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Abstract

In this work we use stochastic processes and correlation networks to
model systemic risk between the economies of the European monetary
union, in the post crisis period.

For each country we consider, as a financial leverage measure, the
Debt/GDP ratio. We then model the time dynamic of both the Debt
and the GDP by means of a linear combination of two stochastic
equations: an eurozone systematic process and a country specific id-
iosyncratic process.

Doing so, we model debt sustainability from both the financial
and the real side, and in terms of both common and country-specific
factors.

We provide an estimation model for the parameters of the pro-
cesses, and we derive the implied default probabilities for each coun-
try. Systemic risk is estimated by means of the estimated partial
correlation matrix that is a function of the estimated parameters.
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1 Introduction

1.1 Motivation

The last few years have witnessed an increasing research literature in
the field of systemic risk. Most of these studies are concerned with
the financial side, and try to explain how the default probability of a
country, or of a company, expressed in terms of a financial variable,
depends on that of the others, or on systematic risk factors, that may
include macroeconomic ones, such as the growth rate.

The dependence of systemic risk on the real side of the economy
has typically been studied using causal models, in which the financial
and the real components of an economy are modelled separately. No-
ticeable reference papers are Billio et al. (2015) and Schwaab et al.
(2015), who model systemic risk in terms of econometric regression
models based on the correlations with systemic and idiosyncratic risk
factors. Another stream of research is described by Ang and Longstaff
(2012) and Brownlees et al. (2014), who model systemic risk in terms
of stochastic processes, that may depend on a common systematic
factor, that incorporates variations in the real side of the economy.

The recent financial crisis has however shown that shocks in the
financial and in the real side of an economy are strongly interrelated,
and should be jointly modelled, not only within a country, but also
across them.

Recently, Ramsay and Sarlin (2015) have introduced to the field
of systemic risk measurement a number of financial leverage measures
used in corporate finance, such as the ratio Debt/GDP and Debt/Cash
Flow as early warning indicators of financial crisis. Doing so, they
introduce joint modelling of the financial and the real sides.

Our aim here is to extend, in a stochastic framework, the approach
of Ramsay and Sarlin, considering the Debt/GDP ratio as a financial
leverage measure, on which to base the calculations of country’s de-
fault probabilities.

We model each term of the ratio by means of stochastic processes,
as in And and Longstaff (2012) and Brownless et al. (2014), employing
a linear combination of two stochastic processes: a systematic and an
idiosyncratic one.

In addition, like Billio et al. (2015) and Schwaab et al. (2015),
we explicitly model the partial correlation matrix between different
systematic and idiosyncratic factors and embed this modeling into a
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stochastic process framework.
In terms of relevance, our model should be useful, in particular,

to study the impact of economic policies on the default probability of
a country, within a multi-correlated framework in which such policies
affect the systematic components of the model, at the real or at the
financial level.

In the European Union, characterized by one monetary authority
(the European Central Bank), that regulates still fragmented national
markets, the importance of this study is particularly evident: for ex-
ample, southern european countries, differently from northern ones,
have benefited very little from the drop of monetary rates that has
followed the financial crisis. By explicitly modeling the correlation
process between countries and between companies in a given country,
we aim at capturing the main factors that may constrain the trans-
mission of the monetary impulse.

1.2 Background

From a methodological viewpoint, to estimate our proposed model, we
extend the work in Kalogeropoulos et al. (2011), who has introduced a
multivariate Cox-Ingersoll-Ross (CIR) process to model the dynamics
of exchange rates.

Their model can be specified starting from a general family of non-
parametric, time-homogeneous and continuous models for the dynamic
of the interest rate Yt:

dYt = (θ1 − θ2Yt) d t+ θ3(Yt)
β dWt, (1.1)

where β = 0.5 corresponds to the CIR process, while β = 0 repre-
sents the Vasicek model.

The previous process can be applied to model the joint dynamic
of the interest rates of a group of countries. For example, we can
represent the variations of the bond rates in a group of countries as
functions of the variation of monetary rates, described as a Wiener
process, represented by a geometric Brownian motion dWt, as in the
CIR formulation.

