Retail Payment Innovations and Cash Usage:
 Accounting for Attrition Using Refreshment Samples

Heng Chen (Bank of Canada)
Marie-Hélène Felt (Carleton University)
Kim P. Huynh (Bank of Canada)

5 June 2015
European Central Bank/Suomen Pankki Conference
The views expressed are those of the authors. No responsibility for them should be attributed to the Bank of Canada.

Cashless Society?

- Retail payment innovations: contactless credit card (CTC), multi-purpose and single-purpose stored-value card (SVCm and SVCs).
- These innovations are fast, easy to use and gaining acceptance.
- Will these innovations replace cash? Are we headed towards the cashless society?

Our Contributions

- Estimate the impact of retail payment innovations (PI) on cash usage:

$$
C R_{i t}=\alpha_{i}+\beta \cdot P l_{i t}+X_{i t} \cdot \gamma+u_{i t}
$$

where $C R$ denotes the cash usage (volume \& value), α is unobserved heterogeneity, and X are demographic variables.

- Accounting for unobserved heterogeneity and non-random attrition results in about $\approx-3 \%$ smaller than cross-sectional estimates $(\approx-10 \%)$.

Table 5: CTC cash ratios by value (in percent)
201020112012

	2010		2011		2012	
	U	$N-U$	U	$N-U$	U	$N-U$
Overall	13	23	12	23	12	23

Table 5: CTC cash ratios by value (in percent)

	2010		2011		2012	
	U	$N-U$	U	$N-U$	U	$N-U$
Overall	13	23	12	23	12	23
Age: $18-34$	12	24	12	22	11	23
$35-49$	12	23	11	22	10	22
$50-64$	13	22	13	23	13	23
$65+$	14	24	12	23	13	24

Table 5: CTC cash ratios by value (in percent)

	2010		2011		2012	
	U	$N-U$	U	$N-U$	U	$N-U$
Overall	13	23	12	23	12	23
Age: $18-34$	12	24	12	22	11	23
$35-49$	12	23	11	22	10	22
$50-64$	13	22	13	23	13	23
$65+$	14	24	12	23	13	24
Income: $<25 \mathrm{~K}$	21	35	18	37	20	36
$25-34 \mathrm{~K}$	19	30	15	28	19	28
$35-44 \mathrm{~K}$	15	25	18	24	12	26
$45-59 \mathrm{~K}$	15	23	14	22	13	21
$60-69 \mathrm{~K}$	13	20	10	21	13	19
$70+\mathrm{K}$	9	16	9	15	9	16

Note: CTC users (U) and non-users ($\mathrm{N}-\mathrm{U}$).

Rotating Panel (Attrition)

- We exploit the panel dimension of Canadian Financial Monitor (CFM) from 2010 to 2012
- Survey on household finances; 12,000 households each year.
- Attrition rate above 50% !
- Data replenished annually to maintain a constant yearly sample size and make each year's representative.

Table 8: Attrition and refreshment in the CFM

Panels	$2010-11$	$2011-12$
Beginning sample size:	11,695	12,241
Stayers	5,699	6,079
- Attritors	5,996	6,162
+ Refreshment sample	6,542	4,944
End sample size	12,241	11,023

Without Correcting for Attrition

When attrition is missing-completely-at-random (MCAR):

$$
\begin{equation*}
E\left[\Delta C R-\beta \cdot \Delta P I-\Delta X \cdot \gamma \mid S=1, x_{t-1}, x_{t}\right]=0 \tag{1}
\end{equation*}
$$

where $S=0$ for attritors and $S=1$ for stayers.

- Test: Moffit, Fitzgerald, and Gottschalk (1999).
- Reject the MCAR hypothesis, thus we focus on other attrition models.

Correcting for Non-random Attrition

$$
\begin{equation*}
E\left[\left.\frac{\Delta C R-\beta \cdot \Delta P I-\Delta X \cdot \gamma}{g(\cdot)} \right\rvert\, S=1, x_{t-1}, x_{t}\right]=0 \tag{2}
\end{equation*}
$$

Survival function: $g(\cdot) \equiv \operatorname{Pr}\left(S=1 \mid z_{1}, z_{2}\right)$, where $z_{t} \equiv\left\{C R_{t}, P I_{t}, X_{t}\right\}$.

