Multiplex interbank networks and systemic importance

An application to European data

Iñaki Aldasoro ${ }^{1}$ Iván Alves ${ }^{2}$
${ }^{1}$ Goethe University Frankfurt \& SAFE
${ }^{2}$ European Central Bank

September 25, 2015
RiskLab/BoF/ESRB Conference on Systemic Risk Analytics Bank of Finland, Helsinki

Disclaimer: the views expressed here are solely those of the authors and do not necessarily represent the views of the ECB and the Eurosystem

Motivation - Multiplex network

Figure 1: A stylised representation of a multiplex interbank network.

This paper

- Study the multiplex structure of the network of large European banks
- Similarity analysis
- Core-periphery analysis
- Correlated multiplexity
- Present new measures of systemic importance which allow for a decomposition of the global systemic importance index for any bank into the contributions of each of the sub-networks
- Highlight important policy content of the choice of granularity of information in the analysis of systemic importance

Summary

- Existence of connection in one layer strongly associated to existence of the same connection in another layer (high similarity)
■ Large core with core-periphery structure rather stable across layers (especially for maturity type)
- Network centrality indicators highly correlated across layers (positively correlated multiplexity)

Summary

- Existence of connection in one layer strongly associated to existence of the same connection in another layer (high similarity)
- Large core with core-periphery structure rather stable across layers (especially for maturity type)
- Network centrality indicators highly correlated across layers (positively correlated multiplexity)

Yet ...

- Taking a holistic perspective that goes beyond layer-specific analyses can yield useful insights for policy
- Despite similarity and correlation: core \neq centrality \neq layer-specific contributions to overall systemic importance

Related literature

■ Importance of structure of interconnectedness (Allen \& Gale '00, Freixas et al. '00)

- Analyses of interconnectedness observable in banks' balance sheets (Boss et al. '04, Craig \& von Peter '14, Soramäki et al. '07, van Lelyveld \& Int Veld '12, Fricke \& Lux '12, Langfield et al. '14, and Alves et al. '13, etc.)
■ Systemic importance in interbank networks (Aldasoro \& Angeloni '15, Battiston et al. '12, Soramäki \& Cook '13, Greenwood et al. '14)
■ Multiplex networks, with focus on interbank (Kivelä et al. '14, Lee et al. '14, Montagna \& Kok '13, Langfield et al. '14, León et al. '14, Molina-Borboa et al. '15, Poledna et al. '15)

The Input-Output approach - Single layer case

$$
\begin{equation*}
\mathbf{X i}+\mathbf{I}=\mathbf{e}+\mathbf{d}+\mathbf{X}^{\prime} \mathbf{i} \tag{1}
\end{equation*}
$$

The Input-Output approach - Single layer case

$$
\begin{equation*}
\mathbf{X i}+\mathbf{I}=\mathbf{e}+\mathbf{d}+\mathbf{X}^{\prime} \mathbf{i} \tag{1}
\end{equation*}
$$

- From matrix representation of balance sheet of banking system to

The Input-Output approach - Single layer case

$$
\begin{equation*}
\mathbf{X i}+\mathbf{I}=\mathbf{e}+\mathbf{d}+\mathbf{X}^{\prime} \mathbf{i} \tag{1}
\end{equation*}
$$

- From matrix representation of balance sheet of banking system to

1 Mapping between non-interbank assets (I) and total assets (q)

$$
\begin{equation*}
\mathbf{q}=(\mathbf{I}-\mathbf{A})^{-1} \mathbf{I}=\mathbf{B} \mathbf{I}, \quad \text { with } \mathbf{A}=\mathbf{X} \hat{\mathbf{q}}^{-1} \tag{2}
\end{equation*}
$$

The Input-Output approach - Single layer case

$$
\begin{equation*}
\mathbf{X i}+\mathbf{I}=\mathbf{e}+\mathbf{d}+\mathbf{X}^{\prime} \mathbf{i} \tag{1}
\end{equation*}
$$

- From matrix representation of balance sheet of banking system to

1 Mapping between non-interbank assets (I) and total assets (q)

$$
\begin{equation*}
\mathbf{q}=(\mathbf{I}-\mathbf{A})^{-1} \mathbf{I}=\mathbf{B} \mathbf{I}, \quad \text { with } \mathbf{A}=\mathbf{X} \hat{\mathbf{q}}^{-1} \tag{2}
\end{equation*}
$$

2 Mapping between non-interbank funding $(\mathbf{e}+\mathbf{d})$ to total funding

$$
\begin{equation*}
\mathbf{q}^{\prime}=(\mathbf{e}+\mathbf{d})^{\prime}(\mathbf{I}-\mathbf{O})^{-1}=(\mathbf{e}+\mathbf{d})^{\prime} \mathbf{G}, \quad \text { with } \mathbf{O}=\hat{\mathbf{q}}^{-1} \mathbf{X} \tag{3}
\end{equation*}
$$

The Input-Output approach - Single layer case

$$
\begin{equation*}
\mathbf{X} \mathbf{i}+\mathbf{I}=\mathbf{e}+\mathbf{d}+\mathbf{X}^{\prime} \mathbf{i} \tag{1}
\end{equation*}
$$

