Multiplex interbank networks and systemic importance An application to European data

Iñaki Aldasoro¹ Iván Alves²

¹Goethe University Frankfurt & SAFE

²European Central Bank

September 25, 2015

RiskLab/BoF/ESRB Conference on *Systemic Risk Analytics* Bank of Finland, Helsinki

Disclaimer: the views expressed here are solely those of the authors and do not necessarily represent the views of the ECB and the Eurosystem

Aldasoro & Alves

Multiplex interbank networks and systemic importance

Introduction ●000		

Motivation - Multiplex network

Figure 1 : A stylised representation of a multiplex interbank network.

Introduction	Systemic Importance IO	Data	Results
O●OO	00000	OO	0000000
This paper			

- Study the multiplex structure of the network of large European banks
 - Similarity analysis
 - Core-periphery analysis
 - Correlated multiplexity
- Present new measures of systemic importance which allow for a decomposition of the global systemic importance index for any bank into the contributions of each of the sub-networks
- Highlight important policy content of the choice of granularity of information in the analysis of systemic importance

Introduction	Systemic Importance IO	Data	Results
0000	00000	00	0000000
Summary			

- Existence of connection in one layer strongly associated to existence of the same connection in another layer (high similarity)
- Large core with core-periphery structure rather stable across layers (especially for maturity type)
- Network centrality indicators highly correlated across layers (positively correlated multiplexity)

Introduction	Systemic Importance IO	Data	Results
OO●O	00000	00	0000000
Summary			

- Existence of connection in one layer strongly associated to existence of the same connection in another layer (high similarity)
- Large core with core-periphery structure rather stable across layers (especially for maturity type)
- Network centrality indicators highly correlated across layers (positively correlated multiplexity)

Yet ...

- Taking a holistic perspective that goes beyond layer-specific analyses can yield useful insights for policy
- Despite similarity and correlation: core ≠ centrality ≠ layer-specific contributions to overall systemic importance

Introduction	Systemic Importance IO	Data	Results
000●	00000	OO	0000000
Related lite	rature		

- Importance of structure of interconnectedness (Allen & Gale '00, Freixas et al. '00)
- Analyses of interconnectedness observable in banks' balance sheets (Boss et al. '04, Craig & von Peter '14, Soramäki et al. '07, van Lelyveld & Int Veld '12, Fricke & Lux '12, Langfield et al. '14, and Alves et al. '13, etc.)
- Systemic importance in interbank networks (Aldasoro & Angeloni '15, Battiston et al. '12, Soramäki & Cook '13, Greenwood et al. '14)
- Multiplex networks, with focus on interbank (Kivelä et al. '14, Lee et al. '14, Montagna & Kok '13, Langfield et al. '14, León et al. '14, Molina-Borboa et al. '15, Poledna et al. '15)

	Systemic Importance IO		
	00000		
Single Layer			
The Input-	Output approach - Sin	gle layer case	

$$Xi + I = e + d + X'i$$
 (1)

Introduction 0000	Systemic Importance IO ●○○○○		Results 0000000
Single Layer			
The Input-	Output approach - Sin	gle layer case	

$$Xi + I = e + d + X'i$$
(1)

From matrix representation of balance sheet of banking system to

	Systemic Importance IO	
	00000	
Single Layer		

The Input-Output approach - Single layer case

.

$$\mathbf{X}\mathbf{i} + \mathbf{I} = \mathbf{e} + \mathbf{d} + \mathbf{X}'\mathbf{i} \tag{1}$$

From matrix representation of balance sheet of banking system to **1** Mapping between non-interbank assets (I) and total assets (q)

$$\mathbf{q} = (\mathbf{I} - \mathbf{A})^{-1}\mathbf{I} = \mathbf{B}\mathbf{I}, \text{ with } \mathbf{A} = \mathbf{X}\hat{\mathbf{q}}^{-1}$$
 (2)

	Systemic Importance IO	
	00000	
Single Layer		

The Input-Output approach - Single layer case

$$\mathbf{X}\mathbf{i} + \mathbf{I} = \mathbf{e} + \mathbf{d} + \mathbf{X}'\mathbf{i} \tag{1}$$

