with demand shocks, that is, it moves a lot. Intu-

itively, what is driving this result is that an increase in price flexibility increases the response of

inflation, and monetary policy takes into account inflationary movements.

We formalize this point by the concept of potency of monetary policy. When potency is high

and an output gap shock hits, systematic monetary policy needs to move by small amounts to

stabilize the output gap. Instead, when potency is low and an output gap shock hits, systematic

monetary policy needs to move by large amounts to stabilize the output gap. Below, we will

analyze how potency depends on the degree of price flexibility.

To make this notion precise, the following definition is useful. The notion of potency can be

cast in terms of a measure of the impact of exogenous monetary policy shocks. When potency

is high, an unexpected monetary shock moves the output gap by a lot. When potency is low,

the output gap moves very little.

Definition 1 Consider the effect of a one-time shock ν > 0 to the nominal interest rate it.

The maximum effect possible on the output gap is −ν. Thus, the potency of monetary policy
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P ∈ [0, 1] is given by

P = −xt
ν

Following on the reasoning above, when the potency is high, it is relatively easy for the systematic

arm of monetary policy to stabilize the output gap. The main question we are after in this paper

is: how are the potency P and the monetary policy room related?

A few straightforward facts about the potency P are worth noticing. First, P is decreasing

in the inflation target π. Thus, monetary shocks have less of an effect on the output gap. This

is an implication of money ‘becoming neutral’ for more flexible prices, and it is trivial to prove

by using the solution of the model above.20 By similar logic, output gap shocks have less of an

effect on the output gap.

Besides these two points, a less obvious and critical question for us concerns the impact of

output gap shocks on the nominal rate. This is characterized as follows.

Lemma 2 (Effects of Flexibility) Consider the effect of a one-time shock η > 0 to the output

gap xt. Then, the response of it is increasing in π. At the limit when θ −→ 0:

xt = 0; πt =
1

φ
η; it = η

P = 0

The proof immediately follows from the solution above.

Let us go back to our original question regarding the link between the inflation target and

the policy room. We analyze this by considering the following thought experiment. Consider 2

economies: {π1, κ1, i1}, {π2, κ2, i2} with π2 > π1. Thus, κ2 > κ1.

Now, consider a shock η̂ that lowers the economy 1 interest rate by −i1 from steady state:

η̂ = −i1
1 + φκ1

φκ1

By considering this given shock, we heuristically focus on the ZLB, but notice that our point is

more general and a similar analysis can be applied to any lower bound on the interest rate.

Suppose then that η̂ hits economy 2. The question at hand is: By how much does i2 move?

And what is the remaining room away from −i2? To answer this question, consider first the

following definition.

Definition 2 The effective extra room is given by

Reff (η̂) = ∆π + (i2(η̂)− i1(η̂))

20Focusing on the stable solution above avoids the subtlety that more generally, the nominal interest rate is not determined.
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where ∆π = π2 − π1, and i1(η̂) and i2(η̂) are the responses to the shock η̂ in economies 1 and 2

respectively.

The idea here is that, in order to compute the effective extra room, one needs to take into

consideration the change in the response of the policy rate. The key insight is that this is given

by the change in the potency P, formally expressed as follows.

Proposition 1 (Formula for Extra Room) Consider the shock η̂ < 0. Then,

1. The effective extra policy room is given by

Reff (η̂) = ∆π + ∆P · |η̂|

2. The effective extra room is strictly smaller than the intended extra room ∆π:

Reff (η̂) < ∆π

Proof The first part follows from simple algebra using the closed-form solution. To prove the

second part, notice

κ2 > κ1 ⇐⇒ i2(η̂) < i1(η̂)⇐⇒ ∆P < 0

and so

Reff (η̂) = ∆π + ∆P · |η̂| < ∆π

�

By the formula above, the effective extra room then is equal to the intended extra room ∆π,

plus the change in monetary policy potency times the shock. Since potency is reduced after an

increase in the target, the effective room is lower than the intended room.

To complement Proposition 1, it is actually possible to show the following stronger result

regarding the effects of price flexibility when raising the target.

Corollary 1 (Room Neutrality) Consider economy {π1, κ1, i1}. For any moderate change in

the target ∆π, there exists a slope of the Phillips curve κ2 such that the change is room-neutral:

Reff (η̂) = 0

Proof Using the expressions above, we want κ2 such that

0 = π2 − π1 + (g(κ2)− g(κ1))η̂
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Equivalently,

g(κ2) =
π2 − π1

|η̂|
+ g(κ1)

Since g(x) is strictly increasing, g(0) = 0, and limx→∞ g(x) = 1, for π2 close to π1, one can

compute a unique κ2 such that Reff (η̂) = 0. �

This result can be extended to trace out the degree of flexibility needed, as a function of

all admissible targets, that delivers room-neutrality. In that case, the inflation target becomes

irrelevant for the question asked in this paper. Indeed, any given raise in the target can be

neutralized by a suitable increase in price flexibility, leaving the room available for monetary

policy unchanged.

Another question raised by these results is whether the monetary authority could engineer

a way to increase the inflation target and try to minimize the adverse effect of potency loss. It

turns out that there is a way, described in the following corollary.

Corollary 2 (Avoiding the Loss of Potency) The loss in potency of monetary policy is

given by:

∆P = − φ(κ2 − κ1)

(1 + φκ1)(1 + φκ2)
< 0

Thus, the potency loss vanishes when the effect of the systematic response of monetary policy to

inflation φ is infinitely strong.

The proof is immediate. In other words, in order to minimize the potency loss, the monetary

authority should raise the inflation target, but keep inflation very close to this target. The

intuition for this result is that this dampens the effect of the loss of potency. Even is there is

such loss, if the interest rate responds very aggressively to inflation, the effective extra room will

tend to approach the intended extra room.

This corollary is a feature of a policy that perfectly stabilizes inflation and output. This result

becomes clear when we are systematic about optimal policy and its relation to the effective extra

room: What happens to the effective extra room when the monetary authority behaves optimally

instead of following a simple rule as the one postulated above?

As the next result states, under output gap shocks solely, the optimal policy under discretion

can be shown to amount to setting the nominal interest rate such that the real rate is equal to

the natural rate. Thanks to the divine coincidence, this can be obtained as the interest rate rule

(3) penalizes inflation deviations from target infinitely (φ −→∞).21

Lemma 3 Assume νt = 0, ∀t. At the limit when φ −→∞:

πt = 0; xt = 0; it = ηt

21How to obtain this rule is well known, see for example Svensson (2010).
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Moreover, in this case, Reff (η̂) = ∆π, ∀η̂.

The proof is immediate. The effective extra room is equal to the intended extra room, because

the behavior of inflation does not change the nominal rate set by the authority. Therefore, the

inflation target can be raised without losing monetary room through the loss of potency channel.

A finite loss of potency is irrelevant when the monetary authority is infinitely hawkish.

Although quite interesting as a theoretical benchmark, this is a result of limited interest in

practice. There are two reasons for this. First, a policy rate that moves one-to-one with nominal

demand shocks would be unrealistically volatile. To give a sense of the magnitudes, consider

a large shock (or a series of shocks) capable of approaching an economy to the ZLB (a 2008

financial crisis or COVID lockdown scenario). This shock (or combination of shocks) is likely

to total -10%.22 So, facing such a shock, the nominal rate would need to fall by 10 pp., an

unrealistically large amount.23

The second reason is simply that in realistic settings central banks do use inflation as a

guide for policy, but have a bounded reaction to its fluctuations due to uncertainty regarding

measurement or external shocks. Thus, the effects of price flexibility are likely to remain. Said

differently, as it is well known, interest rate rules as the one considered here fit the data better.24

4 Quantitative Importance

An important open question is whether the theoretical insights of the previous section are

quantitatively relevant in a realistic and commonly-used medium-scale DSGE model. In order

to answer this question, we consider two alternative medium-scale models. First, we consider

a medium-scale DSGE model based on Coibion, Gorodnichenko, and Wieland (2012). There,

we calibrate the Calvo parameter of price stickiness to target moments of the frequency of price

changes and trend inflation. Second, we consider a medium-scale menu cost model. In this case,

the model endogenously pins down the degree of price stickiness as function of the inflation

target.