■ From matrix representation of balance sheet of banking system to
1 Mapping between non-interbank assets (I) and total assets (q)

$$
\begin{equation*}
\mathbf{q}=(\mathbf{I}-\mathbf{A})^{-1} \mathbf{I}=\mathbf{B} \mathbf{I}, \quad \text { with } \mathbf{A}=\mathbf{X} \hat{\mathbf{q}}^{-1} \tag{2}
\end{equation*}
$$

2 Mapping between non-interbank funding ($\mathbf{e}+\mathbf{d}$) to total funding

$$
\begin{equation*}
\mathbf{q}^{\prime}=(\mathbf{e}+\mathbf{d})^{\prime}(\mathbf{I}-\mathbf{O})^{-1}=(\mathbf{e}+\mathbf{d})^{\prime} \mathbf{G}, \quad \text { with } \mathbf{O}=\hat{\mathbf{q}}^{-1} \mathbf{X} \tag{3}
\end{equation*}
$$

- Systemic importance of bank j as backward and forward linkages

1 Sum of elements in column j of \mathbf{B} : $h_{b_{j}}=\mathbf{i}^{\prime} \mathbf{B i}_{j}$
2 Sum of elements in row j of $\mathbf{G}: h_{f_{j}}=\mathbf{i}_{j}^{\prime} \mathbf{G i}$

The case of many layers

- Assume $\alpha=1, \ldots, L$ different layers, such that $\mathbf{X}=\sum_{\alpha=1}^{L} \mathbf{X}_{\alpha}$

The case of many layers

- Assume $\alpha=1, \ldots, L$ different layers, such that $\mathbf{X}=\sum_{\alpha=1}^{L} \mathbf{X}_{\alpha}$
- Balance sheet: $\mathbf{e}+\mathbf{d}+\left(\sum_{\alpha=1}^{L} \mathbf{X}_{\alpha}^{\prime}\right) \mathbf{i}=\left(\sum_{\alpha=1}^{L} \mathbf{X}_{\alpha}\right) \mathbf{i}+\mathbf{I}$

The case of many layers

- Assume $\alpha=1, \ldots, L$ different layers, such that $\mathbf{X}=\sum_{\alpha=1}^{L} \mathbf{X}_{\alpha}$
- Balance sheet: $\mathbf{e}+\mathbf{d}+\left(\sum_{\alpha=1}^{L} \mathbf{X}_{\alpha}^{\prime}\right) \mathbf{i}=\left(\sum_{\alpha=1}^{L} \mathbf{X}_{\alpha}\right) \mathbf{i}+\mathbf{I}$
- Focus first on asset side: $\mathbf{q}=(\mathbf{I}-\mathbf{A})^{-1} \mathbf{I} \equiv \mathbf{B I}$, with $\mathbf{A}=\sum_{\alpha=1}^{L} \mathbf{A}_{\alpha}$ and $\mathbf{A}_{\alpha} \equiv \mathbf{X}_{\alpha} \hat{\mathbf{q}}^{-1}$

The case of many layers

- Assume $\alpha=1, \ldots, L$ different layers, such that $\mathbf{X}=\sum_{\alpha=1}^{L} \mathbf{X}_{\alpha}$
- Balance sheet: $\mathbf{e}+\mathbf{d}+\left(\sum_{\alpha=1}^{L} \mathbf{X}_{\alpha}^{\prime}\right) \mathbf{i}=\left(\sum_{\alpha=1}^{L} \mathbf{X}_{\alpha}\right) \mathbf{i}+\mathbf{I}$
- Focus first on asset side: $\mathbf{q}=(\mathbf{I}-\mathbf{A})^{-1} \mathbf{I} \equiv \mathbf{B I}$, with $\mathbf{A}=\sum_{\alpha=1}^{L} \mathbf{A}_{\alpha}$ and $\mathbf{A}_{\alpha} \equiv \mathbf{X}_{\alpha} \hat{\mathbf{q}}^{-1}$
- A useful property of the Leontief inverse: infinite series

$$
\begin{aligned}
\mathbf{B} & =(\mathbf{I}-\mathbf{A})^{-1} \\
& =\mathbf{I}+\mathbf{A}+\mathbf{A}^{2}+\mathbf{A}^{3}+\cdots \\
& =\mathbf{I}+\mathbf{A}\left(\mathbf{I}+\mathbf{A}+\mathbf{A}^{2}+\cdots\right) \\
& =\mathbf{I}+\mathbf{A B}
\end{aligned}
$$

The case of many layers (cont.)

- Using this and noting that $\mathbf{A}=\sum_{\alpha=1}^{L} \mathbf{A}_{\alpha}, 2$ can be expressed as:

$$
\begin{equation*}
\mathbf{q}=\mathbf{B} \mathbf{I}=(\mathbf{I}+\mathbf{A B}) \mathbf{I}=\left(\mathbf{I}+\sum_{\alpha=1}^{L} \mathbf{H}_{\alpha}\right) \mathbf{I} \tag{4}
\end{equation*}
$$

with $\mathbf{H}_{\alpha} \equiv \mathbf{A}_{\alpha} \mathbf{B}, \alpha=1, \ldots, L$

The case of many layers (cont.)