Mathematically, for a group Yt = (y1
t , ..., y

N
t ) of countries, each of

the N stochastic processes can be expressed as follows:

d yit = (θi1 − θi2yit) d t+ θi3

√
yit dWt, i = 1, ..., N (1.2)
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where each parameter θi{1,2,3} is process-specific.

The structure of (1.2) can be enriched by introducing correlation
coefficients between the N stochastic processes, leading to a multi-
variate CIR: 

Corr(d yi,d yj) = ρij = ρji,

ρij 6= 1 for i 6= j,

ρij = 1 for i = j.

(1.3)

The variance of each CIR process can be calculated, and the result
is the following:

V ar
[
yit|yi0

]
= yi0

(
θi3
θi2

)2 (
e−θ

i
2t − e−2θi2t

)
+
θi1
2

(
θi3
θi2

)2

. (1.4)

The limit of the above variance can be calculated for an adjustment
speed that tends to zero:

lim
θi2→0

V ar
[
yit|yi0

]
= yi0(θi3)2t. (1.5)

Then, using the correlation coefficients (1.3), the instantaneous
covariance matrix can be derived as:

A =


y1

0(θ1
3)2 ρ12

√
y1

0y
2
0θ

1
3θ

2
3 ... ρ1N

√
y1

0y
N
0 θ

1
3θ
N
3

ρ21
√
y2

0y
1
0θ

2
3θ

1
3 y2

0(θ2
3)2 ... ρ2N

√
y2

0y
N
0 θ

2
3θ
N
3

...
...

. . .
...

ρN1
√
yN0 y

1
0θ
N
3 θ

1
3 ρN2

√
yN0 y

2
0θ
N
3 θ

2
3 ... yN0 (θN3 )2


(1.6)

Note that A is a symmetric matrix, so (a) A = AT and (b) A can
be decomposed according to the spectral theorem.

Note also that the stochastic processes proposed by Kalogeropoulos
et al. (2011) can be written in a compact multidimensional form:

dYt = M(Yt,Θ1,2) d t+ Σ(Yt,Θ3) dWt, (1.7)

where
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[M ]i = θi1−θi2yit, [Σ]i = θi3

√
yitρ

i, Θ1,2 =

 θ
1
1 θ1

2
...

...
θN1 θN2

 , Θ3 =

 θ
1
3
...
θN3

 .
Our aim is to broaden Kalogeropoulos et al. (2011), extending

their multivariate CIR stochastic process in a more general process
able (a) to capture both the systematic and idiosyncratic components
that may affect interest rate dynamics and (b) to describe the corre-
lation structure by means of graphical Gaussian network modeling as
in Giudici and Spelta (2015).

Our proposed models will be applied and compared to data that
concern the recent post-crisis period (2010-2014) and the countries
belonging to the Eurozone. As the validity of a model ought to be
tested in terms of its predictive performance, we will also develop an
appropriate model assessment methodology based on out-of-sample
predictions of interest and growth rates, for a given Monte Carlo path
of monetary and real reference rates.

The paper is structured as follows: Section 2 describes the pro-
posed models and Section 3 presents the empirical evidence obtained
from their application.

2 Proposal

We assume that the dynamic of the debt of each country expressed,
for simplicity, by the evolution of the associated interest rate, can be
described by a linear combination of stochastic processes. We assume,
in fact, that all of them follow the same diffusion mechanism, that can
be considered as the systematic process; and, in addition, we assume
that they are also characterised by another stochastic equation, that
can be considered as an idiosyncratic evolution. The complete process
is the following:

Zit = −αiSt + βiyit, m < i, (2.1)

where St stands for the systematic process, while yit represents the
idiosyncratic process referred to country i. Finally, αi measures the
weight of the systematic process on country i, while βi is a weight
variable which measures the influence of the idiosyncratic equation
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on the general, complete process Zit , that describes the evolution of
interest rates. From an economic viewpoint, note that the above for-
mulation expresses Zit as a spread between the cost of debt and the
cost of money.