From matrix representation of balance sheet of banking system to
 Mapping between non-interbank assets (I) and total assets (q)

$$\mathbf{q} = (\mathbf{I} - \mathbf{A})^{-1}\mathbf{I} = \mathbf{B}\mathbf{I}, \text{ with } \mathbf{A} = \mathbf{X}\hat{\mathbf{q}}^{-1}$$
 (2)

2 Mapping between non-interbank funding $(\mathbf{e} + \mathbf{d})$ to total funding

$$\mathbf{q}' = (\mathbf{e} + \mathbf{d})' (\mathbf{I} - \mathbf{O})^{-1} = (\mathbf{e} + \mathbf{d})' \mathbf{G}, \quad \text{with } \mathbf{O} = \hat{\mathbf{q}}^{-1} \mathbf{X} \quad (3)$$

	Systemic Importance IO	
	00000	
Single Layer		

The Input-Output approach - Single layer case

$$\mathbf{X}\mathbf{i} + \mathbf{I} = \mathbf{e} + \mathbf{d} + \mathbf{X}'\mathbf{i} \tag{1}$$

From matrix representation of balance sheet of banking system to
 Mapping between non-interbank assets (I) and total assets (q)

$$\mathbf{q} = (\mathbf{I} - \mathbf{A})^{-1}\mathbf{I} = \mathbf{B}\mathbf{I}, \text{ with } \mathbf{A} = \mathbf{X}\hat{\mathbf{q}}^{-1}$$
 (2)

2 Mapping between non-interbank funding $(\mathbf{e} + \mathbf{d})$ to total funding

$$\mathbf{q}' = (\mathbf{e} + \mathbf{d})' (\mathbf{I} - \mathbf{O})^{-1} = (\mathbf{e} + \mathbf{d})' \mathbf{G}, \quad \text{with } \mathbf{O} = \hat{\mathbf{q}}^{-1} \mathbf{X} \quad (3)$$

Systemic importance of bank j as backward and forward linkages
Sum of elements in column j of B: h_{bj} = i'Bi_j
Sum of elements in row j of G: h_{fj} = i'_jGi

	Systemic Importance IO	
	0000	
Multi Layer		
The case o	f many layers	

Assume
$$\alpha = 1, ..., L$$
 different layers, such that ${\sf X} = \sum_{lpha = 1}^L {\sf X}_lpha$

	Systemic Importance IO	
	0000	
Multi Layer		
The case o	f many layers	

Assume \$\alpha = 1\$, ..., \$L\$ different layers, such that \$\mathbf{X} = \sum_{\alpha=1}^{L} \mathbf{X}_{\alpha}\$
Balance sheet: \$\mathbf{e} + \mathbf{d} + \left(\sum_{\alpha=1}^{L} \mathbf{X}_{\alpha}\right) \mathbf{i} = \left(\sum_{\alpha=1}^{L} \mathbf{X}_{\alpha}\right) \mathbf{i} + \mathbf{l}\$

	Systemic Importance IO	
	0000	
Multi Layer		
The case c	of many layers	

• Assume $\alpha = 1, ..., L$ different layers, such that $\mathbf{X} = \sum_{\alpha=1}^{L} \mathbf{X}_{\alpha}$

- Balance sheet: $\mathbf{e} + \mathbf{d} + \left(\sum_{\alpha=1}^{L} \mathbf{X}'_{\alpha}\right) \mathbf{i} = \left(\sum_{\alpha=1}^{L} \mathbf{X}_{\alpha}\right) \mathbf{i} + \mathbf{I}$
- Focus first on asset side: $\mathbf{q} = (\mathbf{I} \mathbf{A})^{-1}\mathbf{I} \equiv \mathbf{B}\mathbf{I}$, with $\mathbf{A} = \sum_{\alpha=1}^{L} \mathbf{A}_{\alpha}$ and $\mathbf{A}_{\alpha} \equiv \mathbf{X}_{\alpha} \hat{\mathbf{q}}^{-1}$

	Systemic Importance IO	
	0000	
Multi Layer		
The case c	of many layers	

• Assume $\alpha = 1, ..., L$ different layers, such that $\mathbf{X} = \sum_{\alpha=1}^{L} \mathbf{X}_{\alpha}$