- Using this and noting that $\mathbf{A}=\sum_{\alpha=1}^{L} \mathbf{A}_{\alpha}, 2$ can be expressed as:

$$
\begin{equation*}
\mathbf{q}=\mathbf{B} \mathbf{I}=(\mathbf{I}+\mathbf{A B}) \mathbf{I}=\left(\mathbf{I}+\sum_{\alpha=1}^{L} \mathbf{H}_{\alpha}\right) \mathbf{I} \tag{4}
\end{equation*}
$$

with $\mathbf{H}_{\alpha} \equiv \mathbf{A}_{\alpha} \mathbf{B}, \alpha=1, \ldots, L$

- Backward linkage index still calculated as before (for bank j : sum of elements in column j of \mathbf{B}), but now we are able to attribute to each layer α its contribution to the overall systemic importance index, as measured by the column sum j of the \mathbf{H}_{α} matrices.

Decomposing systemic importance

■ Re-express the matrix \mathbf{H}_{α} in vector notation:

$$
\mathbf{H}_{\alpha}=\left[\begin{array}{ccc}
\mathbf{a}_{\alpha 1}^{\prime} \mathbf{b}_{1} & \cdots & \mathbf{a}_{\alpha 1}^{\prime} \mathbf{b}_{n} \tag{5}\\
\vdots & \ddots & \vdots \\
\mathbf{a}_{\alpha n}^{\prime} \mathbf{b}_{1} & \cdots & \mathbf{a}_{\alpha n}^{\prime} \mathbf{b}_{n}
\end{array}\right]
$$

where $\mathbf{a}_{\alpha i}^{\prime}=i^{\text {th }}$ row of matrix \mathbf{A}_{α} and $\mathbf{b}_{j}=j^{\text {th }}$ column of matrix \mathbf{B}.

Decomposing systemic importance

- Re-express the matrix \mathbf{H}_{α} in vector notation:

$$
\mathbf{H}_{\alpha}=\left[\begin{array}{ccc}
\mathbf{a}_{\alpha 1}^{\prime} \mathbf{b}_{1} & \cdots & \mathbf{a}_{\alpha 1}^{\prime} \mathbf{b}_{n} \tag{5}\\
\vdots & \ddots & \vdots \\
\mathbf{a}_{\alpha n}^{\prime} \mathbf{b}_{1} & \cdots & \mathbf{a}_{\alpha n}^{\prime} \mathbf{b}_{n}
\end{array}\right]
$$

where $\mathbf{a}_{\alpha i}^{\prime}=i^{t h}$ row of matrix \mathbf{A}_{α} and $\mathbf{b}_{j}=j^{t h}$ column of matrix \mathbf{B}.

- Share of backward index for bank j attributed to layer α given by sum of elements in column j of \mathbf{H}_{α} :

$$
\begin{equation*}
\mathbf{i}^{\prime} \mathbf{H}_{\alpha} \mathbf{i}_{j}=\mathbf{a}_{\alpha 1}^{\prime} \mathbf{b}_{j}+\cdots+\mathbf{a}_{\alpha n}^{\prime} \mathbf{b}_{j}=\left(\mathbf{a}_{\alpha 1}^{\prime}+\cdots+\mathbf{a}_{\alpha n}^{\prime}\right) \mathbf{b}_{j} \tag{6}
\end{equation*}
$$

Decomposing systemic importance

- Re-express the matrix \mathbf{H}_{α} in vector notation:

$$
\mathbf{H}_{\alpha}=\left[\begin{array}{ccc}
\mathbf{a}_{\alpha 1}^{\prime} \mathbf{b}_{1} & \cdots & \mathbf{a}_{\alpha 1}^{\prime} \mathbf{b}_{n} \tag{5}\\
\vdots & \ddots & \vdots \\
\mathbf{a}_{\alpha n}^{\prime} \mathbf{b}_{1} & \cdots & \mathbf{a}_{\alpha n}^{\prime} \mathbf{b}_{n}
\end{array}\right]
$$

where $\mathbf{a}_{\alpha i}^{\prime}=i^{t h}$ row of matrix \mathbf{A}_{α} and $\mathbf{b}_{j}=j^{t h}$ column of matrix \mathbf{B}.