Both the systematic and the idiosyncratic processes can be formu-
lated as stochastic differential equations, through the CIR specifica-
tion: {

dSt = (a− vSt) d t+ b
√
St dBt,

d yit = (θi1 − θi2yit) d t+ θi3
√
yit dWt,

(2.2)

where dBt and dWt are two independent Brownian motions.
The previous equation derives from an important assumption: the

systematic process is the same for all the countries considered in the
sample, but it differently influences each generic country-specific pro-
cess Zit , through the weight αi.

The next step consists in deriving the covariance matrix of the pro-
cess. To achieve this objective we introduce the following assumptions
on the correlation structure:{

Corr[d yit,d y
j
t ] = ρij ,

Corr[dSt,d y
j
t ] = γj .

(2.3)

The first equation is consistent with the assumptions used in the
formulation of multidimensional CIR processes; the second one de-
scribes the correlation between each idiosyncratic process and the sys-
tematic process St.

We can now obtain the covariance Cov(Zit , Z
j
t ), where

dZit = −αi dSt + βi d yit,

dZjt = −αj dSt + βj d yjt ,

i, j = countries.

(2.4)

After some calculations the following expression for the instanta-
neous covariance can be demonstrated:

Cov(Zi, Zj) = αiαjb2S0+
√
S0b·

[
αiβjγj

√
yj0θ

j
3 + αjβiγi

√
yi0θ

i
3

]
+βiβj

√
yi0y

j
0θ
i
3θ
j
3ρ
ij .

(2.5)
Note that the previous equation can be simplified if the two coun-

tries coincide (i = j):

6



Cov(Zi, Zi) = (αi)2b2S0b+ 2
√
S0

√
yi0α

iβibθi3γ
i + (βi)2yi0(θi3)2. (2.6)

A further development can be achieved by deriving a compact for-
mulation for the instantaneous covariance matrix. Consider the cor-
relation matrix of the idiosyncratic processes:

P =


1 ρ12 ... ρ1N

ρ21 1 ... ρ2N

...
...

. . .
...

ρN1 ρN2 . . . 1

 , Γ =


γ1

...
γi

...
γN

 , (2.7)

where each element in P consists in the correlation coefficient be-
tween the idiosyncratic processes of two countries, while Γ is a column
vector which includes the correlation coefficients between each insti-
tution i and the systematic process St.

Through the previous specification we can rewrite the instanta-
neous covariance matrix A in the following, simple decomposition:

A = Φ ·ΘT , (2.8)

where

[Φ]i =
[
αib
√
S0, αi, βi

√
S0yi0bθ

i
3[Γ]i, βi

√
yi0θ

i
3

√
[P ]i

]
,

[ΘT ]j =



αjb
√
S0

βj
√
S0y

j
0bθ

j
3[Γ]j

αj

βj
√
yj0θ

j
3

√
[P ]j


.

We remark that the result expressed by (2.5) and (2.8) is thus very
useful for the determination of the partial correlation matrix, based
on the inverse of the correlation matrix. Using it we can derive the
graphical network models described in Giudici and Spelta (2015) and
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Brownlees et al. (2014) for a precise description of the systemic risk
links between countries.

The model described in (2.1) can be generalised to consider the
difference between two independent stochastic processes that capture,
respectively, the evolution of the financial and of the real side of the
economy.

Indeed, by considering that f(t) = Debt(t)/GDP (t) is a two-
variables function that depends on time just through the time depen-
dence of its two components Debt and GDP, it can be easily shown
that its total derivative is the following:

d f =
∂f

∂Debt
·dDebt+ ∂f

∂GDP
·dGDP =

∂Debt
∂t ·GDP −Debt ·

∂GDP
∂t

GDP 2
.

(2.9)
Therefore, we model the time evolution of the Debt/GDP ratio

and, therefore, the sustainability of a debt, by looking at the evolution
of both the financial liability side and the real asset side.

More precisely, we assume that the overall stochastic process is
given by Zit,1 − Zit,2, where:

Zit,1 is independent of Zit,2;
the evolution of the Debt, simplified by the cost of the debt service,

is described by the following process:

Zit,1 = −αi1St,1 + βi1y
i
t,1, (2.10)

where St,1 represents the Euribor interest rate evolution, while yit,1
describes the interest rate of 10-years maturity government bonds:
thus, Zit,1 measures the weighted spread between bond interest rates
and monetary rates;

finally, the evolution of the GDP of a country can be modelled by
the following process:

Zit,2 = −αi2St,2 + βi2y
i
t,2, (2.11)

which represents the spread between the country-specific GDP
growth rate (yit,2) and the GDP growth rate of the Eurozone (St,2).

