# A Theory of Dynamic Inflation Targets June 2023

#### Christopher Clayton<sup>1</sup> Andreas Schaab<sup>2</sup>

<sup>1</sup> Yale School of Management

<sup>2</sup> Toulouse School of Economics

### Introduction

- Theory: (static) inflation targets balance commitment-flexibility trade-off
- Central banks' inflation targets have evolved significantly
  - Bank of New Zealand: inflation band changed from 0-2 to 0-3 to 1-3
  - Bank of Canada: 5-year review with potential adjustment
  - Federal Reserve: long-term strategic review (2020). Long-run average of 2%
- Recent debates center around persistent, hard-to-measure objects
  - Natural interest rate, slope of Phillips curve
- Key question: how to adjust targets in response to persistent shocks?

# Main Results

- Model ingredients
  - Dynamic contracting with transfers/punishments
  - Persistent private information
  - One-period forward-looking expectations

# Main Results

- Model ingredients
  - Dynamic contracting with transfers/punishments
  - Persistent private information
  - One-period forward-looking expectations
- Main result: dynamic inflation target implements Ramsey allocation

$$T_t = \underbrace{b_{t-1}}_{\text{Target Flexibility}} \times \left( \pi_t - \underbrace{\tau_{t-1}}_{\text{Target Level}} \right)$$

Adjustments one period in advance

# Main Results

- Model ingredients
  - Dynamic contracting with transfers/punishments
  - Persistent private information
  - One-period forward-looking expectations
- Main result: dynamic inflation target implements Ramsey allocation



Adjustments one period in advance

- Declining natural rate, flattening Phillips curve imply *opposite* target adjustments
- Longer-horizon time inconsistency to study "how long is a period"
  - Higher trend inflation  $\Rightarrow$  larger long-horizon commitments

### **Related Literature**

- Mechanism design with persistent private information
  - Halac Yared (2014), Pavan et al (2014), Kapicka (2013), Farhi Werning (2013)
- Mechanism design approach to monetary/fiscal policy
  - Walsh 1995, Halac Yared 2022, Galperti (2015), Beshears et al (2022), Athey et al (2005), Waki et al (2018), Amador et al (2006), Halac Yared (2018)
- Optimal monetary policy
  - Eggertsson Woodford (2003), Werning (2011), Schmitt-Grohe Uribe (2010), Coibion et al (2012), Kiley Roberts (2017), Andrade et al (2018), Eggertsson et al (2019)
  - Recursive multiplier: Marcet Marimon (2019), Svennson (1997), Davila Schaab (2022)

# Model

- t = 0, 1, ...
- Inflation  $\pi_t \in [\underline{\pi}, \overline{\pi}]$
- Output  $y_t \in [\underline{y}, \overline{y}]$
- Economic state  $\theta_t \in [\underline{\theta}, \overline{\theta}]$ 
  - Persistent (Markov):  $f(\theta_t | \theta_{t-1})$
  - Private information of central bank
- Three agents
  - Government (principal): designs a mechanism for central bank
  - Central bank (agent): observes  $\theta_t$ , sets  $\pi_t$
  - Firms: set  $y_t$  based on inflation and inflation expectations

# **Output Determination and Government Preferences**

- $\theta_t$  not directly observed by firms/government
- Firm output determination
  - Posterior beliefs  $\mu_t$  about distribution of  $\theta_t$
  - Inflation expectations  $\pi_t^e = \mathbb{E}_t[\pi_{t+1}|\mu_t]$
  - Output  $y_t = F_t(\pi_t, \pi_t^e)$
- Social welfare (government)
  - Government flow utility  $\mathcal{U}_t(\pi_t, y_t, \theta_t)$
  - Reduced form preferences  $U_t(\pi_t, \pi_t^e, \theta_t) = \mathcal{U}_t(\pi_t, F_t(\pi_t, \pi_t^e), \theta_t)$
- Lifetime social welfare (government)

$$\mathbb{E}\sum_{t=0}^{\infty}\beta^{t}U_{t}(\pi_{t},\pi_{t}^{e},\theta_{t})$$

### Benchmark: Full-Information Ramsey Allocation

Ramsey allocation under full information solves

$$\max_{\{\pi_t(\theta^t)\}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t U_t(\pi_t, \mathbb{E}_t[\pi_{t+1}|\theta_t], \theta_t)$$