- Balance sheet: $\mathbf{e} + \mathbf{d} + \left(\sum_{\alpha=1}^{L} \mathbf{X}'_{\alpha}\right) \mathbf{i} = \left(\sum_{\alpha=1}^{L} \mathbf{X}_{\alpha}\right) \mathbf{i} + \mathbf{I}$
- Focus first on asset side: $\mathbf{q} = (\mathbf{I} \mathbf{A})^{-1}\mathbf{I} \equiv \mathbf{B}\mathbf{I}$, with $\mathbf{A} = \sum_{\alpha=1}^{L} \mathbf{A}_{\alpha}$ and $\mathbf{A}_{\alpha} \equiv \mathbf{X}_{\alpha} \hat{\mathbf{q}}^{-1}$
- A useful property of the Leontief inverse: infinite series

$$\mathbf{B} = (\mathbf{I} - \mathbf{A})^{-1}$$

= $\mathbf{I} + \mathbf{A} + \mathbf{A}^2 + \mathbf{A}^3 + \cdots$
= $\mathbf{I} + \mathbf{A} \left(\mathbf{I} + \mathbf{A} + \mathbf{A}^2 + \cdots \right)$
= $\mathbf{I} + \mathbf{A}\mathbf{B}$

	Systemic Importance IO	
	00000	
Multi Layer		
The case of r	many layers (cont.)	

• Using this and noting that $\mathbf{A} = \sum_{\alpha=1}^{L} \mathbf{A}_{\alpha}$, 2 can be expressed as:

$$\mathbf{q} = \mathbf{B}\mathbf{I} = (\mathbf{I} + \mathbf{A}\mathbf{B})\mathbf{I} = \left(\mathbf{I} + \sum_{\alpha=1}^{L} \mathbf{H}_{\alpha}\right)\mathbf{I}$$
(4)

with $\mathbf{H}_{\alpha} \equiv \mathbf{A}_{\alpha}\mathbf{B}$, $\alpha = 1, \dots, L$

Introduction 0000 Multi Laver	Systemic Importance IO ○○●○○	Data OO	Results 0000000
	any lavers (cont.)		

• Using this and noting that $\mathbf{A} = \sum_{\alpha=1}^{L} \mathbf{A}_{\alpha}$, 2 can be expressed as:

$$\mathbf{q} = \mathbf{B}\mathbf{I} = (\mathbf{I} + \mathbf{A}\mathbf{B})\mathbf{I} = \left(\mathbf{I} + \sum_{\alpha=1}^{L} \mathbf{H}_{\alpha}\right)\mathbf{I}$$
(4)

with $\mathbf{H}_{\alpha} \equiv \mathbf{A}_{\alpha}\mathbf{B}, \ \alpha = 1, \dots, L$

Backward linkage index still calculated as before (for bank *j*: sum of elements in column *j* of **B**), but now we are able to attribute to each layer α its contribution to the overall systemic importance index, as measured by the column sum *j* of the \mathbf{H}_{α} matrices.

	Systemic Importance IO		
	00000		
Multi Layer			
Decomposi	na systemic importance	<u>^</u>	

Re-express the matrix \mathbf{H}_{α} in vector notation:

$$\mathbf{H}_{\alpha} = \begin{bmatrix} \mathbf{a}_{\alpha 1}^{\prime} \mathbf{b}_{1} & \cdots & \mathbf{a}_{\alpha 1}^{\prime} \mathbf{b}_{n} \\ \vdots & \ddots & \vdots \\ \mathbf{a}_{\alpha n}^{\prime} \mathbf{b}_{1} & \cdots & \mathbf{a}_{\alpha n}^{\prime} \mathbf{b}_{n} \end{bmatrix}$$
(5)

where $\mathbf{a}'_{\alpha i} = i^{th}$ row of matrix \mathbf{A}_{α} and $\mathbf{b}_{j} = j^{th}$ column of matrix \mathbf{B} .