Correcting for Non-random Attrition

$$
\begin{equation*}
E\left[\left.\frac{\Delta C R-\beta \cdot \Delta P I-\Delta X \cdot \gamma}{g(\cdot)} \right\rvert\, S=1, x_{t-1}, x_{t}\right]=0 \tag{2}
\end{equation*}
$$

Survival function: $g(\cdot) \equiv \operatorname{Pr}\left(S=1 \mid z_{1}, z_{2}\right)$, where $z_{t} \equiv\left\{C R_{t}, P I_{t}, X_{t}\right\}$.

Two-period model

$\mathbf{T}=\mathbf{1}$	$\mathbf{T}=\mathbf{2}$
$\left(X_{1}, Y_{1}\right)$	$\left(X_{2}, Y_{2}\right)$
Stayers	
Attritors	
	Refreshers

(1) Missing-at-random (MAR): $g\left(k_{1}\left(z_{1}\right)\right)$.
(2) Selection-on-unobservables (HW): $g\left(k_{2}\left(z_{2}\right)\right)$.
(3) Additive Non-ignorable (AN): $g\left(k_{1}\left(z_{1}\right)+k_{2}\left(z_{2}\right)\right)$.

Three-period AN Model

Define $S_{2} S_{3}=1$ if a unit observed in the initial sample (period 1) survives both in periods 2 and 3 .
The survival function

$$
\operatorname{Pr}\left(S_{2} S_{3}=1 \mid z_{1}, z_{2}, z_{3}\right) \equiv g\left(k_{1}\left(z_{1}\right)+k_{2}\left(z_{2}\right)+k_{3}\left(z_{3}\right)\right)
$$

is identified as

$$
\begin{aligned}
& E\left[\left.\frac{S_{2} S_{3}}{g\left(k_{1}\left(z_{1}\right)+k_{2}\left(z_{2}\right)+k_{3}\left(z_{3}\right)\right)}-1 \right\rvert\, R_{1}=1, z_{1}\right]=0, \\
& E\left[\left.\frac{S_{2} S_{3}}{g\left(k_{1}\left(z_{1}\right)+k_{2}\left(z_{2}\right)+k_{3}\left(z_{3}\right)\right)}-1 \right\rvert\, R_{2}=1, z_{2}\right]=0, \\
& E\left[\left.\frac{S_{2} S_{3}}{g\left(k_{1}\left(z_{1}\right)+k_{2}\left(z_{2}\right)+k_{3}\left(z_{3}\right)\right)}-1 \right\rvert\, R_{3}=1, z_{3}\right]=0,
\end{aligned}
$$

where the dummy R_{t} indicates whether a unit belongs to the representative sample in period t, for $t=1,2,3$.

Figure 8: Results for CTC (Value)

Figure 8: Results for CTC (Value)

Understanding the results

Correcting for attrition $(1 / g(\cdot))$ may affect the estimated $\widehat{\beta}$ through different channels:

$$
E\left[\left.\frac{\Delta C R-\beta \cdot \Delta P I-\Delta X \cdot \gamma}{g(\cdot)} \right\rvert\, S=1, x_{t-1}, x_{t}\right]=0
$$

- Extensive margin: Switchers $\Delta P I \neq 0$ vs. non-switchers $\Delta P I=0$.
- Intensive margin: $\triangle C R$ associated with New-users $\triangle P I=1$ vs. stop-users $\Delta P I=-1$.
- Survival probability: $1 / g(\cdot)$

Figure 2: 2010-2012: $\widehat{g}(\cdot)$ versus $\Delta C R$ value for CTC

Note: Left side pane: never-users $(0,0)$ in grey, always-users $(1,1)$ in black; Right side pane: stop-users $(1,0)$ in grey, new-users $(0,1)$ in black.

Figure C.4: 2010-2011: $\widehat{g}(\cdot)$ versus $\triangle C R$ value for CTC

Note: Left side pane: never-users $(0,0)$ in grey, always-users $(1,1)$ in black; Right side pane: stop-users $(1,0)$ in grey, new-users $(0,1)$ in black.

Figure C.4: 2011-2012: $\widehat{g}(\cdot)$ versus $\Delta C R$ value for CTC

Note: Left side pane: never-users $(0,0)$ in grey, always-users $(1,1)$ in black; Right side pane: stop-users $(1,0)$ in grey, new-users $(0,1)$ in black.

Contactless S-curve?

15/17

Cross-Validation

2009/2013 Bank of Canada Methods-Of-Payment Diaries.

Summary

- CTC are displacing cash (and debit card) usage.
- In terms of value it is about 0-3\% per annum.
- Monitor situation - tipping point of S-curve?
- 2015 Merchant Cost Study $\Rightarrow 2$-sided markets.

Thanks/Merci/Kiitos!!!