Our quantitative exploration will also move away from the purely positive focus the paper

has taken this far, by looking at the normative implications of our mechanism. We compute

22This is used purely for illustration. The idea is that a year after the 2008 financial crisis, the output gap in the U.S. was,
say -5%. If, for purposes of this illustration, about half of the shock was absorbed by automatic stabilizers, then the size of
shock was about -10%.

23Notice, therefore, within the spirit of the paper, the difficulties of avoiding the ZLB under optimal policy. If the steady-
state real rate r is 2% (and the nominal rate 4%), not even raising the inflation target by 5 percentage points (from π = 2%
to 7%) can ensure not hitting the ZLB in the presence of a large shock.

24The reader might wonder what would happen in the presence of markup shocks, which are typically used to justify the
tradeoff between inflation and output gap volatility perceived by actual central banks. Even though this is not the focus of our
paper, this tradeoff should crucially depend on the degree of price stickiness when markup shocks are microfounded. Therefore,
raising the inflation target appears to have the virtue of easing this tradeoff via the increased price flexibility generated by
raising the target (that is, a form of divine coincidence is again valid for θ −→ 0.)
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the optimal inflation target as a function of the natural rate of interest, both in the case where

the degree of price flexibility is constant, and where it varies with the target. As in previous

work (Coibion, Gorodnichenko, and Wieland 2012), these calculations take into consideration

the tradeoff between higher welfare costs due to higher inflation, and the benefits of more space

away from the zero lower bound. Our goal is to deliberately use off-the-shelf setups. The only

novelty in our calculation is to consider that the degree of flexibility may vary with the target,

and hence have implications for the effective room away from the zero bound

4.1 Using a Medium-Scale New Keynesian Model

We consider a medium-scale DSGE model à la Coibion et al. (2012). Our model thus shares the

common features of modern NK DSGE models. These features include habit formation and a

richer specification of the interest rate rule. A key deviation from the bare-bones NK model lies

in incorporating trend inflation under imperfect indexation. This leads to a different expression

of the Phillips curve, and to richer inflation dynamics.

Our model takes an extreme version of imperfect indexation by assuming no price indexation

at all. There are two reasons for this decision. First, we want to keep close comparability to

the benchmark model by Coibion et al. (2012), who do not include price indexation either.

Second, as shown in their paper, the presence of indexation does not impact their results in

important ways. Nevertheless, we add indexation to the model and examine the robustness of

our conclusions in the online appendix.25

Consumers. The infinitely-lived, representative consumer maximizes their expected discounted

stream of utility from consumption and labor:

maxEt

[
∞∑
j=0

βj
{

log (Ct+j − hCt+j−1)− ϕ

1 + ϕ

∫ 1

0

N
1+ϕ
ϕ

i,t+jdi

}]
(5)

where final goods consumption is denoted by Ct, labor supplied to sector i at time t+j by Ni,t+j,

the Frisch elasticity of labor supply by ϕ, internal habit by h, and the rate of time preference

by β.

The consumer solves (5) subject to the following period budget constraint:

PtCt + St ≤
∫ 1

0

NitWit di+ eζt−1Rt−1St−1 − PtTt + PtDt

where Pt denotes the aggregate price level, St the holdings of one-period bonds, Wit the nominal

25Coibion, Gorodnichenko, and Wieland (2012) (p. 1383) provide a discussion of the advantanges and disadvantanges of
including indexation, and provide a number of arguments in favor of removing indexation in their baseline exercise for clarity
and empirical reasons in the context of trend inflation.
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wage rate in sector i, Rt the gross nominal rate of return, Tt lump-sum taxes and Dt dividends

paid to the consumer by firms. The risk-premium shock ζt−1 follows the auto-regressive process

ζt = ρζζt−1 + εζt

where εζt is i.i.d. with E[εζt ] = 0 and var[εζt ] = σ2
ζ .

Firms and Price-Setting. A perfectly competitive sector produces the final consumption

good. The final goods producer combines the continuum of intermediate goods using the fol-

lowing Dixit-Stiglitz production function:

Yt =

(
Y

(ε−1)/ε
it di

)ε/(ε−1)

where Yt denotes the amount of the final good produced each period, Yit the amount of interme-

diate good i used from sector i and ε the elasticity of substitution between any two intermediate

goods. The aggregator implies the following aggregate price level and demand for sector i inter-

mediate good demand:

Pt =

[∫ 1

0

P 1−ε
it

]1/(1−ε)

and

Yit = Yt(Pit/Pt)
−ε

Monopolistically competitive firms produce each intermediate i using a production technology

that is linear in labor, given by

Yit = AtNit

where At denotes productivity. (In our simulations, we will actually not use technology shocks

and thus At grows at a constant rate At/At−1 − 1 = µ.)

In terms of price setting, we assume that intermediate goods’ prices will adjust exogenously

following Calvo (1983) (unlike in the next subsection where we outline a model with endogenous

price adjustment.) Each period, a firm will be able to adjust prices with probability 1−θ. Firms

that get to adjust prices maximize the following expression for choosing the new price P ∗it:

Et

[
∞∑
j=0

(βθ)jQt,t+j

(
Yt+jP

∗
it −Wi,t+jNi,t+j

)]

where Qt,t+s denotes the stochastic discount factor. These assumptions about price setting imply
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that the aggregate price level evolves as

P 1−ε
t = (1− θ) (P ∗it)

1−ε + θ (Pt−1)1−ε

Monetary Policy and Market Clearing. We assume that monetary policy follows an in-

terest rate rule that also features interest-rate smoothing:

It = Iρ1

t−1I
ρ2

t−2(πφπt Xφx
t (Yt/Yt−1)φ∆y)1−ρ1−ρ2

where It is the gross nominal interest rate, ρ1 and ρ2 denote the interest rate smoothing param-

eters with respect to the first and second lags of the nominal rate, φπ, φx, and φ∆y parametrize

the systematic response of the policy-maker to inflation, output gap (log-deviations from the

flexible price equilibrium) and output growth.

As explained in the previous section, for simplicity, our benchmark models used for the

computation of the effective room do not impose the ZLB on interest rates. This is because our

IRF simulations are away from the ZLB (the ZLB will only be weakly binding when the interest

rate reaches 0). Nevertheless, we extend our analysis to the presence of the ZLB as well, and

find that are results are not meaningfully affected.

Goods market clearing requires

Yt = Ct +Gt

where we allow for government consumption of the final consumption good, evolving with a

persistence parameter ρg as follows:

Gt = Ḡ1−ρgG
ρg
t−1e

εgt

Government spending will be constant in our main simulation (εgt = 0).

4.1.1 Baseline Quantitative Exercises

Our calibration strategy is as follows. We calibrate the inflation target and Calvo parameter

to match the time-varying relation between trend inflation rates and the frequency of price

changes, embodied by the empirical evidence in Section 2. Specifically, we present two alternative

calibrations of the Calvo parameter θ. The first is based on the observed values for the frequency

of price adjustment before and after the drop of average inflation in the early 80s (pre- and post-

1984). The second calibration brings in more information from the data by matching the results

from our regression of the frequency of price adjustment on the inflation target (equation (1)).26

26The rest of the parameters are calibrated using the same values as in Coibion, Gorodnichenko, and Wieland (2012). Table
4 (online appendix) presents the full set of parameters values (except for θ and π) used to calibrate the model.
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Turning to the first calibration strategy, we set π equal to average values of inflation before

and after 1984. Similarly, we set θ as a function of the observed average values of the monthly

frequency of price adjustment before and after 1984. Since the model is quarterly, we use the

relation

θ = (1− frequency)3

This strategy results in target values for π equal to 6.73% before 1984, and equal to 2.25% after

1984; and values for θ equal to 0.65 and 0.73 respectively. In this model, the slope of the Phillips

curve is determined by the Calvo parameter θ and other preference and technology parameters.