#### Benchmark: Full-Information Ramsey Allocation

Ramsey allocation under full information solves

$$\max_{\{\pi_t(\theta^t)\}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t U_t(\pi_t, \mathbb{E}_t[\pi_{t+1}|\theta_t], \theta_t)$$

Proposition. The full-information Ramsey allocation satisfies

$$\frac{\partial U_t}{\partial \pi_t} = \nu_{t-1} \,, \qquad \text{where} \ \ \nu_{t-1} = \begin{cases} -\frac{1}{\beta} \frac{\partial U_{t-1}}{\partial \mathbb{E}_{t-1}(\pi_t | \theta_{t-1})} & \text{ for } t \ge 1 \\ 0 & \text{ for } t = 0 \end{cases}$$

 $u_{t-1} > 0 \Rightarrow \text{inflationary bias}$  $u_{t-1} < 0 \Rightarrow \text{deflationary bias}$ 

Exposition: Term  $\nu_{t-1}$  the *inflationary bias* 

### Central Bank and Mechanism

$$\mathbb{E}\sum_{t=0}^{\infty}\beta^{t}\bigg[U_{t}(\pi_{t},\pi_{t}^{e},\theta_{t})+T_{t}\bigg]$$

- *T<sub>t</sub>*: an incentive/punishment scheme for the central bank
  - Costless to government
  - Congressional scrutiny, public hearings, firing threat, reputation, monetary incentives
- Mechanism:  $(\pi_t(\tilde{\theta}^t), T_t(\tilde{\theta}^t))$  based on report history  $\tilde{\theta}^t = (\tilde{\theta}_1, ..., \tilde{\theta}_t)$ 
  - Public reports, full transparency
- Firm posterior beliefs are  $\mu_t = \tilde{\theta}_t$ , so

$$\pi_t^e(\tilde{\theta}^t) = \mathbb{E}_t[\pi_{t+1}(\tilde{\theta}^t, \theta_{t+1}) | \tilde{\theta}_t]$$

### **Incentive Compatibility**

• Central bank value from a one-shot deviation

$$\mathcal{W}_t(\theta^{t-1}, \tilde{\theta}_t | \theta_t) = U_t \left( \pi_t(\theta^{t-1}, \tilde{\theta}_t), \pi_t^e(\theta^{t-1}, \tilde{\theta}_t), \theta_t \right) + T_t(\theta^{t-1}, \tilde{\theta}_t) + \beta \mathbb{E}_t \left[ \mathcal{W}_{t+1}(\theta^{t-1}, \tilde{\theta}_t, \theta_{t+1} | \theta_{t+1}) \middle| \theta_t \right]$$

#### Incentive Compatibility

• Central bank value from a one-shot deviation

$$\mathcal{W}_{t}(\theta^{t-1}, \tilde{\theta}_{t} | \theta_{t}) = U_{t} \left( \pi_{t}(\theta^{t-1}, \tilde{\theta}_{t}), \pi_{t}^{e}(\theta^{t-1}, \tilde{\theta}_{t}), \theta_{t} \right) + T_{t}(\theta^{t-1}, \tilde{\theta}_{t}) + \beta \mathbb{E}_{t} \left[ \mathcal{W}_{t+1}(\theta^{t-1}, \tilde{\theta}_{t}, \theta_{t+1} | \theta_{t+1}) \middle| \theta_{t} \right]$$

• Global IC:

$$\mathcal{W}_t(\theta^t|\theta_t) \ge \mathcal{W}_t(\theta^{t-1}, \tilde{\theta}_t|\theta_t) \quad \forall t, \theta^t, \tilde{\theta}_t$$