	Systemic Importance IO		
	00000		
Multi Layer			
Decomposi	na avetamia importana	<u>^</u>	

Re-express the matrix \mathbf{H}_{α} in vector notation:

$$\mathbf{H}_{\alpha} = \begin{bmatrix} \mathbf{a}_{\alpha 1}^{\prime} \mathbf{b}_{1} & \cdots & \mathbf{a}_{\alpha 1}^{\prime} \mathbf{b}_{n} \\ \vdots & \ddots & \vdots \\ \mathbf{a}_{\alpha n}^{\prime} \mathbf{b}_{1} & \cdots & \mathbf{a}_{\alpha n}^{\prime} \mathbf{b}_{n} \end{bmatrix}$$
(5)

where a'_{αi} = ith row of matrix A_α and b_j = jth column of matrix B.
Share of backward index for bank j attributed to layer α given by sum of elements in column j of H_α:

$$\mathbf{i}'\mathbf{H}_{\alpha}\mathbf{i}_{j} = \mathbf{a}_{\alpha 1}'\mathbf{b}_{j} + \dots + \mathbf{a}_{\alpha n}'\mathbf{b}_{j} = (\mathbf{a}_{\alpha 1}' + \dots + \mathbf{a}_{\alpha n}')\mathbf{b}_{j}$$
(6)

Aldasoro & Alves

Multiplex interbank networks and systemic importance

	Systemic Importance IO		
	00000		
Multi Layer			
Decomposi	na avetamia importana	<u>^</u>	

Re-express the matrix \mathbf{H}_{α} in vector notation:

$$\mathbf{H}_{\alpha} = \begin{bmatrix} \mathbf{a}_{\alpha 1}^{\prime} \mathbf{b}_{1} & \cdots & \mathbf{a}_{\alpha 1}^{\prime} \mathbf{b}_{n} \\ \vdots & \ddots & \vdots \\ \mathbf{a}_{\alpha n}^{\prime} \mathbf{b}_{1} & \cdots & \mathbf{a}_{\alpha n}^{\prime} \mathbf{b}_{n} \end{bmatrix}$$
(5)

where a'_{αi} = ith row of matrix A_α and b_j = jth column of matrix B.
Share of backward index for bank j attributed to layer α given by sum of elements in column j of H_α:

$$\mathbf{i}'\mathbf{H}_{\alpha}\mathbf{i}_{j} = \mathbf{a}_{\alpha 1}'\mathbf{b}_{j} + \dots + \mathbf{a}_{\alpha n}'\mathbf{b}_{j} = (\mathbf{a}_{\alpha 1}' + \dots + \mathbf{a}_{\alpha n}')\mathbf{b}_{j}$$
(6)

Multiplex interbank networks and systemic importance

	Systemic Importance IO		
	00000		
Multi Layer			
Decomposi	na avetamia importana	<u>^</u>	

Re-express the matrix \mathbf{H}_{α} in vector notation:

$$\mathbf{H}_{\alpha} = \begin{bmatrix} \mathbf{a}_{\alpha 1}^{\prime} \mathbf{b}_{1} & \cdots & \mathbf{a}_{\alpha 1}^{\prime} \mathbf{b}_{n} \\ \vdots & \ddots & \vdots \\ \mathbf{a}_{\alpha n}^{\prime} \mathbf{b}_{1} & \cdots & \mathbf{a}_{\alpha n}^{\prime} \mathbf{b}_{n} \end{bmatrix}$$
(5)

where a'_{αi} = ith row of matrix A_α and b_j = jth column of matrix B.
Share of backward index for bank j attributed to layer α given by sum of elements in column j of H_α:

$$\mathbf{i}'\mathbf{H}_{\alpha}\mathbf{i}_{j} = \mathbf{a}_{\alpha 1}'\mathbf{b}_{j} + \dots + \mathbf{a}_{\alpha n}'\mathbf{b}_{j} = \left(\mathbf{a}_{\alpha 1}' + \dots + \mathbf{a}_{\alpha n}'\right)\mathbf{b}_{j}$$
(6)

	Systemic Importance IO ○○○○●	
Multi Layer		
_		

Similar decomposition for forward linkages:

$$\mathbf{G} = (\mathbf{I} - \mathbf{O})^{-1} = \mathbf{I} + \mathbf{GO} = \mathbf{I} + \sum_{\alpha=1}^{L} \mathbf{K}_{\alpha}$$
(7)

where $\mathbf{O} = \sum_{\alpha=1}^{L} \mathbf{O}_{\alpha}$, $\mathbf{O}_{\alpha} = \hat{\mathbf{q}}^{-1} \mathbf{X}_{\alpha}$ and $\mathbf{K}_{\alpha} = \mathbf{GO}_{\alpha}$, $\alpha = 1, \dots, L$.