Importantly for us, higher values of θ correspond to a flattening of the Phillips curve. Related

to to Hazell et al. (2022), these values of θ correspond to a modest flattening of the Phillips

curve.27

The thought experiment in our first calibration is the following. Suppose that the monetary

authority increases the inflation target to the trend inflation rate observed before 1984. By the

Fisher equation, this would raise the steady state nominal rate by the same percentage amount,

that is, by 4.48 pp. This is therefore the intended gain in policy room. The question we are

interested is: What is the corresponding quantitative effective gain in policy room?28

We answer this question as follows. Economy 1 is the economy with {π = 2.25, θ = 0.73}.
Economy 2 is the economy with {π = 6.73, θ = 0.65}. We consider a shock that makes the

nominal interest rate drop to zero in economy 1. We fix the size of this shock, and we ask by

how much does the interest rate drop in economy 2. Consistent with Definition 2, the percentage

point distance remaining before hitting zero in economy 2 is the effective extra room. With the

aim of being comprehensive in our answer, we consider three cases: one in which the shock

makes the interest rate hit zero on impact (but then revert back to positive territory), another

case in which the shock makes the interest hit zero at the lowest point of the response (the IRF

is hump-shaped), and one where the shock makes the interest rate hit zero on impact and the

ZLB is, later on, binding.29

Table 2 presents the results. In the first case, the effective extra room is equal to 3.32

pp. Because the increase in the target is 4.48 pp, the monetary authority achieves 74% of this

intended extra room. The table shows that whether we define the room through the IRF at its

lowest level, or with the ZLB constrained imposed, does not affect our result that the central

bank is only able to achieve significantly less than the intended room (3.62 pp. and 3.25 pp.,

delivering 81% and 72% of the intended room, respectively). An interesting case is the one of

27In Tables 3 and 4 of their paper, they observe that the slope of the Phillips curve has only declined by about half post-
1990 when controlling for time-fixed effects or using IV. Such a decline is in line with our calibration.

28To be clear, this is the same experiment considered in Section 3.
29In the first case the shock on impact is negative and followed by an unexpected positive shock; in the second and third

cases there is a negative shock only.
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less interest rate smoothing by the monetary authority30, because it underlines, together with

the last two rows of the table, the crucial role played by the interest rate rule in determining the

effective extra room. When the interest rate rule exhibits less inertia, it drops by more when

prices are more flexible. This lowers the effective room to 2.95 pp. This result is similar to what

is obtained in a bare-bones NK model that features a Taylor rule (NK-1, delivering 2.94 pp.)

When the rule depends only on inflation (NK-2), the increased flexibility channel is operating in

isolation and the effective extra room is significantly reduced to 2.16 pp., or 48% of the intended

room.31 Overall, the average percentage of extra room achieved across these simulations is 68%.

Thus, we find that approximately two thirds of room are gained in effective terms in this type

of model.

The second calibration strategy used to pin down the Calvo parameter is based on the re-

gression of the frequency of price adjustment and available inflation target measures, equation

(1). We implement directly into the model this estimated relationship above for the monthly

frequency of price changes. As a result, the model mechanically matches the relationship ob-

served in the data. We have produced four different estimates of this relationship (Table 1). We

take a conservative position and choose the estimate with the lowest sensitivity of the frequency

of price changes and the inflation target (Specification II based on Ireland 2007). This implies

the following equation for the Calvo parameter at quarterly frequency:

θ = (1− (0.0742 + 0.98π))3 (6)

This function implies a range of values for θ depending on π. For π = 2%, this gives θ = 0.74;

for π = 4%, θ = 0.70.

The advantage of relying on the estimated relationship (1) is that now we can use the model

to predict the effective extra room away from the ZLB for a range of values of the inflation

target. We take the baseline value of the target to be 2%. We focus on the first case in Table

2 of an unexpected shock that drives the nominal interest to the ZLB upon impact. We then

increase the inflation target, and pin down θ using (1). Fixing the size of the shock computed

for the 2% economy, we compute the remaining room away from the ZLB as the percentage

points distance between the interest rate after the shock, and zero.

The green curve in Figure 3 (tagged by ‘CGW’) summarizes our findings for the Coibion,

Gorodnichenko, and Wieland (2012) specification. We plot the effective room relative to the

benchmark of intended, one-to-one increases in policy room which are indicated by the dashed

45-degree line. This green line is substantially below the 45-degree line, suggesting an important

30We use ρ1 = 0.85, ρ2 = 0.
31In both cases, there is no habit formation. We calibrate the model taking the values in Gali (2015): We use a value of

β equal to 0.99, a value of φ equal to 1.5, a value of φy equal to 0.5/4, a Frisch elasticity of labor supply equal to 0.2, a the
capital share equal to 0.25, an elasticity of substitution equal to 9 (see Gali 2015 p. 67).
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effect of the increased price flexibility, as measured by our regression. For example, when moving

from a 2% to a 4% inflation target, there is an increase of the steady state nominal rate of 2

pp. by the Fisher equation, which is the intended extra room of 2 pp. Instead, we see that the

effective extra room is only 1.54 pp. Thus, the policy-maker is only able to achieve 76.5% of her

or his intended extra room.

We also compute the effective extra room predicted by simpler models as the 3-equation

NK model of Section 3 (NK-2) and the same model with a Taylor rule (NK-1). Similar to the

previous results, in both versions of the simpler, 3-equation, model, the predicted effective extra

room is substantially lower. Indeed, if the monetary authority raises π to 4%, we find a predicted

effective extra room of 1.06 pp. by the NK-1 model, and of 0.51 pp. by the NK-2 model.

As a further exercise, we can use this regression-based approach to compute the required

increase in the target to gain a given amount of effective policy space. Let us suppose that

the policymaker wishes to gain 2 pp. of effective extra room. According to the exact Coibion,

Gorodnichenko, and Wieland (2012) calibration, one would need to raise the target to 4.65%

(indicated in the figure). However, the simpler NK model with a Taylor rule (which we know

from above delivers approximately similar calculations for the effective room as the Coibion,

Gorodnichenko, and Wieland 2012 specification with less smoothing) predicts a required increase

to 5.79%, a significantly higher number. Moreover, it can be seen that the NK-2 specification

predicts a much higher target to achieve this goal.

Overall, in both exercises, we note that the specification in which the interest rate depends

only on inflation is the one that delivers the lowest predicted effective extra room. This underlines

the importance of interest rate rule parameters for accurately predicting the amount of effective

extra room that can be gained by an increase in the inflation target. Moreover, this suggests

that central banks that have a strong focus on price stability are those for which the gap between

the intended and the effective policy room might be the greatest in practice.

4.1.2 Model Uncertainty: Bayesian Assessment of the Effective Extra Room

Given our previous conclusion regarding the importance of the exact specification and calibration

of NK models for the predicted values of the effective extra room, the next exercise we perform

with the medium-scale DSGE is the following. We consider the joint distribution of several

key parameters that may affect the effective room in this quantitative model. Specifically, we

consider the joint distribution of the following parameters: the Frisch elasticity of labor supply

ϕ, the discount factor β, the habit parameter h, the steady-state growth rate µ, the interest rate

smoothing coefficients ρ1 and ρ2, and all systematic response-parameters in the Taylor rule (φπ,

φy, and φ∆y). To approximate the joint distribution, we generate 10,000 joint draws from the

Bayesian estimate of their joint distribution in the Smets-Wouters model. Then, we compute

the effective extra room for each draw when going from 2% to 4% steady state inflation.