- Share of backward index for bank j attributed to layer α given by sum of elements in column j of \mathbf{H}_{α} :

$$
\begin{equation*}
\mathbf{i}^{\prime} \mathbf{H}_{\alpha} \mathbf{i}_{j}=\mathbf{a}_{\alpha 1}^{\prime} \mathbf{b}_{j}+\cdots+\mathbf{a}_{\alpha n}^{\prime} \mathbf{b}_{j}=\left(\mathbf{a}_{\alpha 1}^{\prime}+\cdots+\mathbf{a}_{\alpha n}^{\prime}\right) \mathbf{b}_{j} \tag{6}
\end{equation*}
$$

Decomposing systemic importance

- Re-express the matrix \mathbf{H}_{α} in vector notation:

$$
\mathbf{H}_{\alpha}=\left[\begin{array}{ccc}
\mathbf{a}_{\alpha 1}^{\prime} \mathbf{b}_{1} & \cdots & \mathbf{a}_{\alpha 1}^{\prime} \mathbf{b}_{n} \tag{5}\\
\vdots & \ddots & \vdots \\
\mathbf{a}_{\alpha n}^{\prime} \mathbf{b}_{1} & \cdots & \mathbf{a}_{\alpha n}^{\prime} \mathbf{b}_{n}
\end{array}\right]
$$

where $\mathbf{a}_{\alpha i}^{\prime}=i^{t h}$ row of matrix \mathbf{A}_{α} and $\mathbf{b}_{j}=j^{t h}$ column of matrix \mathbf{B}.

- Share of backward index for bank j attributed to layer α given by sum of elements in column j of \mathbf{H}_{α} :

$$
\begin{equation*}
\mathbf{i}^{\prime} \mathbf{H}_{\alpha} \mathbf{i}_{j}=\mathbf{a}_{\alpha 1}^{\prime} \mathbf{b}_{j}+\cdots+\mathbf{a}_{\alpha n}^{\prime} \mathbf{b}_{j}=\left(\mathbf{a}_{\alpha 1}^{\prime}+\cdots+\mathbf{a}_{\alpha n}^{\prime}\right) \mathbf{b}_{j} \tag{6}
\end{equation*}
$$

Decomposing systemic importance (cont.)

- Similar decomposition for forward linkages:

$$
\begin{equation*}
\mathbf{G}=(\mathbf{I}-\mathbf{O})^{-1}=\mathbf{I}+\mathbf{G O}=\mathbf{I}+\sum_{\alpha=1}^{L} \mathbf{K}_{\alpha} \tag{7}
\end{equation*}
$$

where $\mathbf{O}=\sum_{\alpha=1}^{L} \mathbf{O}_{\alpha}, \mathbf{O}_{\alpha}=\hat{\mathbf{q}}^{-1} \mathbf{X}_{\alpha}$ and $\mathbf{K}_{\alpha}=\mathbf{G} \mathbf{O}_{\alpha}, \alpha=1, \ldots, L$.

- Matrix \mathbf{K}_{α} in vector notation

$$
\mathbf{K}_{\alpha}=\left[\begin{array}{ccc}
\mathbf{g}_{1}^{\prime} \mathbf{o}_{\alpha 1} & \cdots & \mathbf{g}_{1}^{\prime} \mathbf{o}_{\alpha n} \tag{8}\\
\vdots & \ddots & \vdots \\
\mathbf{g}_{n}^{\prime} \mathbf{o}_{\alpha 1} & \cdots & \mathbf{g}_{n}^{\prime} \mathbf{o}_{\alpha n}
\end{array}\right]
$$

- Share of forward index for bank i attributed to layer α

$$
\begin{equation*}
\mathbf{i}_{i}^{\prime} \mathbf{K}_{\alpha} \mathbf{i}=\mathbf{g}_{i}^{\prime} \mathbf{o}_{\alpha 1}+\cdots+\mathbf{g}_{i}^{\prime} \mathbf{o}_{\alpha n} \tag{9}
\end{equation*}
$$

Overview of the dataset

■ Dataset of interbank exposures for 54 large European banks, presented in Alves et al. (2013)

- Anonymized snapshot of interbank exposures at end 2011, compiled by national regulators within a joint EBA-ESRB statistical project
- Two aspects

1 Instrument type: assets (credit claims + debt securities + other assets), derivatives and off-balance sheet.
2 Maturity type: short term (less then one year including on sight), long term (more than one year) and unspecified maturity

Figure 2 : Composition of exposures by instrument (left) and maturity (right).

The multiplex network of large European banks

Aldasoro \& Alves
Multiplex interbank networks and systemic importance

Similarity analysis

- Jaccard similarity (binary networks): $J(\mathbf{x}, \mathbf{y})=\frac{|\mathbf{x} \cap \mathbf{y}|}{|\mathbf{x} \cup \mathbf{y}|}$
- Cosine similarity (weighted networks): $C(\mathbf{x}, \mathbf{y})=\frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \times\|\mathbf{y}\|}$

Similarity analysis

- Jaccard similarity (binary networks): $J(\mathbf{x}, \mathbf{y})=\frac{|\mathbf{x} \cap \mathbf{y}|}{|\mathbf{x} \cup \mathbf{y}|}$
- Cosine similarity (weighted networks): $C(\mathbf{x}, \mathbf{y})=\frac{x \cdot y}{\|\mathbf{x}\| x\|\mathbf{y}\|}$