• Matrix \mathbf{K}_{α} in vector notation

$$\mathbf{K}_{\alpha} = \begin{bmatrix} \mathbf{g}_{1}^{\prime} \mathbf{o}_{\alpha 1} & \cdots & \mathbf{g}_{1}^{\prime} \mathbf{o}_{\alpha n} \\ \vdots & \ddots & \vdots \\ \mathbf{g}_{n}^{\prime} \mathbf{o}_{\alpha 1} & \cdots & \mathbf{g}_{n}^{\prime} \mathbf{o}_{\alpha n} \end{bmatrix}$$
(8)

Share of forward index for bank *i* attributed to layer α

$$\mathbf{i}'_{i}\mathbf{K}_{\alpha}\mathbf{i} = \mathbf{g}'_{i}\mathbf{o}_{\alpha 1} + \dots + \mathbf{g}'_{i}\mathbf{o}_{\alpha n}$$
(9)

Multiplex interbank networks and systemic importance

	Data	
	00	
About the dataset		

Overview of the dataset

- Dataset of interbank exposures for 54 large European banks, presented in Alves et al. (2013)
- Anonymized snapshot of interbank exposures at end 2011, compiled by national regulators within a joint EBA-ESRB statistical project
- Two aspects
 - Instrument type: assets (credit claims + debt securities + other assets), derivatives and off-balance sheet.
 - 2 Maturity type: short term (less then one year including on sight), long term (more than one year) and unspecified maturity

Figure 2 : Composition of exposures by instrument (left) and maturity (right).

Aldasoro & Alves Multiplex interbank networks and systemic importance

		Results
		000000
Similarity		
Similarity ar	nalvsis	

- Jaccard similarity (binary networks): J(x, y) = |x | |x | |y| / |x | |y||
 Cosine similarity (weighted networks): C(x, y) = ||x|| × ||y|| / ||x|| × ||y||

		Results
		000000
Similarity		

Similarity analysis

	A-CC	A-DS	A-Other	A-Total	Derivatives	Off BS	Total
A-CC		0.32	0.29	0.80	0.33	0.18	0.70
A-DS	0.50		0.08	0.82	0.26	0.24	0.71
A-Other	0.18	0.15		0.29	0.10	0.12	0.26
A-Total	0.70	0.78	0.16		0.36	0.26	0.88
Derivatives	0.50	0.46	0.15	0.53		0.13	0.66
Off BS	0.44	0.37	0.16	0.41	0.41		0.54
Total	0.57	0.63	0.13	0.81	0.61	0.48	

	Long	Short	Total	Unclassified
Long		0.43	0.75	0.03
Short	0.62		0.81	0.23
Total	0.69	0.73		0.50
Unclassified	0.04	0.03	0.16	

 Table 1 : Jaccard (lower triangle) and Cosine (upper triangle) Similarity
 Indices, by instrument and maturity type (upper and lower table resp.)

		Results ○●O○○○○
Core-periphery		

Core-periphery structure - discrete

Figure 3: Core banks and error score based on Craig and von Peter (2014) algorithm, by instrument and maturity (left and right panel respectively).

Introduction	Systemic Importance IO	Results
Core-periphery		0000000

Core-periphery structure - continuous

Figure 4 : Core-periphery profile by instrument and maturity (left and right panel respectively), based on the method by Della Rossa et al. (2013).

		Results
		000 00 0
Systemic importance		

Systemic importance - Correlated multiplexity

	Assets-L	Assets-S	DerivL	DerivS	OffBS-L	OffBS-S
Assets-L		0.77***	0.64***	0.52***	0.57***	0.44***
Assets-S	0.88***		0.71***	0.58***	0.39***	0.60***
DerivL	0.69***	0.80***		0.72***	0.44***	0.53***
DerivS	0.78***	0.89***	0.90***		0.40***	0.63***
OffBS-L	0.83***	0.87***	0.73***	0.79***		0.52***
OffBS-S	0.84***	0.91***	0.79***	0.86***	0.92***	

Table 2 : Correlation indices for in- and out-degree centrality (lower and upper triangle resp.)