### Incentive Compatibility

• Central bank value from a one-shot deviation

$$\mathcal{W}_{t}(\theta^{t-1}, \tilde{\theta}_{t} | \theta_{t}) = U_{t} \left( \pi_{t}(\theta^{t-1}, \tilde{\theta}_{t}), \pi_{t}^{e}(\theta^{t-1}, \tilde{\theta}_{t}), \theta_{t} \right) + T_{t}(\theta^{t-1}, \tilde{\theta}_{t}) + \beta \mathbb{E}_{t} \left[ \mathcal{W}_{t+1}(\theta^{t-1}, \tilde{\theta}_{t}, \theta_{t+1} | \theta_{t+1}) \middle| \theta_{t} \right]$$

• Global IC:

$$\mathcal{W}_t(\theta^t | \theta_t) \ge \mathcal{W}_t(\theta^{t-1}, \tilde{\theta}_t | \theta_t) \quad \forall t, \theta^t, \tilde{\theta}_t$$

• Local IC (Envelope Condition):

$$\frac{\partial \mathcal{W}_t(\theta^t | \theta_t)}{\partial \theta_t} = \frac{\partial U_t\left(\pi_t(\theta^t), \pi_t^e(\theta^t), \theta_t\right)}{\partial \theta_t} + \beta \mathbb{E}_t \left[ \mathcal{W}_{t+1}(\theta^{t+1} | \theta_{t+1}) \frac{\partial f(\theta_{t+1} | \theta_t) / \partial \theta_t}{f(\theta_{t+1} | \theta_t)} \middle| \theta_t \right]$$

- Two key forces
  - 1. Time inconsistency
  - 2. Firm beliefs and inflation expectations

### Dynamic Inflation Target

$$T_t = b_{t-1} \cdot \left( \pi_t - \tau_{t-1} \right)$$

• 
$$\tau_{t-1} = \mathbb{E}_{t-1}[\pi_t | \tilde{\theta}_{t-1}] = \pi_{t-1}^e$$
 is target level

- $b_{t-1}$  is target flexibility
  - Higher  $b_{t-1}$  termed a *more* flexible target
  - $b_{t-1} < 0$ : *punish* inflation
  - $b_{t-1} > 0$ : *reward* inflation
- Target level and flexibility determined *one period in advance* (at t 1)

Dynamic Inflation Target Implements Ramsey

#### **Proposition:**

- 1. A dynamic inflation target implements the full-information Ramsey allocation in a locally incentive compatible mechanism
- 2. Target flexibility is  $b_{t-1} = -\nu_{t-1}$
- 3. The target  $(\tau_{t-1}, b_{t-1})$  is a sufficient statistic at date *t* for the history  $\theta^{t-1}$  of past types.

#### Sketch of Argument

1. Setting  $\pi_t$ : Inherited target slope corrects current inflationary bias

$$\frac{\partial U_t}{\partial \pi_t} \frac{\partial \pi_t}{\partial \tilde{\theta}_t} + \underbrace{\frac{\partial T_t}{\partial \pi_t}}_{=b_{t-1}} \frac{\partial \pi_t}{\partial \tilde{\theta}_t} = \left[\underbrace{\frac{\partial U_t}{\partial \pi_t} - \nu_{t-1}}_{=0 \text{ (Ramsey)}}\right] \frac{\partial \pi_t}{\partial \tilde{\theta}} = 0$$

#### Sketch of Argument

1. Setting  $\pi_t$ : Inherited target slope corrects current inflationary bias

$$\frac{\partial U_t}{\partial \pi_t} \frac{\partial \pi_t}{\partial \tilde{\theta}_t} + \underbrace{\frac{\partial T_t}{\partial \pi_t}}_{=b_{t-1}} \frac{\partial \pi_t}{\partial \tilde{\theta}_t} = \left[\underbrace{\frac{\partial U_t}{\partial \pi_t} - \nu_{t-1}}_{=0 \text{ (Ramsey)}}\right] \frac{\partial \pi_t}{\partial \tilde{\theta}} = 0$$

2. Updating  $b_t$ : At date t, central bank internalizes date t Phillips curve when updating target for t + 1. Corrects future self's inflationary bias