25



Figure 5 illustrates the resulting, empirical distribution of the effective extra policy room.

Our median estimate is 1.416 pp., the mean is 1.418 pp. The 25th and 75th percentile of the

distribution are 1.371 pp. and 1.430 pp. Clearly, for a wide set of empirically relevant model

parameters, the policy-maker is not able to achieve his or her intended extra room of 2 pp. In

effect, his or her median effective extra room is only 70.8% of the intended extra room. Thus,

we conclude that our results are robust to parameter uncertainty.

4.2 Using a Medium-Scale Menu Cost Model

While it does not bring with it analytical tractability and portability to conventionally used

policy models, explicitly modeling endogenous price adjustment, for example through menu cost

models, may affect the importance of the price flexibility channel for a change in the target

in important ways. In particular, shocks that bring the interest rate to zero might be large,

and will now be endogenously associated with a higher probability of price adjustment. This

may interact with our higher-target mechanism and associated flexibility in non-trivial ways.

Therefore, it is important to check how our results might be affected in this type of setup.

Overall, this alternative modeling approach of price setting provides an important evaluation

of the effective extra policy room achieved by raising the target. We find that modeling price

setting endogenously with a menu cost model leads to approximately the same quantitative

conclusions.

To implement endogenous price setting, we follow the menu cost approach in Dotsey, King,

and Wolman (1999). In this approach, firms compare the costs and benefits of price adjustment

when deciding whether to change prices or not, and take into account past prices, the distribution

of vintages of prices and a random cost of adjustment. Our quantitative exercise calibrates the

menu cost to match our empirically observed relationship between the frequency of price changes

and the inflation target, and then varies the inflation target while holding menu costs constant.

We use exactly the same model as in the previous subsection, with only minimal modifications

and the main modification imposed on the price-setting mechanism. We outline all changes

below.

4.2.1 Firms and Price-Setting

Now, firms adjust their prices endogenously. The adjustment decision of firms depends on

weighing the value of adjusting its price, the value of not adjusting price, and the random,

period realization of adjustment costs. Adjustment costs kt are randomly drawn each period,

independently across firms and over time, and represent a fraction of labor costs. We denote

their c.d.f. by G, which is specified as a uniform distribution.

Following Dotsey et al. (1999), we denote by J the (endogenous) maximum number of periods
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after which all firms adjust. That means the maximum duration of a price spell can be J periods.

At the beginning of each period t, denote by ζjt the fraction of firms with price spells equal to

j periods. Among these firms (i.e. those that have not changed its price for j periods) we write

by θjt the (now endogenous) fraction that change it at t.

We now describe the firm’s problem. To decide whether to adjust or not, a firm considers

the value of adjusting and not adjusting. Denote by πjt period profits of a firm at period t given

it has set price P ∗t−j optimally j periods ago. Denote by V0t the value at time t of an adjusting

firm, gross of the adjustment cost, that chooses an optimal reset price P ∗t . Denote by Vjt the

value of a firm at time t that last adjusted its price j = 0, 1, ..., J − 1 periods ago. The value of

an adjusting firm is the following:

V0t = max
Pt

(
π0,t + Et

[
βQt,t+1

[
(1− θ1,t+1)V1,t+1 + θ1,t+1V0,t+1 − Ξ1,t+1

]])

where

Ξjt =

∫ G−1(θjt)

0

kt dG(kt)

is the expected adjustment cost of firms with price spells of j periods. The value of a firm at

time t with prior optimally chosen price P ∗t−j is the following:

Vjt =

(
πj,t + Et

[
βQt,t+1

[
(1− θj+1,t+1)Vj+1,t+1 + θj+1,t+1V0,t+1 − Ξj+1,t+1

]])

Because θJt = 1, the value of firms with price spell of J − 1 periods is given as follows:

VJ−1,t =

(
πJ−1,t + Et

[
βQt,t+1

[
V0,t+1 − ΞJ,t+1

]])

Firms of each vintage decide to adjust price if the gain in value from doing so is at least as big

as the cost of adjustment. That is, if

V0t − Vjt = ktWt

Given the distribution of fixed costs, this implies that the fraction of firms θjt that adjust to

the new optimal price P ∗t given that they have not adjusted for j periods is equal to

θjt = G(V0t − Vjt/Wt)

Notice that the adjustment technology uses labor, which impacts the aggregate resource

constraint compared to the previous variant of the NK model. The resource constraint now
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equals

Yt = Ct +Gt +
J∑
j=1

ζjtΞjt

The aggregate price level is now pinned down by the vintage structure of prices. That is,

Pt =

(
J−1∑
j=0

ζjt
(
P ∗t−j

)1−ε
)1/(1−ε)

This completes the presentation of the new elements introduced in this model.

4.2.2 Quantitative Exercise

We calibrate the model to match our data, that is, we target the empirically observed relationship

between frequency and inflation target: We calibrate the menu cost to match a price spell

duration of 2.77 quarters at 4% steady-state inflation, and price spell duration of 3.38 at 2%

steady-state inflation. This calibration implies a menu cost of approximately 5.1% of steady-

state output. Table 5 in the appendix presents parameter details. We refer the reader for details

of the model and implementation to Dotsey et al. (1999) and Coibion et al. (2012).

With our calibrated menu cost model in hand, we repeat exactly the same experiment as

in the previous subsections. That is, at a steady-state rate of 2% inflation, we consider a

demand shock that drives the nominal interest to the ZLB upon impact (and then the rate

is unexpectedly lifted away from the ZLB). We then fix the size of the shock and increase the

inflation target. However, as we increase the inflation target, the probability of price adjustment

now endogenously increases. Again, we ask how much effective extra room we get as we move to

higher targets. To avoid redundancy, we only present the results for the most telling case, which

is the figure of the effective extra room for alternative increases of the target, with degrees of

price flexibility predicted by the menu cost model.

Figure 4 shows our main finding. We find that increasing the inflation target from 2% to 4%

only provides 1.58 pp. of effective extra room, not the full intended extra room of 2 pp. The

policy-maker’s action, similar in magnitude as before, only achieves 79% of the intended extra

policy room. This represents a sizable gap between effective and intended extra room.

The most important lesson from this analysis based on a model of endogenous price adjust-

ment is that the quantitative effects are approximately the same as in the baseline Calvo model

calibrated to match the evidence in terms of target and frequency. This result addresses the

concern that large shocks may lead to a different result because they increase the degree of price

flexibility endogenously. In the empirically relevant calibration we consider, this is not the case.
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4.3 Why Do Our Empirical Estimates Generate Large Policy Effects?

As we have shown through a range of exercises, the effective extra room and the intended extra

room never coincide. In fact, we find quantitatively large differences in all our exercises. The

main reason for this finding is intuitive and is related to our formula for the effective extra room

presented in Proposition 1.

The formula provides intuition on why we get large policy effects: According to the formula,

the difference between the effective and intended extra room, Reff (η̂) − ∆π, is given by the

product of the change in potency ∆P, and the absolute value of the shock η̂. In our exercise we

are considering a large shock, or a sequence of shocks with large total effect — that bring the

nominal rate to the ZLB. Thus, the change in potency would need to be zero for Reff (η̂)−∆π to

be zero in our exercise. In other words, even if the sensitivity of the frequency of price changes

to changes in the inflation target is “small” (which implies a correspondingly small change in

potency), a large shock can still generate a quantitatively relevant policy effect. Thus, in all

likelihood, one should expect that even “modest” changes in the probability of price adjustment,

or modest changes in the slope of the Phillips curve (as found by Hazell, Herreno, Nakamura,

and Steinsson 2022), generate sizable differences between the effective and the intended extra

room.