	Assets-L	Assets-S	DerivL	DerivS	OffBS-L	OffBS-S
Assets-L		0.62***	0.78***	0.14	0.18	0.39***
Assets-S	0.60***		0.45***	0.18	0.07	0.22
DerivL	0.52***	0.71***		0.15	0.16	0.19
DerivS	0.46***	0.75***	0.87***		-0.00	0.16
OffBS-L	0.33**	0.65***	0.52***	0.53***		0.73***
OffBS-S	0.50***	0.80***	0.61***	0.61***	0.56***	

Table 3 : Correlation indices for PageRank in (lower triangle) and out (upper triangle) centrality.

		Results
		000 00 0
Systemic importance		

Systemic importance - Correlated multiplexity

	Assets-L	Assets-S	DerivL	DerivS	OffBS-L	OffBS-S
Assets-L		0.77***	0.64***	0.52***	0.57***	0.44***
Assets-S	0.88***		0.71***	0.58***	0.39***	0.60***
DerivL	0.69***	0.80***		0.72***	0.44***	0.53***
DerivS	0.78***	0.89***	0.90***		0.40***	0.63***
OffBS-L	0.83***	0.87***	0.73***	0.79***		0.52***
OffBS-S	0.84***	0.91***	0.79***	0.86***	0.92***	

Table 2 : Correlation indices for in- and out-degree centrality (lower and upper triangle resp.)

	Assets-L	Assets-S	DerivL	DerivS	OffBS-L	OffBS-S
Assets-L		0.62***	0.78***	0.14	0.18	0.39***
Assets-S	0.60***		0.45***	0.18	0.07	0.22
DerivL	0.52***	0.71***		0.15	0.16	0.19
DerivS	0.46***	0.75***	0.87***		-0.00	0.16
OffBS-L	0.33**	0.65***	0.52***	0.53***		0.73***
OffBS-S	0.50***	0.80***	0.61***	0.61***	0.56***	

Table 3 : Correlation indices for PageRank in (lower triangle) and out (upper triangle) centrality.

Centrality strongly correlated across layers

		Results
		000 00 0
Systemic importance		

Systemic importance - Correlated multiplexity

	Assets-L	Assets-S	DerivL	DerivS	OffBS-L	OffBS-S
Assets-L		0.77***	0.64***	0.52***	0.57***	0.44***
Assets-S	0.88***		0.71***	0.58***	0.39***	0.60***
DerivL	0.69***	0.80***		0.72***	0.44***	0.53***
DerivS	0.78***	0.89***	0.90***		0.40***	0.63***
OffBS-L	0.83***	0.87***	0.73***	0.79***		0.52***
OffBS-S	0.84***	0.91***	0.79***	0.86***	0.92***	

Table 2 : Correlation indices for in- and out-degree centrality (lower and upper triangle resp.)

	Assets-L	Assets-S	DerivL	DerivS	OffBS-L	OffBS-S
Assets-L		0.62***	0.78***	0.14	0.18	0.39***
Assets-S	0.60***		0.45***	0.18	0.07	0.22
DerivL	0.52***	0.71***		0.15	0.16	0.19
DerivS	0.46***	0.75***	0.87***		-0.00	0.16
OffBS-L	0.33**	0.65***	0.52***	0.53***		0.73***
OffBS-S	0.50***	0.80***	0.61***	0.61***	0.56***	

Table 3 : Correlation indices for PageRank in (lower triangle) and out (upper triangle) centrality.