#### Sketch of Argument

1. Setting  $\pi_t$ : Inherited target slope corrects current inflationary bias

$$\frac{\partial U_t}{\partial \pi_t} \frac{\partial \pi_t}{\partial \tilde{\theta}_t} + \underbrace{\frac{\partial T_t}{\partial \pi_t}}_{=b_{t-1}} \frac{\partial \pi_t}{\partial \tilde{\theta}_t} = \left[\underbrace{\frac{\partial U_t}{\partial \pi_t} - \nu_{t-1}}_{=0 \text{ (Ramsey)}}\right] \frac{\partial \pi_t}{\partial \tilde{\theta}} = 0$$

- 2. Updating  $b_t$ : At date t, central bank internalizes date t Phillips curve when updating target for t + 1. Corrects future self's inflationary bias
- 3. Updating  $\tau_t$ : Inflation target corrects incentive to distort firm beliefs

$$\frac{\partial U_t}{\partial \pi^e_t} \frac{d\pi^e_t}{d\tilde{\theta_t}} + \beta \mathbb{E}_t \underbrace{\frac{\partial T_{t+1}}{\partial \tau_t}}_{=b_t} \frac{\partial \tau_t}{\partial \tilde{\theta_t}} = \begin{bmatrix} \frac{\partial U_t}{\partial \pi^e_t} - \beta \nu_t \\ \frac{\partial T_t}{\partial \pi^e_t} \end{bmatrix} \frac{d\pi^e_t}{d\tilde{\theta_t}} = 0$$
(By Definition)

# Global Incentive Compatibility for Linear-Quadratic

- Sufficient condition in LQ models: shock persistence not too high 

   Details
  - LQ models studied encompass all applications
- Example for talk: cost-push shock model

$$U_t(\pi_t, \pi_t^e, \theta_t) = -\frac{1}{2}\pi_t^2 - \frac{1}{2}\hat{\alpha}(\underbrace{\pi_t - \beta\pi_t^e}_{NKPC} - \theta_t)^2$$

and  $\mathbb{E}_t[\theta_{t+1}|\theta_t] = \rho \theta_t$ ,  $0 \le \rho \le 1$ 

- **Corollary.** In the cost-push shock model, the dynamic inflation target is globally incentive compatible if  $\rho \leq \rho^*(\hat{\alpha}, \beta)$
- Numerically,  $\rho^*(\hat{\alpha}, \beta) = 1$  in all cases

# Application 1: Declining Natural Interest Rate and ELB

• Standard NKPC and Dynamic IS (with  $\sigma = 0$ )

$$\pi_t = \beta \pi_t^e + \kappa y_t$$





- Demand shock realized after inflation set. Nominal interest rate adjusts
- $\epsilon_t$  iid uniform
- ELB: Utility penalty  $\lambda_0 \lambda_1 i_t$  when  $i_t < 0$
- Flow utility:

$$\mathcal{U}(\pi_t, y_t, i_t^*) = -\frac{1}{2}\pi_t^2 - \frac{1}{2}\alpha y_t^2 + w(i_t^*)$$

where  $w(i_t^*) = -w_0 + \beta w_1 i_t^* - \frac{1}{2} \beta w_2 i_t^{*2}$ ,  $i_t^* = \pi_t^e + \theta_t$ 

# Application 1: Declining Natural Interest Rate



**Proposition.** A declining natural rate  $(\downarrow \theta_t)$  increases target level  $(\uparrow \tau_t)$  and target flexibility  $(\uparrow b_t)$ .

# Application 2: Flattening Phillips Curve

• Standard NKPC

$$\pi_t = \beta \pi_t^e + \kappa y_t$$

• Flow utility

$$\mathcal{U}(\pi_t, y_t) = -\frac{1}{2}\pi_t^2 - \frac{1}{2}\alpha(\theta_t y_t)^2 + \theta_t y_t$$

- Positive shock  $\uparrow \theta_t$  equivalent to flattening Phillips curve  $(\downarrow \kappa)$
- Set  $\alpha = 0$  for tractability

# Application 2: Flattening Phillips Curve



**Proposition.** A flattening Phillips curve ( $\uparrow \theta_t$ ) lowers target level ( $\downarrow \tau_t$ ) and target flexibility ( $\downarrow b_t$ ).