We show that indeed different parameter estimates for the sensitivity of the frequency of

price changes to changes in the inflation target mean a very stable and sizable quantitative

effect on the effective extra room. We show this result in Figure 6, briefly discussed in Appendix

Section C: The figure shows the effective room gained on the vertical axis and the sensitivity

of the frequency of price changes to changes in the inflation target, β̂1 as in the main empirical

specification while holding the intercept constant. The effective extra room is computed using

the Coibion, Gorodnichenko, and Wieland (2012) benchmark model. The different blue markers

along the line denote our empirical estimates. The red marker denotes the sensitivity we estimate

based on the Argentine data from Alvarez et al. (2019). We see very clearly that for all estimates,

the effective extra room gained is much below the intended extra room of 2 pp. We still get

large effects even for estimates only half the size of our conservative choice (0.98/2 instead of

0.98).32

5 The Optimal Inflation Target

We complement our positive analysis by showing that our main mechanism also matters for

normative analysis. We find that the optimal inflation target is approximately 1 percentage

point higher near a 0 natural rate of interest if one allows the frequency of price changes to vary

32In the context of the New-Keynesian models we explore, there is yet a second reason why we find large quantitative effects.
In these models, the loss of potency is pinned down by the slope of the Phillips curve κ. This slope is an hyperbolic function
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with the inflation target.

Given the results of the previous section, in particular the finding that a NK model that

matches the data in terms of targets and frequency of price adjustment delivers similar results

to a menu cost model, we focus on the Coibion, Gorodnichenko, and Wieland (2012) specifica-

tion. We calibrate the frequency of price changes to match our estimated empirical relationship

(equation (6)). Then, we vary the steady-state real interest rate, denoted r∗, between 0% and

9% and solve for the corresponding optimal inflation target π̄.33 We do so under 2 specifications:

First, holding the frequency of price changes fixed, and second, allowing for the frequency to

adjust according to our estimated relationship with the inflation target (equation (6)).34 Com-

pared to Coibion et al. (2012), we raise the volatility of government and preference shocks to

σg = 0.0078 (from σg = 0.0052) and σq = 0.0036 (from σq = 0.0024) such that we quantitatively

match the relevant ranges of r∗ and π̄ in more recent studies as Andrade et al. (2019).

Our findings show a very clear effect of allowing the frequency of price changes to react to

the inflation target, especially when the natural rate of interest is low. Figure 7 summarizes our

key findings graphically. We see the varying-frequency specification has a steeper, more negative

slope than the fixed-frequency specification. A lower natural rate of interest is associated with a

higher optimal inflation target if we allow for the endogenous relationship. The intuition is the

same as in Andrade et al. (2019): First a fall in r∗ means a higher risk of hitting the ZLB so the

inflation target increases to mitigate that risk. Second, the cost of hitting the ZLB increases if

we allow for more price flexibility because it amplifies the destabilizing real-interest rate effect

at the ZLB.35 Quantitatively, our main finding is that for a natural rate near 0, the optimal

target that is approximately 1 percentage point higher if we allow the frequency of price changes

to vary.36

6 Conclusion

There are two ways of interpreting our results.

of the Calvo parameter θ, and its slope is quite steep around the relevant range we consider, say, for values around 0.60 and
0.80. When θ = 0.80, κ = 0.1040 in NK-1; when prices at more flexible at θ = 0.60, the slope of the Phillips curve increases
approximately by a factor of 5 at κ = 0.5413. Thus, over this range, even moderate changes in the probability of price
adjustment are actually able to produce a significant change in the slope κ. This change in turn translates into a relatively
large change in potency.

33In our description, we use the terms ‘steady-state real interest rate’ and ‘natural rate’ interchangeably.
34Moreover, we choose the exogenous Calvo parameter such that it matches the frequency of price changes implied by our

estimated relationship at the Coibion et al. (2012) baseline ratio of the steady state nominal rate to optimal inflation, which
occurs at a natural rate of 3%. In other words, the two lines intersect at a natural rate of 3%.

35A related paper is by Blanco (2021), who exploits this channel in a menu cost setting.
36Given the steady-state relation of the real rate, the discount factor, and growth, the natural (or steady state) real rate can

be varied by varying either the discount factor the the steady-state growth of productivity. This result is obtained by varying
the discount factor. Figure 9 in the online appendix instead repeats the exercise by varying the steady-state growth rate of
productivity. The results are similar.
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A conservative interpretation is that our channel provides a further reason not to attempt

raising the inflation target in order to achieve higher inflation, because the monetary authority

needs to also fight against the loss of potency in order to gain extra room for monetary policy.

This may not justify the extra welfare costs of higher inflation.37

Another interpretation, potentially of a more radical nature, is that—on the contrary—this

channel provides a justification to raise the inflation target by more than intended or initially

discussed (to say to 5% instead of 4%), in order to ensure getting enough room for monetary

policy. Which of these two interpretations ought to be adopted seems to depend on the exact

macroeconomic context, and on the relative importance of minimizing the impact and length of

liquidity traps in the future.
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A Main Tables and Figures

Table 1: Frequency of Price Changes and Inflation Target

(I) (II) (III) (IV)

Target πt 1.61*** 0.98*** 1.04*** 2.26***
(0.24) (0.08) (0.11) (0.41)

constant 4.61*** 7.42*** 7.26*** 5.25***
(0.86) (0.37) (0.40) (0.91)

N 28 27 28 26
R2 68% 83% 78% 66%
Data means:
Target πt 3.42 4.04 3.90 2.85
Freq ft 10.69 10.75 10.69 10.8

The table shows estimates of the following specification: ft =
β0 +β1πt+ εt, where ft is the annual average monthly frequency
of price changes in %, and πt the annual inflation target, also
in %. We estimate this specification separately for our three in-
flation target series: Specification (I) is based on the estimates
by Fuhrer and Olivei (2017); Specification (II) is based on Ire-
land (2007); Specification (III) is based on Milani (2019); and
Specification (IV) is based on Cogley and Sbordone (2008). We
use robust Newey-West standard errors (1 lag). The rows “data
means” show, respectively: the means of the independent vari-
able (inflation target), and of the dependent variable (frequency
of price changes).
*** denotes statistical significance at the 1% level.
** denotes statistical significance at the 5% level.
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Table 2: Effective Extra Room When Raising the Target to the Pre-1984 Inflation Rates (Intended Extra
Room of 4.48 pp.)