- Centrality strongly correlated across layers
- Robust to other centrality measures (strength, closeness, betweenness) and correlation indicators (Spearman). More results

		Results
		0000000
Systemic importance		

Decomposition of systemic importance

Figure 5 : Backward (left) & forward (right) index for syst. banks by instrument

		Results
		0000000
Systemic importance		

Decomposition of systemic importance

Figure 5 : Backward (left) & forward (right) index for syst. banks by instrument

 Importance in terms of interconnectivity driven by more than size: contribution of *derivatives* not in line with exposure share (~ 25%)

		Results
		0000000
Systemic importance		

Decomposition of systemic importance

- Importance in terms of interconnectivity driven by more than size: contribution of *derivatives* not in line with exposure share (~ 25%)
- A network with a rather minor share of exposures ($OffBS \sim 1/7$) can be a major driver of systemic importance of specific banks

		Results
		0000000
Systemic importance		

Figure 6 : Backward (left) & forward (right) index for syst. banks by maturity

Aldasoro & Alves Multiplex interbank networks and systemic importance

		Results
		000 00 00
Systemic importance		

Figure 6 : Backward (left) & forward (right) index for syst. banks by maturity

• Long term contributes more than its share in exposures

		Results
		000 00 00
Systemic importance		

Figure 6 : Backward (left) & forward (right) index for syst. banks by maturity

- Long term contributes more than its share in exposures
- Unspecified maturity contributes less

		Results
		000 00 00
Systemic importance		

Figure 6 : Backward (left) & forward (right) index for syst. banks by maturity

- Long term contributes more than its share in exposures
- Unspecified maturity contributes less
- Notable exception forward index of bank 39 ⇒ opacity in banks' operations behind systemic importance score

	Results
	000000

THANK YOU!

⊠ aldasoro@safe-uni.frankfurt.de ⊠ ivan.alves@ecb.int

Additonal results on similarity

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
(1) Assets-CC L		0.23	0.33	0.14	0.30	0.14	0.35	0.06	0.08	0.11
(2) Assets-CC S	0.33		0.22	0.13	0.08	0.15	0.24	0.15	0.04	0.12
(3) Assets-DS L	0.31	0.43		0.31	0.07	0.07	0.24	0.09	0.04	0.23
(4) Assets-DS S	0.25	0.37	0.42		0.01	0.05	0.11	0.04	0.05	0.28
(5) Assets-Other L	0.16	0.09	0.09	0.08		0.09	0.13	0.02	0.01	0.01
(6) Assets-Other S	0.13	0.11	0.10	0.11	0.18		0.07	0.03	0.15	0.12
(7) Derivatives L	0.27	0.35	0.35	0.27	0.11	0.11		0.18	0.07	0.11
(8) Derivatives S	0.27	0.40	0.33	0.24	0.09	0.09	0.45		0.02	0.06
(9) OffBS L	0.35	0.25	0.26	0.23	0.11	0.09	0.23	0.23		0.36
(10) OffBS S	0.32	0.38	0.27	0.26	0.11	0.10	0.29	0.34	0.31	

Table 4: *Jaccard* (lower triangle) and *Cosine* (upper triangle) Similarity Indices, by instrument and maturity type. CC stands for Credit Claims, DS stands for Debt Securities, and L (S) stands for Long (Short) Term.

Additonal results on continuous core-periphery analysis

Figure 7: Core banks, p-nodes and centralisation by instrument and maturity (left and right panel respectively), based on the method by Della Rossa et al. (2013). Core banks are those with $\alpha_k > 0.5$; p-nodes are periphery nodes in the strict sense ($\alpha_k = 0$).

Additonal results on correlated multiplexity

	Assets-L	Assets-S	DerivL	DerivS	OffBS-L	OffBS-S
Assets-L		0.62***	0.83***	0.15	0.14	0.25*
Assets-S	0.50***		0.49***	0.18	0.08	0.26*
DerivL	0.46***	0.64***		0.11	0.17	0.17
DerivS	0.37***	0.70***	0.85***		-0.00	0.09
OffBS-L	0.26*	0.67***	0.48***	0.55***		0.69***
OffBS-S	0.40***	0.79***	0.55***	0.55***	0.52***	

Table 5: Correlation indices for *in-strength* (lower triangle) and *out-strength* (upper triangle) centrality.

	Assets-L	Assets-S	DerivL	DerivS	OffBS-L	OffBS-S
Assets-L		0.48***	0.18	0.52***	0.39***	0.45***
Assets-S	0.34**		0.48***	0.66***	0.37***	0.54***
DerivL	-0.24*	-0.10		0.42***	0.29**	0.37***
DerivS	-0.01	0.06	0.34**		0.35**	0.45***
OffBS-L	0.26*	0.18	0.15	0.12		0.45***
OffBS-S	0.25*	0.16	0.01	0.22	0.19	

Table 6: Correlation indices for *Closeness in* (lower triangle) and *out* (upper triangle) centrality.

