Raising the Inflation Target: How Much Extra Room Does It Really Give?

Jean-Paul L'Huillier Raphael Schoenle

Bank of Finland June 16, 2023

イロト 不得 トイヨト イヨト 二日

0/17

Motivation: Higher Inflation Now, But Structural Threat of Liquidity Traps in the Future? Big Shocks?

Our question:

If raise the target to get extra room: What are the **constraints** faced by the policy maker?

Not only theory: we quantify these constraints

 How much more policy room does one *really* get?
Some, but less than intended
Reason: Private sector will react to policy Thus: target needs to be raised by more

イロト 不得 とくほと くほとう ほ

First-Order Reaction by Private Sector

Firms adjust prices more frequently

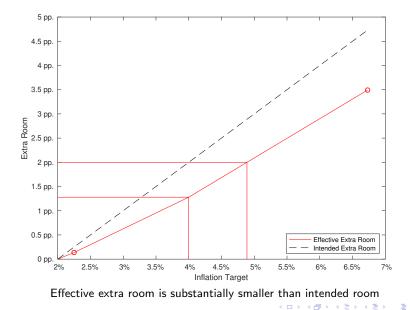
- ► Old idea: Ball, Mankiw & Romer (1988) higher trend inflation ⇒ increased price flexibility
- We present new empirical evidence
- Phillips Curve steepens + Potency of monetary policy \downarrow

Key implication: Need to adjust nominal rate by more in recessions

イロト 不得 とくほと くほとう ほ

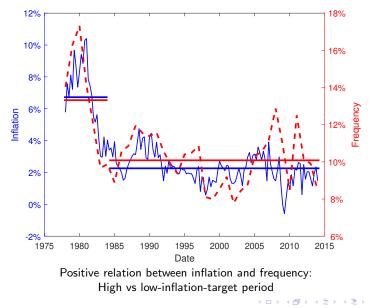
- 1. Evidence on relation between target and frequency, U.S.
- 2. Because of potency loss:

 $effective \ extra \ room \ < \ intended \ extra \ room$

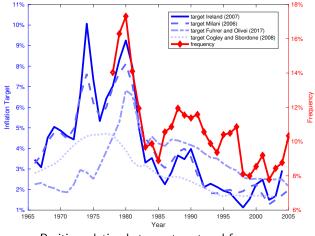

Raising from 2 to 4%: only 0.51 to 1.60 pp. eff. extra room To effectively get more room, need to increase target by more

イロン 不得 とうほう イロン しゅ

3/17

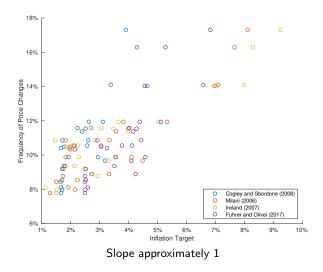

3. Higher optimal target

Intended and Effective Extra Room



EMPIRICS

Monthly Frequency and Inflation, U.S. 1978–2015



Monthly Frequency and Inflation Target Measures, Over Time

Positive relation between target and frequency

Monthly Frequency and Inflation Target Measures, Scatter Plot

Estimated equation: $freq_t = \beta_0 + \beta_1 \overline{\pi}_t + \epsilon_t$

	(I)	(II)	(111)	(IV)
Target $\overline{\pi}_t$	1.61***	0.98***	1.04***	2.26***
	(0.21)	(0.09)	(0.11)	(0.33)
constant	4.61***	7.42***	7.26***	5.25***
	(0.84)	(0.36)	(0.42)	(0.87)
N	28	27	28	26
R^2	68%	83%	78%	66%
Data means:				
$\overline{\pi}_t$	3.42	4.04	3.90	2.85
freqt	10.69	10.75	10.69	10.8

Table: Frequency of Price Changes and Inflation Target

Notes: *** denotes significant at the 1% level. (I) Fuhrer and Olivei, (II) Ireland, (III) Milani, (IV) Cogley and Sbordone.