Case Effective Extra Room (in pp.) Fraction of Room Achieved

On Impact 3.32 74%
Min. of IRF 3.62 81%
ZLB Imposed 3.25 72%
Less Smoothing 2.95 66%
NK-1 2.94 66%
NK-2 2.16 48%

This table presents our quantitative results using the baseline Coibion, Gorodnichenko, and
Wieland (2012) model, a bare-bones NK model with a Taylor rule (NK-1), and a bare-bones
NK model with a simple interest rule that depends only on inflation (NK-2). The target is
raised from its post-1984 level of 2.25% to the pre-1984 average inflation rate of 6.73%. The
Calvo parameter is calibrated using the observed frequencies of price adjustment for the two
sub-samples. For the Coibion et al. (2012) model, the table presents the computed effective
extra room in percentage points for several cases: a shock that brings the rate to zero on impact,
and then the rate is lifted away from the ZLB; a shock that brings the rate to zero at the lowest
value of the IRF; a shock that brings the rate to zero on impact, and then ZLB is imposed; less
interest rate smoothing (ρ1 = 0.85, ρ2 = 0). For the bare-bones NK models, the shock brings
the rate to zero on impact. The last column computes the ratio of the effective extra room and
the intended extra room.
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Figure 2: Inflation Target and Frequency of Price Changes
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This figure plots the times series, by year, of the average monthly frequency of price changes (red

dashed line, right axis) against estimated inflation targets for the U.S. The frequency of price

changes is based on micro price data from the Bureau of Labor Statistics (BLS), generously

shared by Emi Nakamura (Figure XIV in Nakamura et al. 2018). Second, data on the time-

varying inflation target comes from four different sources: the inflation target series underlying

Figure 4 in Ireland (2007), the series underlying Figure 1 in Milani (2019), the series underlying

Figure 3 in Fuhrer and Olivei (2017), and the series underlying Figure 1 in Cogley and Sbordone

(2008).
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Figure 3: Effective Extra Policy Room Obtained by Raising the Target
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This figure plots the effective extra policy room gained in percentage points (pp.) against the

inflation target, when moving away from a 2% baseline up to 7%. To compute the effective

extra room, we consider an unexpected shock that makes the nominal interest rate drop to zero

upon impact, for a 2% target. We fix the size of this shock, and we ask, for different values

of π, by how much the interest rate will fall. The remaining space is the effective extra policy

room. We compute it for two versions of the bare-bones New Keynesian model (see main text

for details) and the New Keynesian model by Coibion, Gorodnichenko, and Wieland (2012).
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Figure 4: Effective Extra Policy Room Obtained by Raising the Target, Using a Menu Cost Model
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This figure plots the effective extra policy room gained in percentage points (pp.) against the

inflation target, when moving away from a 2% baseline up to 7%. To compute the effective

extra room, we consider an unexpected shock that makes the nominal interest rate drop to zero

upon impact, for a 2% target. We fix the size of this shock, and we ask, for different values of

π, by how much the interest rate will fall. The remaining space is the effective extra room. We

assume a menu cost pricing mechanism following Dotsey, King, and Wolman (1999).
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Figure 5: Distribution of Effective Extra Room Obtained by Raising the Target from 2% to 4%

This figure plots the empirically relevant distribution of effective extra room when going from

a target of 2% to 4%. We draw 10000 joint draws from the joint parameter distribution

estimated in the Smets-Wouters model for the following parameters: the Frisch elasticity of

labor supply, the discount factor, the habit parameter, the steady-state growth rate, the interest

rate smoothing coefficients, all systematic response-parameters in the Taylor rule. Then, we

compute the effective extra room in our main model for each draw, going from 2% to 4% steady

state inflation. The effective extra room is computed as described in Figure 3 (also explained

in the main text.)
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Figure 6: Sensitivity β1 and Effective Extra Room
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This figure plots the effective extra room when we simulate our baseline model for different

sensitivites of the frequency of price changes to the inflation target, either according to our

empirical estimates (blue) or the estimate based on Argentine data (red) holding the intercept

constant.
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Figure 7: Optimal Inflation Target
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This figure plots the optimal inflation target against the (steady-state) natural rate of interest.

We generate this relationship for two scenarios: 1) fixed frequency of price adjustment (blue,

solid) and 2) frequency of price adjustment that varies with the inflation target (red, dashed).

The natural rate of interest is changed by changing the discount factor (the online appendix

shows the alternative case of changing the steady-state growth rate. See the main text for a

full explanation.)
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B Complementary Regressions

An alternative way of checking the validity of our main assumption is, instead of producing our

own estimates of a SW model over different subsamples as shown above, to instead go back to

a previous paper by Fernandez-Villaverde and Rubio-Ramirez (2007) (henceforth FVRR) that

estimated a time-varying parameter DSGE similar to SW. By doing this, they obtained time

series of estimates for several parameters of interest. We use their series of estimates for the

(time-varying) probability of price adjustment, and for the (time-varying) inflation target. We

regress the former on the latter in order to see if these are significantly associated statistically.

This exercise complements our previous estimation of a SW model in two ways. First, it

allows for a richer time-variation between the probability of price adjustment and the target

(while at the same time allowing for rational expectations on the part of agents about these

changes.) Second, it confirms our previous aggregate-data claims using data produced by other

researchers.

For convenience, we reproduce Figure 2.20 from Fernandez-Villaverde and Rubio-Ramirez

(2007) (Figure 10), which plots, from 1956 to 2000, their estimate of quarterly (non-annualized)

target and the duration of price spells. The Figure shows that the target increases steadily

from the beginning of the sample to roughly 1979, reaching a level at less than 2% (quarterly).

Then, the target steadily declines to roughly 0.5%. The duration of price spells is negatively

correlated, decreasing and then increasing. To check this correlation more precisely, we consider

the specification

fFV RRt = β0 + β1π
FV RR
t + εt

where the superscript FV RR indicates these are measures from Fernandez-Villaverde and Rubio-

Ramirez (2007): fFV RRt is the quarterly probability of price adjustment, and πFV RRt is the target

(converted, for convenience, to annual).
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Table 6 presents the results. The first column presents the baseline regression over the whole

sample considered by FVRR. The estimated elasticity β1 is significant at the 1% level, and

positive. The second and third column consider the robustness over the post-1970 and post-

1984 subsamples. In both cases the estimated elasticity is also significant at the 1% level and

positive. Thus, the conclusion from looking at the estimates generated by FVRR is that a higher

inflation target robustly implies more flexible prices.
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C More on Robustness

Here we repeat our main quantitative exercise based on an estimated relationship between the

frequency of price changes and inflation. In particular, we use the inflation data from Alvarez

et al. (2019) and re-estimate our main specification (1) for “low” inflation rates as defined in

Alvarez et al. (2019) as less than 14%. We then feed the estimated relationship into our model

as before. Figure 12 shows our findings. As we increase the inflation target, we see once again

that the effective extra room is less than the intended extra room. The gap between the two is

smaller than what is obtained by looking at the U.S. data, but it is quantitatively meaningful

nonetheless.
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D Estimation

For the estimation exercise, our analysis directly follows Smets and Wouters (2007) and the

treatment in Bhattarai and Schoenle (2014). We refer the reader to the Smets and Wouters

(2007) paper for a detailed description of their well-known model and data sources. Since our

main goal is to obtain a joint distribution of key parameters from an empirically widely used

and estimated model, we only focus on a description of key elements of the estimation and

computation.

The data we use are the same as in Smets and Wouters (2007): The quarterly data range

from 1966:QI through 2004:QIV and include the log difference of real GDP, real consumption,

real investment, real wage, the GDP deflator, log hours worked, and the federal funds rate. Each

observable serves to pin down one of seven shocks. Our exercise in Table 3 additionally restricts

the estimation to the post-1984 sub-period only.

Our Bayesian estimation and model comparison procedure for linearized models follows the

established conventions. As such, we evaluate the likelihood function using the Kalman filter,

and compute the mode of the posterior. We use a Metropolis-Hastings algorithm to sample

from the posterior distribution, with a scaled inverse Hessian as a proposal density for the

Metropolis-Hastings algorithm.

We calibrate a few parameters as in Smets and Wouters (2007), and choose the same prior

densities (see Table 8). The only exception concerns the price and wage markup shocks: Smets

and Wouters (2007) combine the true markup shocks and various structural parameters (in

particular, the price and wage Calvo parameters) when estimating markup shocks while we

estimate the “true” markup shocks with appropriately rescaled priors. This difference is not

essential, however, for the identification of parameters. Overall, our parameters estimates come

out to be extremely close to those of Smets and Wouters (2007).

Last, in order to compute an empirically relevant distribution of effective extra policy room,

we do the following: First, we load our MCMC draws and disregard the first 10% as burn-in.