	A-CC	A-DS	A-Other	A-Total	Derivatives	Off BS	Total
A-CC		0.32	0.29	0.80	$\mathbf{0 . 3 3}$	$\mathbf{0 . 1 8}$	0.70
A-DS	0.50		0.08	0.82	$\mathbf{0 . 2 6}$	$\mathbf{0 . 2 4}$	0.71
A-Other	0.18	0.15		0.29	$\mathbf{0 . 1 0}$	$\mathbf{0 . 1 2}$	0.26
A-Total	0.70	0.78	0.16		$\mathbf{0 . 3 6}$	$\mathbf{0 . 2 6}$	0.88
Derivatives	$\mathbf{0 . 5 0}$	$\mathbf{0 . 4 6}$	$\mathbf{0 . 1 5}$	$\mathbf{0 . 5 3}$		$\mathbf{0 . 1 3}$	0.66
Off BS	$\mathbf{0 . 4 4}$	$\mathbf{0 . 3 7}$	$\mathbf{0 . 1 6}$	$\mathbf{0 . 4 1}$	$\mathbf{0 . 4 1}$		0.54
Total	0.57	0.63	0.13	0.81	0.61	0.48	

	Long	Short	Total	Unclassified
Long		$\mathbf{0 . 4 3}$	0.75	$\mathbf{0 . 0 3}$
Short	$\mathbf{0 . 6 2}$		0.81	$\mathbf{0 . 2 3}$
Total	0.69	0.73		0.50
Unclassified	$\mathbf{0 . 0 4}$	$\mathbf{0 . 0 3}$	0.16	

Table 1 : Jaccard (lower triangle) and Cosine (upper triangle) Similarity Indices, by instrument and maturity type (upper and lower table resp.)

Core-periphery structure - discrete

Figure 3 : Core banks and error score based on Craig and von Peter (2014) algorithm, by instrument and maturity (left and right panel respectively).

Core-periphery structure - continuous

Figure 4 : Core-periphery profile by instrument and maturity (left and right panel respectively), based on the method by Della Rossa et al. (2013).

Systemic importance - Correlated multiplexity

	Assets-L	Assets-S	Deriv.-L	Deriv.-S	OffBS-L	OffBS-S
Assets-L		$0.77^{* * *}$	$0.64^{* * *}$	$0.52^{* * *}$	$0.57^{* * *}$	$0.44^{* * *}$
Assets-S	$0.88^{* * *}$		$0.71^{* * *}$	$0.58^{* * *}$	$0.39^{* * *}$	$0.60^{* * *}$
Deriv.-L	$0.69^{* * *}$	$0.80^{* * *}$		$0.72^{* * *}$	$0.44^{* * *}$	$0.53^{* * *}$
Deriv.-S	$0.78^{* * *}$	$0.89^{* * *}$	$0.90^{* * *}$		$0.40^{* * *}$	$0.63^{* * *}$
OffBS-L	$0.83^{* * *}$	$0.87^{* * *}$	$0.73^{* * *}$	$0.79^{* * *}$		$0.52^{* * *}$
OffBS-S	$0.84^{* * *}$	$0.91^{* * *}$	$0.79^{* * *}$	$0.86^{* * *}$	$0.92^{* * *}$	

Table 2 : Correlation indices for in- and out-degree centrality (lower and upper triangle resp.)

	Assets-L	Assets-S	Deriv.-L	Deriv.-S	OffBS-L	OffBS-S
Assets-L		$0.62^{* * *}$	$0.78^{* * *}$	0.14	0.18	$0.39^{* * *}$
Assets-S	$0.60^{* * *}$		$0.45^{* * *}$	0.18	0.07	0.22
Deriv.-L	$0.52^{* * *}$	$0.71^{* * *}$		0.15	0.16	0.19
Deriv.-S	$0.46^{* * *}$	$0.75^{* * *}$	$0.87^{* * *}$		-0.00	0.16
OffBS-L	$0.33^{* *}$	$0.65^{* * *}$	$0.52^{* * *}$	$0.53^{* * *}$		$0.73^{* * *}$
OffBS-S	$0.50^{* * *}$	$0.80^{* * *}$	$0.61^{* * *}$	$0.61^{* * *}$	$0.56^{* * *}$	

Table 3 : Correlation indices for PageRank in (lower triangle) and out (upper triangle) centrality.

Systemic importance - Correlated multiplexity

	Assets-L	Assets-S	Deriv.-L	Deriv.-S	OffBS-L	OffBS-S
Assets-L		$0.77^{* * *}$	$0.64^{* * *}$	$0.52^{* * *}$	$0.57^{* * *}$	$0.44^{* * *}$
Assets-S	$0.88^{* * *}$		$0.71^{* * *}$	$0.58^{* * *}$	$0.39^{* * *}$	$0.60^{* * *}$
Deriv.-L	$0.69^{* * *}$	$0.80^{* * *}$		$0.72^{* * *}$	$0.44^{* * *}$	$0.53^{* * *}$
Deriv.-S	$0.78^{* * *}$	$0.89^{* * *}$	$0.90^{* * *}$		$0.40^{* * *}$	$0.63^{* * *}$
OffBS-L	$0.83^{* * *}$	$0.87^{* * *}$	$0.73^{* * *}$	$0.79^{* * *}$		$0.52^{* * *}$
OffBS-S	$0.84^{* * *}$	$0.91^{* * *}$	$0.79^{* * *}$	$0.86^{* * *}$	$0.92^{* * *}$	

Table 2 : Correlation indices for in- and out-degree centrality (lower and upper triangle resp.)