2.1 Model estimation and validation

All the proposed CIR time-homogeneous processes need a specific pa-
rameter estimation procedure. For this aim we can define the following
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variables:

c =
2θ2

θ2
3(1− e−θ2t)

, u = cBRte
−θ2t, q =

2θ1

θ2
3

− 1, v = cBRt+1.

The log-likelihood function of the process can then be derived as:

lnL(Θ) = (N−1) ln c+
N−1∑
j=1

[
−utj − vtj +

q

2
ln

(
vtj
utj

)
+ ln[Iq(2

√
utjvtj )]

]
,

(2.12)
where Iq(2

√
uv) is the modified Bessel function of order q. The

parameter vector Θ̂ is thus found by maximizing the log-likelihood
function:

Θ̂ = (θ̂1, θ̂2, θ̂3) = arg max
Θ

lnL(Θ). (2.13)

To compare the proposed models with others, such as linear re-
gression models, on the same playing field, we ought to develop a
predictive assessment procedure. This is particularly meaningful es-
pecially in the light of the necessity to forecast ahead of time the levels
of the systemic rates, that are the main explanatory components of
the model.

In order to predict financial or economic spreads (Zit,1, Zit,2) for
the countries considered in the sample, we need to estimate also the
weights of the systematic (αi) and the idiosyncratic (βi) processes.
Let us call di{1,2}(real) as the observed spreads for the period under
analysis. Then

βi{1,2} = Corr
(
di{1,2}(real), y

i
t,{1,2}

)
,

αi{1,2} = E
(
βi
{1,2}y

i
t,{1,2}−d

i
{1,2}(real)

St,{1,2}

) (2.14)

According to the standard cross-validation (backtesting) proce-
dure, to evaluate the predictive performance of a model we can com-
pare, for a given time period, the predictions of interest rate spreads
(Zit,1) and of GDP growth rate spreads (Zit,2) obtained with the pre-
vious combinations of stochastic processes with the actual values. To
obtain a robust measurement we can indeed generate N scenarios of
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the general processes, using the estimated parameters and weights,
and obtain the corresponding values using either (2.10) and (2.11).
On the basis of them we can calculate and approximate Monte Carlo
expected values and variances of the predictions, as follows.

Let Zit,{1,2} be a spread to be predicted at time t, with unknown

density function fY (y). The expected value of Y can then be approx-
imated with

Ê(Y ) =
1

N

N∑
k=1

y(k), (2.15)

and its variance with

v̂ar(Y ) =
1

N2

N∑
k=1

[yi − ˆE(Y )]2. (2.16)

Similarly, for each generated scenario we can calculate the corre-
sponding default probability, according to equations (2.19) and (2.21).

2.2 Default probability estimation

The analysis of systemic risk has the general objective of estimating
how the change in the probability of default PD (actual or perceived)
of a country may affect other countries, and which of them.

The methodology described so far can be extended to derive de-
fault probabilities and, therefore, to build network models for default
probabilities. The link between the processes introduced in this Sec-
tion and the default probabilities of the corresponding country can be
obtained as follows.

Let us assume that we are in an arbitrage-free context. According
to the two specifications of the general process Zit,{1,2}, two PDs can

then be obtained. The first (PD1) exclusively depends on the interest
rate spread, and it can be derived considering:

Dt+1 = (1− PD1)eSt,1+d1Dt, (2.17)

where Dt+1 (Dt) is the total debt at time t + 1 (t), and d1 is the
spread between the idiosyncratic and the systematic interest rate. The
analogous risk-free expression is the following:

Dt+1 = Dte
St,1 . (2.18)
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Equating (2.17) with (2.18) we can obtain PD1:

PDi
t,1 = 1− e−d

i
t,1 = 1− e−Z

i
t,1 . (2.19)

The second expression of the PD (PD2), can be obtained by con-
sidering both the processes Zit,1 and Zit,2 together and by deriving the
probability of default from the ratio between the liability (debt) and
the asset components. Through this procedure equations (2.17) and
(2.18) become: 

Dt+1

At+1
= (1− PD2)Dt

At

eSt,1+d1

eSt,2+d2
,

Dt+1

At+1
= Dt

At
eSt,1−St,2 .