# Long-Horizon Dynamic Inflation Targets

- What does it mean for targets to adjust "one period in advance"?
- *K* periods of time inconsistency:  $U_t(\pi_t, \mathbb{E}_t[\pi_{t+1}|\tilde{\theta}_t], \dots, \mathbb{E}_t[\pi_{t+K}|\tilde{\theta}_t], \theta_t)$

### Long-Horizon Dynamic Inflation Targets

- What does it mean for targets to adjust "one period in advance"?
- *K* periods of time inconsistency:  $U_t(\pi_t, \mathbb{E}_t[\pi_{t+1}|\tilde{\theta}_t], \dots, \mathbb{E}_t[\pi_{t+K}|\tilde{\theta}_t], \theta_t)$
- **Proposition.** Full-information Ramsey

$$\frac{\partial U_t}{\partial \pi_t} = \sum_{k=1}^{K} \nu_{t-k,t} \quad \text{where } \nu_{t-k,t} = \begin{cases} -\frac{1}{\beta^k} \frac{\partial U_{t-k}}{\partial \mathbb{E}_{t-k}[\pi_t \mid \theta_{t-k}]} & \text{if } t-k \ge 0\\ 0 & \text{if } t-k < 0 \end{cases}$$

- **Proposition.** A *K*-horizon dynamic inflation target implements the full-information Ramsey allocation in a locally incentive compatible mechanism.
- Analogous global IC results for LQ models

## Long-Horizon Dynamic Inflation Targets

- What does it mean for targets to adjust "one period in advance"?
- *K* periods of time inconsistency:  $U_t(\pi_t, \mathbb{E}_t[\pi_{t+1}|\tilde{\theta}_t], \dots, \mathbb{E}_t[\pi_{t+K}|\tilde{\theta}_t], \theta_t)$
- **Proposition.** Full-information Ramsey

$$\frac{\partial U_t}{\partial \pi_t} = \sum_{k=1}^{K} \nu_{t-k,t} \quad \text{where } \nu_{t-k,t} = \begin{cases} -\frac{1}{\beta^k} \frac{\partial U_{t-k}}{\partial \mathbb{E}_{t-k}[\pi_t \mid \theta_{t-k}]} & \text{if } t-k \ge 0\\ 0 & \text{if } t-k < 0 \end{cases}$$

- **Proposition.** A *K*-horizon dynamic inflation target implements the full-information Ramsey allocation in a locally incentive compatible mechanism.
- Analogous global IC results for LQ models
- **Question**: How important are short-horizon (*k* small) versus long-horizon (*k* large) commitments to determining the target?

### Commitment horizons with trend inflation

- $\nu_{t,t+k}$ : commitment made at date *t* for period t + k flexibility
- Application to trend inflation

$$\pi_t = \kappa y_t + (\beta \gamma + \tilde{\beta}) \mathbb{E}_t \pi_{t+1} + \tilde{\beta} \mathbb{E}_t \left[ \sum_{s=1}^{\infty} \tilde{\delta}^s \pi_{t+1+s} \right]$$

### Commitment horizons with trend inflation

- $\nu_{t,t+k}$ : commitment made at date *t* for period t + k flexibility
- Application to trend inflation

$$\pi_t = \kappa y_t + (\beta \gamma + \tilde{\beta}) \mathbb{E}_t \pi_{t+1} + \tilde{\beta} \mathbb{E}_t \bigg[ \sum_{s=1}^{\infty} \tilde{\delta}^s \pi_{t+1+s} \bigg]$$

• **Proposition**: For any  $U_t(\pi_t, y_t, \theta_t)$ ,

$$\frac{\nu_{t,t+k}}{\nu_{t,t+1}} = \beta^* \delta^{*(k-1)}$$

For  $\gamma$  not too large,  $\nu_{t,t+k}/\nu_{t,t+1}$  increases in trend inflation rate  $\gamma$ 