Second, we draw 10,000 random sets of key parameters in common with our main model from

the estimated joint distribution of parameters, including the Frisch elasticity of labor supply, the

discount factor, the habit parameter, the steady-state growth rate, the interest rate smoothing

coefficients, and all systematic response-parameters in the Taylor rule. Finally, for each set of

draws, we compute the effective, extra policy room we get when we move from 2% to 4% steady

state inflation. The results are summarized in the histogram in Figure 5 in the main body of

the paper. Table 9 shows our posterior estimates.
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E Incorporating Indexation

Here, we deviate from the off-the-shelf benchmark Coibion, Gorodnichenko, and Wieland (2012)

and incorporate indexation into the model. The goal is to check how our results are affected

by it. In summary, we find that the effective extra policy room raises a bit, but it is still

meaningfully different that the intended extra policy room.

Now, if firms do not get to re-optimize, they will automatically re-scale their prices by the

steady state rate of inflation, π, with a degree of indexation ω ∈ [0, 1). Thus, ω = 1 denotes full

indexation, ω = 0 no indexation.

Firms that get to adjust prices maximize the following expression for choosing the new price

P ∗it:

Et

[
∞∑
j=0

(βθ)jQt,t+j

(
Yt+jP

∗
itπ

ωj −Wi,t+jNi,t+j

)]
where Qt,t+s denotes the stochastic discount factor. These assumptions about price setting imply

that the aggregate price level evolves as

P 1−ε
t = (1− θ) (P ∗it)

1−ε + θ (Pt−1π
ω)1−ε

Figure 13 presents the results, including a comparison with the baseline without indexation.

The difference between the two effective extra room lines is small.

We also check the empirical distribution of the effective room, presented in Figure 14. The

distribution left tail is now slightly pushed to higher values of the room over the horizontal axis,

but is it largely quite similar to the one without indexation (Figure 5).
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F Extra Tables and Figures

Table 3: Frequency of Price Changes and Inflation Target, Post 1984

(I) (II) (III) (IV)

Target πt 1.16*** 1.10*** 1.04*** 1.99**
(0.27) (0.31) (0.27) (0.75)

constant 6.06*** 7.26*** 7.42*** 5.86***
(0.92) (0.76) (0.74) (1.51)

N 21 20 21 19
R2 47% 41% 42% 37%
Data means:
Target πt 3.31 2.36 2.38 2.04
freq ft 9.88 9.88 9.88 9.91

The table shows estimates of the following specification: ft =
β0 +β1πt+ εt, where ft is the annual average monthly frequency
of price changes in %, and πt the annual inflation target, also
in %. We estimate this specification separately for our three in-
flation target series: Specification (I) is based on the estimates
by Fuhrer and Olivei (2017); Specification (II) is based on Ire-
land (2007); Specification (III) is based on Milani (2019); and
Specification (IV) in based on Cogley and Sbordone (2008). We
use robust Newey-West standard errors (1 lag). The rows “data
means” show, respectively: the means of the independent vari-
able (inflation target), and of the dependent variable (frequency
of price changes).
*** denotes significant at the 1% level.
** denotes significant at the 5% level.
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Table 4: Model Parameters

Parameters of Utility Function Steady-State Values
ϕ: Frisch Labor Elasticity 1.00 µ: Growth Rate 1.5% p.a.

β: Discount factor 0.998 cy: Consumption Share of GDP 0.80
h: Internal habit 0.7 gy: Government Share of GDP 0.20

Pricing Parameters Shock Persistence
ε: Elasticity of substitution 7 ρg: Government Spending Shocks 0.97

ρξ: Risk Premium Shocks 0.947

Taylor Rule Parameters Shock Volatility
φπ: Response to inflation 2.50 σg: Government Spending Shocks 0.0052
φx: Response to output gap 1.50 σξ: Risk Premium Shocks 0.0024

φ∆y: Response to output growth 0.11
ρ1: Interest smoothing 1.05
ρ2: Interest smoothing -0.13

The table summarizes the parameter values in our medium-scale model. They are identical
to the parameter values in Coibion et al. (2012), with the exception of the Calvo parameter
which is set to match the frequency of price adjustment in the data.
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Table 5: Model Parameters: Menu Cost Model

Parameters of Utility Function Steady-State Values
ϕ: Frisch Labor Elasticity 1.00 µ: Growth Rate 1.5% p.a.

β: Discount factor 0.998 cy: Consumption Share of GDP 0.80
h: Internal habit 0.7 gy: Government Share of GDP 0.20

Pricing Parameters Shock Persistence
ε: Elasticity of substitution 2 ρg: Government Spending Shocks 0.97

ρξ: Risk Premium Shocks 0.947

Taylor Rule Parameters Shock Volatility
φπ: Response to inflation 2.50 σg: Government Spending Shocks 0.0052
φx: Response to output gap 1.50 σξ: Risk Premium Shocks 0.0024

φ∆y: Response to output growth 0.11
ρ1: Interest smoothing 1.05 Expected Menu Cost
ρ2: Interest smoothing -0.13 0.19531

The table summarizes the parameter choices in our medium-scale menu cost model. They
are chosen to match a duration 2.77 quarters at a 4% steady-state inflation and a duration of
3.38 quarters at 2% steady-state inflation, as in the data. The menu cost follows a uniform
distribution with a minimum cost of 0.
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Table 6: Frequency of Price Changes and Inflation Target, based on Fernandez-Villaverde et al. (2007)

(I) (II) (III)
1956-2000 > 1978 > 1984

Target πFV RR 2.95*** 3.34*** 8.57***
(0.73) (0.38) (1.12 )

constant 17.38*** 11.99*** 7.41***
(0.97) (0.51) (0.79)

N 180 88 64
R2 6% 31% 30%

The table shows estimates of the following specification:
fFV RRt = β0+β1π

FV RR
t +εt, where fFV RRt is the quarterly

frequency quarterly average of price changes estimated by
Fernandez-Villaverde and Rubio-Ramirez (2007) in %, and
πFV RRt the annual inflation target estimated by Fernandez-
Villaverde and Rubio-Ramirez (2007), also in %. We use
robust Newey-West standard errors (1 lag). We estimate
this specification separately for different subsamples.
*** denotes significant at the 1% level.
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Table 7: Regressions of the Frequency on Inflation Rates Using Alvarez et al. (2018) Data for Argentina,
and Semi-Elasticity at Zero Inflation

Implied

Specification â b̂ λ(π = 0%) λ(π = 1%) Semi-Elasticity

(Annual, positive π)

(1) λ = a+ b ∗ π 0.23*** 1.03*** 0.2314 0.2417 4.45%
(0.01) (0.21)

(2) log(λ) = a+ b ∗ π -1.47*** 3.62*** 0.2295 0.2379 3.68%
(0.04) (0.76)

(Annual, all π)

(3) λ = a+ b ∗ π 0.23*** 1.09*** 0.2255 0.2364 4.85%
(0.01) (0.13)

(4) log(λ) = a+ b ∗ π -1.51*** 4.03*** 0.2218 0.2310 4.11%
(0.02) (0.47)

(Monthly, all π)

(5) log(λ) = a+ b ∗ π -1.51*** 50.37*** 0.2219 0.2314 4.27%
(0.02) (5.81)

The table presents several specifications for the regression of the frequency of price adjustment on in-
flation, for inflation rates below 14% (the cutoff used by Alvarez et al. 2019). (1)–(4) use annualized
inflation rates (the frequency of the data is monthly). (1) and (2) present the regressions including only
observations with positive inflation rates, which corresponds most closely to our trend inflation regressions
on Table 1. (3) and (4) include the observations with negative realizations of inflation. (5) uses monthly
inflation rates, as in the Alvarez et al. (2019) replication codes, and includes the observations with nega-
tive rates. The semi-elasticity is computed by taking the percentage change in the frequency when going
from 0% to 1% inflation. We manage to replicate the 4.27% (or 0.0427) semi-elasticity produced by their
Figure_5.m code (output variable named ‘lambda_change’), despite using a simple log-linear model for
rates below 14% (Alvarez et al. 2019 include a quadratic term, and estimate the model via non-linear
least squares using a log-log specification for inflation rates above 14%). This is erroneously reported
as 0.04% in the paper. In all regressions, similar to Alvarez et al. (2019), we express inflation and the
frequency in decimals (1% inflation as π = 0.01, and a frequency of 1% as λ = 0.01).
*** denotes significance at the 1% level.