	Assets-L	Assets-S	Deriv.-L	Deriv.-S	OffBS-L	OffBS-S
Assets-L		$0.62^{* * *}$	$0.78^{* * *}$	0.14	0.18	$0.39^{* * *}$
Assets-S	$0.60^{* * *}$		$0.45^{* * *}$	0.18	0.07	0.22
Deriv.-L	$0.52^{* * *}$	$0.71^{* * *}$		0.15	0.16	0.19
Deriv.-S	$0.46^{* * *}$	$0.75^{* * *}$	$0.87^{* * *}$		-0.00	0.16
OffBS-L	$0.33^{* *}$	$0.65^{* * *}$	$0.52^{* * *}$	$0.53^{* * *}$		$0.73^{* * *}$
OffBS-S	$0.50^{* * *}$	$0.80^{* * *}$	$0.61^{* * *}$	$0.61^{* * *}$	$0.56^{* * *}$	

Table 3 : Correlation indices for PageRank in (lower triangle) and out (upper triangle) centrality.

- Centrality strongly correlated across layers

Systemic importance - Correlated multiplexity

	Assets-L	Assets-S	Deriv.-L	Deriv.-S	OffBS-L	OffBS-S
Assets-L		$0.77^{* * *}$	$0.64^{* * *}$	$0.52^{* * *}$	$0.57^{* * *}$	$0.44^{* * *}$
Assets-S	$0.88^{* * *}$		$0.71^{* * *}$	$0.58^{* * *}$	$0.39^{* * *}$	$0.60^{* * *}$
Deriv.-L	$0.69^{* * *}$	$0.80^{* * *}$		$0.72^{* * *}$	$0.44^{* * *}$	$0.53^{* * *}$
Deriv.-S	$0.78^{* * *}$	$0.89^{* * *}$	$0.90^{* * *}$		$0.40^{* * *}$	$0.63^{* * *}$
OffBS-L	$0.83^{* * *}$	$0.87^{* * *}$	$0.73^{* * *}$	$0.79^{* * *}$		$0.52^{* * *}$
OffBS-S	$0.84^{* * *}$	$0.91^{* * *}$	$0.79^{* * *}$	$0.86^{* * *}$	$0.92^{* * *}$	

Table 2 : Correlation indices for in- and out-degree centrality (lower and upper triangle resp.)

	Assets-L	Assets-S	Deriv.-L	Deriv.-S	OffBS-L	OffBS-S
Assets-L		$0.62^{* * *}$	$0.78^{* * *}$	0.14	0.18	$0.39^{* * *}$
Assets-S	$0.60^{* * *}$		$0.45^{* * *}$	0.18	0.07	0.22
Deriv.-L	$0.52^{* * *}$	$0.71^{* * *}$		0.15	0.16	0.19
Deriv.-S	$0.46^{* * *}$	$0.75^{* * *}$	$0.87^{* * *}$		-0.00	0.16
OffBS-L	$0.33^{* *}$	$0.65^{* * *}$	$0.52^{* * *}$	$0.53^{* * *}$		$0.73^{* * *}$
OffBS-S	$0.50^{* * *}$	$0.80^{* * *}$	$0.61^{* * *}$	$0.61^{* * *}$	$0.56^{* * *}$	

Table 3 : Correlation indices for PageRank in (lower triangle) and out (upper triangle) centrality.

- Centrality strongly correlated across layers
- Robust to other centrality measures (strength, closeness, betweenness) and correlation indicators (Spearman). Mer restrs

Decomposition of systemic importance

Figure 5 : Backward (left) \& forward (right) index for syst. banks by instrument

Decomposition of systemic importance

Figure 5 : Backward (left) \& forward (right) index for syst. banks by instrument

- Importance in terms of interconnectivity driven by more than size: contribution of derivatives not in line with exposure share ($\sim 25 \%$)

Decomposition of systemic importance

Figure 5 : Backward (left) \& forward (right) index for syst. banks by instrument

■ Importance in terms of interconnectivity driven by more than size: contribution of derivatives not in line with exposure share ($\sim 25 \%$)

- A network with a rather minor share of exposures (OffBS $\sim 1 / 7$) can be a major driver of systemic importance of specific banks

Decomposition of systemic importance (cont.)

Figure 6 : Backward (left) \& forward (right) index for syst. banks by maturity

Decomposition of systemic importance (cont.)

Figure 6 : Backward (left) \& forward (right) index for syst. banks by maturity

- Long term contributes more than its share in exposures

Decomposition of systemic importance (cont.)

Figure 6 : Backward (left) \& forward (right) index for syst. banks by maturity

- Long term contributes more than its share in exposures
- Unspecified maturity contributes less

Decomposition of systemic importance (cont.)

Figure 6 : Backward (left) \& forward (right) index for syst. banks by maturity

- Long term contributes more than its share in exposures
- Unspecified maturity contributes less

■ Notable exception forward index of bank $39 \Longrightarrow$ opacity in banks' operations behind systemic importance score

THANK YOU!