Higher trend inflation ⇒ longer-horizon commitments more important

### **Extension: Informed Firms**

- Fraction  $\gamma \in [0, 1]$  of firms directly observe  $\theta_t$
- Average inflation expectations  $\pi_t^e = \gamma \mathbb{E}_t[\pi_{t+1}|\theta_t] + (1-\gamma)\mathbb{E}_t[\pi_{t+1}|\tilde{\theta}_t]$
- Penalized DIT:  $T_t = b_{t-1}(\pi_t \pi_t^e) \gamma P_t$
- **Proposition.** A penalized dynamic inflation target implements the full-information Ramsey allocation in a locally incentive compatible mechanism.
- Intuition: unpenalized target adjustments too attractive
- Interestingly, suggests "simpler" mechanisms optimal when firms are uninformed



### **Extension: Costly Transfers**

- Transfer  $T_t$  to CB has a cost  $\kappa T_t$  to government
  - Cross-subsidization still possible
- For today: multiplicative taste shocks  $\theta_t u_t(\pi_t, \pi_t^e)$ 
  - See paper for full case
- Proposition. The allocation under the optimal relaxed mechanism is

$$\vartheta_t \frac{\partial u_t}{\partial \pi_t} = \vartheta_{t-1} \frac{-1}{\beta} \frac{\partial u_{t-1}}{\partial \pi_{t-1}^e}, \qquad \vartheta_t = \theta_t - \frac{\kappa}{1+\kappa} \Gamma_t$$

- Ramsey allocation where virtual value  $\vartheta_t$  replaces true type
- **Corollary.** Reversion to DIT when  $\theta_t \in \{\underline{\theta}, \overline{\theta}\}$

$$\Gamma_t = \Gamma_{t-1} \frac{1 - F(\theta_t | \theta_{t-1})}{f(\theta_t | \theta_{t-1})} \mathbb{E}_{t-1} \left[ \frac{\partial f(s_t | \theta_{t-1}) / \partial \theta_{t-1}}{f(s_t | \theta_{t-1})} \left| s_t \ge \theta_t \right]$$

### Conclusion

- Dynamic inflation target implements Ramsey allocation
- Target level and flexibility adjusted one period in advance
- Controlled target adjustment may be preferable to a static target

# Appendix: Informed Firms

Penalized DIT

$$T_t = -b_{t-1}(\pi_t - \tau_t) - \gamma P_t$$

• Lifetime expected penalty  $\overline{P}_t = P_t + \beta \mathbb{E}_t[\overline{P}_{t+1}|\theta_t]$ 

**Proposition.** A penalized dynamic inflation target implements the full-information Ramsey allocation in a locally incentive compatible mechanism, with target flexibility  $b_{t-1} = \nu_{t-1}$ . The lifetime penalty function  $\overline{P}$  is given in recursive form by

$$\overline{P}_{t}(\theta^{t}) = \int_{\underline{\theta}}^{\theta_{t}} \omega_{t}(\theta^{t-1}, x_{t}) dx_{t} + \int_{\underline{\theta}}^{\theta_{t}} \beta \mathbb{E}_{t} \left[ \overline{P}_{t+1} \frac{\partial f(\theta_{t+1}|x_{t}) / \partial x_{t}}{f(\theta_{t+1}|x_{t})} \middle| x_{t} \right] dx_{t}$$
where  $\omega_{t}(\theta^{t}) = \beta \nu_{t} \mathbb{E}_{t} \left[ \pi_{t=1} \frac{\partial f(\theta_{t+1}|\theta_{t}) / \partial \theta_{t}}{f(\theta_{t+1}|\theta_{t})} \middle| \theta_{t} \right]$ 
back

## Global Incentive Compatibility in LQ

Preferences

$$\mathcal{U}_t(x_{t1},\ldots,x_{tN},\theta_t) = \sum_{n=1}^N \left[ -\frac{1}{2}a_n x_{tn}^2 + b_n(\theta_t) x_{tn} \right]$$

where  $a_n \ge 0$  and  $b_n(\theta_t) = b_{n0} + b_{n1}\theta_t$ 

- $x_{tn} = c_n \pi_t + \beta d_n \pi_t^e$
- $\mathbb{E}_t[\theta_{t+1}|\theta_t] = \rho \theta_t$  for  $0 \le \rho \le 1$
- Proposition. There exists a ρ\* > 0 such that the dynamic inflation target is globally incentive compatible if ρ ≤ ρ\*.

▶ Back