- NK model with trend inflation
- Perfect indexation => cancels effect of trend inflation Phillips curve (PC) is standard (Ascari 2004)

Output gap shocks

Increased Price Flexibility: Calvo Parameter θ

Assumption: prices more flexible the higher the target:

$$\frac{\partial \theta}{\partial \overline{\pi}} < 0$$

Slope of PC: $\kappa(\theta) \in [0,\infty)$ (decreasing function)

• Thus: κ increasing function of $\overline{\pi}$

 Here: theoretical Later: empirical relationship (Also extension where disciplined by menu cost model)

Thought Experiment

Consider 2 economies, economy 1 and economy 2, s.t.

$\overline{\pi}_2 > \overline{\pi}_1$

• Thus,
$$\overline{i}_2 > \overline{i}_1$$
 and $\kappa_2 > \kappa_1$

Consider shock that brings the rate to 0 in economy 1.
Denote it η⁰.

RESULT: $\eta^0 = -\frac{1+\phi\kappa_1}{\phi\kappa_1}\overline{i}_1$

Now, suppose η⁰ hits economy 2. <u>Question</u>: By how much does i₂ move? And what is the remaining *effective* room away from 0?

J.-P. L'Huillier & R. Schoenle

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ ・ りゅつ

Theorem

Consider the shock η^0 . Then, the effective extra policy room is given by

$$\mathfrak{R}^{eff}(\eta^{\mathsf{0}}) = \Delta \overline{\pi} + \Delta \mathfrak{P} \cdot |\eta^{\mathsf{0}}|$$

where $\Delta \mathfrak{P}$ is the loss of potency of monetary policy, equal to

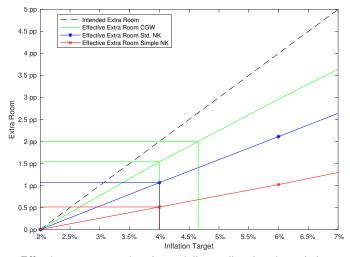
$$\Delta \mathfrak{P} = -rac{\phi(\kappa_2-\kappa_1)}{(1+\phi\kappa_1)(1+\phi\kappa_2)} < 0$$

Proof proceeds by simple algebra
Notice: ℜ^{eff}(η⁰) < Δπ̄

The Formula: Quantitative Insights

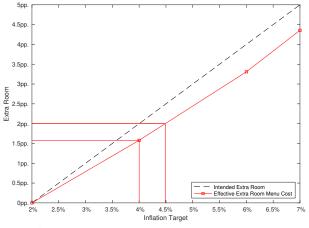
$$\mathfrak{R}^{eff}(\eta^{0}) = \Delta \overline{\pi} + \Delta \mathfrak{P} \cdot |\eta^{0}|$$

• According to formula, difference $\Re^{eff}(\eta^0) - \Delta \overline{\pi}$ depends on

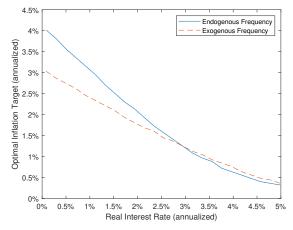

change in potency \times size of shock

QUANTITATIVE MODELS

How much effective extra room?


- 1. Simple NK (simple interest rate rule)
- 2. Standard NK (Taylor rule)
- 3. Medium Scale: Coibion, Gorodnichenko & Wieland (2012)
- 4. Menu cost model: Dotsey, King & Wolman (1999)

Effective and Intended Extra Room, NK Models


Effective extra room is substantially smaller than intended room

2. Using a Medium-Scale Menu Cost Model (Similar to Dotsey et al. 1999)

Quantitatively similar gain in effective extra room

Optimal Target

Lower r^* increases ZLB risk. Also, increased price flexibility increases the cost of ZLB.

- 1. Higher inflation target \Longrightarrow increased price flexibility
- 2. $\mathfrak{R}^{eff}(\eta^0) < \Delta \overline{\pi}$
- 3. Policy:

"Do not raise it, or, if you raise it, make sure you raise it enough."