\boxtimes aldasoro@safe-uni.frankfurt.de \boxtimes ivan.alves@ecb.int

Additonal results on similarity

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
(1) Assets-CC L		0.23	0.33	0.14	0.30	0.14	0.35	0.06	0.08	0.11
(2) Assets-CC S	0.33		0.22	0.13	0.08	0.15	0.24	0.15	0.04	0.12
(3) Assets-DS L	0.31	0.43		0.31	0.07	0.07	0.24	0.09	0.04	0.23
(4) Assets-DS S	0.25	0.37	0.42		0.01	0.05	0.11	0.04	0.05	0.28
(5) Assets-Other L	0.16	0.09	0.09	0.08		0.09	0.13	0.02	0.01	0.01
(6) Assets-Other S	0.13	0.11	0.10	0.11	0.18		0.07	0.03	0.15	0.12
(7) Derivatives L	0.27	0.35	0.35	0.27	0.11	0.11		0.18	0.07	0.11
(8) Derivatives S	0.27	0.40	0.33	0.24	0.09	0.09	0.45		0.02	0.06
(9) OffBS L	0.35	0.25	0.26	0.23	0.11	0.09	0.23	0.23		0.36
(10) OffBS S	0.32	0.38	0.27	0.26	0.11	0.10	0.29	0.34	0.31	

Table 4 : Jaccard (lower triangle) and Cosine (upper triangle) Similarity Indices, by instrument and maturity type. CC stands for Credit Claims, DS stands for Debt Securities, and L (S) stands for Long (Short) Term.

Back to similarity

Additonal results on continuous core-periphery analysis

Figure 7 : Core banks, p-nodes and centralisation by instrument and maturity (left and right panel respectively), based on the method by Della Rossa et al. (2013). Core banks are those with $\alpha_{k}>0.5 ; \mathrm{p}$-nodes are periphery nodes in the strict sense $\left(\alpha_{k}=0\right)$.

Additonal results on correlated multiplexity

Assets-L	Assets-S	Deriv.-L	Deriv.-S	OffBS-L	OffBS-S
$0.50^{* * *}$	$0.62^{* * *}$	$0.83^{* * *}$	0.15	0.14	0.25^{*}
$0.46^{* * *}$	$0.64^{* * *}$	$0.49^{* * *}$	0.18	0.08	0.26^{*}
$0.37^{* * *}$	$0.70^{* * *}$	$0.85^{* * *}$	0.11	0.17	0.17
0.26^{*}	$0.67^{* * *}$	$0.48^{* * *}$	$0.55^{* * *}$	-0.00	0.09
$0.40^{* * *}$	$0.79^{* * *}$	$0.55^{* * *}$	$0.55^{* * *}$	$0.52^{* * *}$	

Table 5 : Correlation indices for in-strength (lower triangle) and out-strength (upper triangle) centrality.

	Assets-L	Assets-S	Deriv.-L	Deriv.-S	OffBS-L	OffBS-S
Assets-L		$0.48^{* * *}$	0.18	$0.52^{* * *}$	$0.39^{* * *}$	$0.45^{* * *}$
Assets-S	$0.34^{* *}$		$0.48^{* * *}$	$0.66^{* * *}$	$0.37^{* * *}$	$0.54^{* * *}$
Deriv.-L	-0.24^{*}	-0.10		$0.42^{* * *}$	$0.29^{* *}$	$0.37^{* * *}$
Deriv.-S	-0.01	0.06	$0.34^{* *}$		$0.35^{* *}$	$0.45^{* * *}$
OffBS-L	0.26^{*}	0.18	0.15	0.12		$0.45^{* * *}$
OffBS-S	0.25^{*}	0.16	0.01	0.22	0.19	

Table 6 : Correlation indices for Closeness in (lower triangle) and out (upper triangle) centrality.

Back to

Additonal results on correlated multiplexity (cont.)

Assets-L Assets-S Deriv.-L Deriv.-S OffBS-L OffBS-S

Assets-L					
Assets-S	$0.39^{* * *}$				
Deriv.-L	0.25^{*}	$0.45^{* * *}$			
Deriv.-S	$0.49^{* * *}$	$0.54^{* * *}$	$0.57^{* * *}$		
OffBS-L	$0.55^{* * *}$	$0.50^{* * *}$	0.22	$0.57^{* * *}$	
OffBS-S	$0.41^{* * *}$	$0.42^{* * *}$	$0.37^{* * *}$	$0.30^{* *}$	$0.36^{* * *}$

Table 7 : Correlation indices for Betweenness centrality.