52



Table 8: Prior Distribution of Structural Parameters

Parameters Domain Density Prior Mean Prior Stdev

ϕ R Normal 4.00 1.50
σc R Normal 1.50 0.37
h [0,1) Beta 0.70 0.10
ξw [0,1) Beta 0.50 0.10
σl R Normal 2.00 0.75
ξp [0,1) Beta 0.50 0.10
ιw [0,1) Beta 0.50 0.15
ψ [0,1) Beta 0.50 0.15
Φ R Normal 1.25 0.12
rπ R Normal 1.50 0.25
ρ [0,1) Beta 0.75 0.10
ry R Normal 0.12 0.05
r∆y R Normal 0.12 0.05
π R+ Gamma 0.62 0.10

100(β−1 − 1) R+ Gamma 0.25 0.10

l R Normal 0.00 2.00
γ R Normal 0.40 0.10
α R Normal 0.30 0.05
ρa [0,1) Beta 0.5 0.2
ρb [0,1) Beta 0.5 0.2
ρg [0,1) Beta 0.5 0.2
ρI [0,1) Beta 0.5 0.2
ρr [0,1) Beta 0.5 0.2
ρp [0,1) Beta 0.5 0.2
ρw [0,1) Beta 0.5 0.2
ρga [0,1) Beta 0.5 0.2
µp [0,1) Beta 0.5 0.2
µw [0,1) Beta 0.5 0.2
σa R+ InvG 0.10 0.5
σ

b
R+ InvG 0.10 2

σg R+ InvG 0.10 2
σI R+ InvG 0.10 2
σr R+ InvG 0.10 2
σp R+ InvG 4.00 4
σw R+ InvG 5.00 5

The table summarizes the prior distributions for the shock processes in the

Bayesian estimation.
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Table 9: Posterior Estimates of Structural Parameters

Parameters Prior Posterior Credible Interval
Mean Mean 90%

ϕ 4.00 5.4692 [3.7853 7.0934]
σc 1.50 1.3393 [1.1331 1.5514]
h 0.70 0.7177 [0.648 0.79]
ξw 0.50 0.6124 [0.5204 0.7097]
σl 2.00 1.4597 [0.6744 2.233]
ξp 0.50 0.6104 [0.5413 0.6794]
ιw 0.50 0.6189 [0.4231 0.8196]
ψ 0.50 0.5708 [0.392 0.7475]
Φ 1.25 1.6157 [1.4891 1.7453]
rπ 1.50 2.071 [1.7849 2.3573]
ρ 0.75 0.7924 [0.751 0.8365]
ry .125 0.0841 [0.0474 0.1205]
r∆y .125 0.2167 [0.1696 0.2632]
π .625 0.8315 [0.6559 1.0032]

100(β−1 − 1) 0.25 0.1693 [0.0743 0.2605]

l 0.00 -0.0859 [-1.9125 1.7332]
γ 0.40 0.4273 [0.4031 0.4518]
α 0.30 0.1918 [0.1623 0.2212]
ρa 0.5 0.956 [0.9372 0.9755]
ρb 0.5 0.2055 [0.066 0.3377]
ρg 0.5 0.9748 [0.9612 0.9892]
ρI 0.5 0.7148 [0.6181 0.8115]
ρr 0.5 0.1741 [0.061 0.2832]
ρp 0.5 0.9058 [0.8435 0.9698]
ρw 0.5 0.9737 [0.9578 0.9905]
ρga 0.5 0.5708 [0.392 0.7475]
µp 0.5 0.5595 [0.3786 0.7506]
µw 0.5 0.7981 [0.7005 0.9026]
σa 0.10 0.4565 [0.4103 0.5021]
σ

b
0.10 0.243 [0.2045 0.2822]

σg 0.10 0.5284 [0.4786 0.5785]
σI 0.10 0.4521 [0.3704 0.5325]
σr 0.10 0.2499 [0.2236 0.2753]
σp 4.00 3.7318 [2.0877 5.3171]
σw 5.00 13.7272 [5.9349 22.0592]

The table summarizes the posterior parameter estimates for the shock pro-

cesses from the Bayesian estimation.
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Figure 8: Scatter Plot: Frequency of Price Changes and Inflation Target Measures
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This figure shows a scatter plot, by year, of the average monthly frequency of price changes

against estimated inflation targets for the U.S. The frequency of price changes is based on micro

price data from the Bureau of Labor Statistics (BLS), generously shared by Emi Nakamura

(Figure XIV in Nakamura et al. 2018). Second, data on the time-varying inflation target comes

from four different sources: the inflation target series underlying Figure 4 in Ireland (2007),

Figure 1 in (Milani 2019), Figure 3 in Fuhrer and Olivei (2017) and Figure 1 in Cogley and

Sbordone (2008).
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Figure 9: Optimal Inflation Target: Alternative Experiment
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This figure plots the optimal inflation target against the (steady-state) natural rate of interest.

We generate this relationship for two scenarios: 1) fixed frequency of price adjustment (blue,

solid) and 2) frequency of price adjustment that varies with the inflation target (red, dashed).

The natural rate of interest is changed by changing the steady-state growth rate. (See the body

for a full explanation.)
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Figure 10: Trend Inflation and Duration of Price Spells

Source: Fernandez-Villaverde and Rubio-Ramirez (2007).
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Figure 11: Frequency of Price Changes and Inflation Rate for Argentina
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This figure plots frequency of price changes against the observed positive inflation rates below

14% from Alvarez et al. (2019).
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Figure 12: Robustness to Calibration Based on Argentine Data
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This figure plots the effective extra room, computed as in Figure 3 above for the Coibion, Gorod-

nichenko, and Wieland (2012) model, when matching the degree of increased price flexibility

using data for Argentina (the results in Table 7).
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Figure 13: Effective Extra Policy Room Obtained by Raising the Target, Under Indexation
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This figure plots the effective extra policy room gained in percentage points (pp.) against the

inflation target, when moving away from a 2% baseline up to 7%. To compute the effective

extra room, we consider an unexpected shock that makes the nominal interest rate drop to zero

upon impact, for a 2% target. We fix the size of this shock, and we ask, for different values

of π, by how much the interest rate will fall. The remaining space is the effective extra policy

room. We compute it for the model by Coibion, Gorodnichenko, and Wieland (2012), with and

without indexation.
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Figure 14: Distribution of Effective Extra Room Raising the Target from 2% to 4%, Under Indexation

This figure plots the empirically relevant distribution of effective extra room when going from

a target of 2% to 4%. We draw 2500 joint draws from the joint parameter distribution esti-

mated in the Smets-Wouters model for the following parameters: the Frisch elasticity of labor

supply, the discount factor, the habit parameter, the steady-state growth rate, the interest rate

smoothing coefficients, all systematic response-parameters in the Taylor rule and the degree of

price indexation. Then, we compute the effective extra room in our main model for each draw,

going from 2% to 4% steady state inflation. The effective extra room is computed as described

in Figure 3 (also explained in the main text.)
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