Aldasoro & Alves

Multiplex interbank networks and systemic importance

Additonal results on correlated multiplexity (cont.)

	Assets-L	Assets-S	DerivL	DerivS	OffBS-L	OffBS-S
Assets-L						
Assets-S	0.39***					
DerivL	0.25*	0.45***				
DerivS	0.49***	0.54***	0.57***			
OffBS-L	0.55***	0.50***	0.22	0.57***		
OffBS-S	0.41***	0.42***	0.37***	0.30**	0.36***	

Table 7 : Correlation indices for *Betweenness* centrality.

	Assets-L	Assets-S	DerivL	DerivS	OffBS-L	OffBS-S
Assets-L		0.73***	0.56***	0.55***	0.59***	0.47***
Assets-S	0.86***		0.63***	0.62***	0.48***	0.64***
DerivL	0.76***	0.82***		0.70***	0.51***	0.47***
DerivS	0.79***	0.89***	0.90***		0.46***	0.57***
OffBS-L	0.87***	0.86***	0.69***	0.76***		0.65***
OffBS-S	0.83***	0.91***	0.77***	0.84***	0.89***	

 Table 8 : Spearman correlation indices for *in-degree* (lower triangle) and *out-degree* (upper triangle) centrality.

Additonal results on correlated multiplexity (cont.)

	Assets-L	Assets-S	DerivL	DerivS	OffBS-L	OffBS-S
Assets-L		0.65***	0.59***	0.56***	0.58***	0.60***
Assets-S	0.82***		0.54***	0.57***	0.42***	0.54***
DerivL	0.71***	0.79***		0.55***	0.50***	0.47***
DerivS	0.70***	0.76***	0.87***		0.40***	0.53***
OffBS-L	0.62***	0.71***	0.75***	0.69***		0.73***
OffBS-S	0.67***	0.79***	0.81***	0.73***	0.87***	

Table 9 : Spearman correlation indices for *in-strength* (lower triangle) and *out-strength* (upper triangle) centrality.

	Assets-L	Assets-S	DerivL	DerivS	OffBS-L	OffBS-S
Assets-L		0.60***	0.57***	0.50***	0.56***	0.55***
Assets-S	0.79***		0.54***	0.53***	0.45***	0.51***
DerivL	0.71***	0.81***		0.57***	0.56***	0.43***
DerivS	0.63***	0.76***	0.87***		0.44***	0.48***
OffBS-L	0.63***	0.73***	0.74***	0.66***		0.62***
OffBS-S	0.65***	0.80***	0.80***	0.73***	0.84***	

Table 10 : Spearman correlation indices for *PageRank in* (lower triangle) and *out* (upper triangle) centrality.

Additonal results on correlated multiplexity (cont.)

	Assets-L	Assets-S	DerivL	DerivS	OffBS-L	OffBS-S
Assets-L		0.49***	0.18	0.50***	0.42***	0.44***
Assets-S	0.39***		0.49***	0.61***	0.43***	0.60***
DerivL	-0.24*	-0.09		0.39***	0.29**	0.35***
DerivS	0.05	0.04	0.35**		0.35***	0.47***
OffBS-L	0.23	0.14	0.11	0.01		0.49***
OffBS-S	0.22	0.08	0.02	0.17	0.04	

Table 11 : Spearman correlation indices for *Closeness in* (lower triangle) and *out* (upper triangle) centrality.

	Assets-L	Assets-S	DerivL	DerivS	OffBS-L	OffBS-S
Assets-L						
Assets-S	0.51***					
DerivL	0.22	0.54***				
DerivS	0.59***	0.61***	0.60***			
OffBS-L	0.39***	0.42***	0.25*	0.36***		
OffBS-S	0.48***	0.44***	0.36***	0.51***	0.57***	

Table 12 : Spearman correlation indices for *Betweenness* centrality.

Aldasoro & Alves

Multiplex interbank networks and systemic importance

Additonal results on systemic importance

Figure 8 : Normalized backward and forward indices (right and left panel respectively). Banks with a score above 1 are coloured with dark blue.

Back to systemic importance