	Assets-L	Assets-S	Deriv.-L	Deriv.-S	OffBS-L	OffBS-S
Assets-L		$0.73^{* * *}$	$0.56^{* * *}$	$0.55^{* * *}$	$0.59^{* * *}$	$0.47^{* * *}$
Assets-S	$0.86^{* * *}$		$0.63^{* * *}$	$0.62^{* * *}$	$0.48^{* * *}$	$0.64^{* * *}$
Deriv.-L	$0.76^{* * *}$	$0.82^{* * *}$		$0.70^{* * *}$	$0.51^{* * *}$	$0.47^{* * *}$
Deriv.-S	$0.79^{* * *}$	$0.89^{* * *}$	$0.90^{* * *}$		$0.46^{* * *}$	$0.57^{* * *}$
OffBS-L	$0.87^{* * *}$	$0.86^{* * *}$	$0.69^{* * *}$	$0.76^{* * *}$		$0.65^{* * *}$
OffBS-S	$0.83^{* * *}$	$0.91^{* * *}$	$0.77^{* * *}$	$0.84^{* * *}$	$0.89^{* * *}$	

Table 8 : Spearman correlation indices for in-degree (lower triangle) and out-degree (upper triangle) centrality.

Additonal results on correlated multiplexity (cont.)

Assets-L Assets-S Deriv.-L Deriv.-S OffBS-L OffBS-S

Assets-L		$0.65^{* * *}$	$0.59^{* * *}$	$0.56^{* * *}$	$0.58^{* * *}$	$0.60^{* * *}$
Assets-S	$0.82^{* * *}$		$0.54^{* * *}$	$0.57^{* * *}$	$0.42^{* * *}$	$0.54^{* * *}$
Deriv.-L	$0.71^{* * *}$	$0.79^{* * *}$		$0.55^{* * *}$	$0.50^{* * *}$	$0.47^{* * *}$
Deriv.-S	$0.70^{* * *}$	$0.76^{* * *}$	$0.87^{* * *}$		$0.40^{* * *}$	$0.53^{* * *}$
OffBS-L	$0.62^{* * *}$	$0.71^{* * *}$	$0.75^{* * *}$	$0.69^{* * *}$		$0.73^{* * *}$
OffBS-S	$0.67^{* * *}$	$0.79^{* * *}$	$0.81^{* * *}$	$0.73^{* * *}$	$0.87^{* * *}$	

Table 9 : Spearman correlation indices for in-strength (lower triangle) and out-strength (upper triangle) centrality.

	Assets-L	Assets-S	Deriv.-L	Deriv.-S	OffBS-L	OffBS-S
Assets-L		$0.60^{* * *}$	$0.57^{* * *}$	$0.50^{* * *}$	$0.56^{* * *}$	$0.55^{* * *}$
Assets-S	$0.79^{* * *}$		$0.54^{* * *}$	$0.53^{* * *}$	$0.45^{* * *}$	$0.51^{* * *}$
Deriv.-L	$0.71^{* * *}$	$0.81^{* * *}$		$0.57^{* * *}$	$0.56^{* * *}$	$0.43^{* * *}$
Deriv.-S	$0.63^{* * *}$	$0.76^{* * *}$	$0.87^{* * *}$		$0.44^{* * *}$	$0.48^{* * *}$
OffBS-L	$0.63^{* * *}$	$0.73^{* * *}$	$0.74^{* * *}$	$0.66^{* * *}$		$0.62^{* * *}$
OffBS-S	$0.65^{* * *}$	$0.80^{* * *}$	$0.80^{* * *}$	$0.73^{* * *}$	$0.84^{* * *}$	

Table 10 : Spearman correlation indices for PageRank in (lower triangle) and out (upper triangle) centrality.

Back to

Additonal results on correlated multiplexity (cont.)

Assets-L	Assets-S	Deriv.-L	Deriv.-S	OffBS-L	OffBS-S
$0.39^{* * *}$	$0.49^{* * *}$	0.18	$0.50^{* * *}$	$0.42^{* * *}$	$0.44^{* * *}$
-0.24^{*}		$0.49^{* * *}$	$0.61^{* * *}$	$0.43^{* * *}$	$0.60^{* * *}$
0.05	0.09		$0.39^{* * *}$	$0.29^{* *}$	$0.35^{* * *}$
0.23	0.04	$0.35^{* *}$		$0.35^{* * *}$	$0.47^{* * *}$
0.22	0.08	0.11	0.01		$0.49^{* * *}$

Table 11 : Spearman correlation indices for Closeness in (lower triangle) and out (upper triangle) centrality.

Assets-L Assets-S Deriv.-L Deriv.-S OffBS-L OffBS-S

Assets-L						
Assets-S	$0.51^{* * *}$					
Deriv.-L	0.22	$0.54^{* * *}$				
Deriv.-S	$0.59^{* * *}$	$0.61^{* * *}$	$0.60^{* * *}$			
OffBS-L	$0.39^{* * *}$	$0.42^{* * *}$	0.25^{*}	$0.36^{* * *}$		
OffBS-S	$0.48^{* * *}$	$0.44^{* * *}$	$0.36^{* * *}$	$0.51^{* * *}$	$0.57^{* * *}$	

Table 12 : Spearman correlation indices for Betweenness centrality.

Additonal results on systemic importance

Figure 8 : Normalized backward and forward indices (right and left panel respectively). Banks with a score above 1 are coloured with dark blue.

[^0]
[^0]: Back to systemic importance