(2.20)

And, equating the two expressions, we obtain:

PDi
t,2 = 1− e−(dit,1−dit,2) = 1− e−(Zi

t,1−Zi
t,2). (2.21)

From the above equation some comments can be made: (a) if di1
decreases, the probability of default decreases, which is consistent with
the definition of di1 as the spread between the country government
bond interest rates and the monetary rates (the higher yit,1 and Zit,1,

the riskier the country); (b) similarly, if di2 decreases the probability
of default increases, which is consistent with the definition of di2 as the
spread between the idiosyncratic GDP growth rate and the European
GDP growth rate.

3 Application

3.1 Data and descriptive statistics

The recent financial crisis, together with the sovereign crisis, has had
a great impact. In particular, the volatility of the default probabil-
ity of each country has significantly increased, as well as the rela-
tionships between countries considered as part of an interconnected
network have substantially changed. In the Eurozone, characterized
by one monetary authority (the European Central Bank), that regu-
lates still fragmented national markets, this effect is particularly evi-
dent, as southern european countries are very close to each other, with
northern economies also strongly interconnected and characterized by
limited relations with southern countries.
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To investigate the above issues we focus on five european countries,
France, Germany, Greece, Italy and Spain, for the post-crisis period,
ranging from January 2010 to December 2014.

For the purposes of our analysis, the systematic process is the
1-month Euribor, while the idiosyncratic process is defined by the
interest rates of 10-years government bonds. All the data collected
and used in this analysis have monthly frequencies. More precisely,
as the GDP growth rates are quarterly released, in order to obtain
monthly data we have interpolated the available values.

The time-evolution of both processes can be observed in Figure 1.

Jan 10 Jul 10 Jan 11 Jul 11 Jan 12 Jul 12 Jan 13 Jul 13 Jan 14 Jul 14 Dec 14

time
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bond_it
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st
 ra

te
s

Bond interest rates of 5 European countries from 2010 until 2013

Figure 1: Monthly time evolution of 10-years maturity bond interest rates,
from January 2010 until December 2014.

From Figure 1 it is clear that the Euribor is the lowest interest rate
(at the moment very close to zero); Greek bond rates, on the contrary,
are characterized by the highest values for the whole period and by
a strong volatility, with a strong peak during 2012. This feature is
obviously consistent with the Greece sovereign crisis. Spain and Italy
seem to have very similar behaviours and, finally, Germany and France
curves are quite homogeneous.

The evolution of the GDP growth rates are represented in Figure
2.

Figure 2 shows that during the first post-crisis years almost all the
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Figure 2: Monthly time evolution of GDP growth rates, from January 2010
until December 2014.

GDP growth rates were negative, with a strong decrease for Greece;
since 2013 the trend has changed and the GDPs have started increas-
ing again for all the countries, with the exception of France.

The correlation matrices between the processes can be calculated,
and are reported in Table 1 (St,1 and yit,1) and in Table 2 (St,2 and

yit,2).

France Germany Greece Italy Spain Euribor

France 1.000
Germany 0.908 1.000
Greece 0.283 -0.066 1.000
Italy 0.589 0.243 0.828 1.000
Spain 0.562 0.284 0.793 0.918 1.000
Euribor 0.747 0.658 0.308 0.520 0.426 1.000

Table 1: Correlation matrix between the interest rates on 10-years govern-
ment bonds and the Euribor.

From Table 1 one can notice that almost all the correlation coef-
ficients are positive, meaning a strong relationship between the bond
interest rates of the five european countries considered in the sample.
The most positive links are between France and Germany, and be-
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tween Greece, Italy and Spain. This result would suggest us to divide
the sample into two, independent clusters, one composed by north-
ern economies (France and Germany), while the other one including
southern economies (Spain, Italy and Greece).

France Germany Greece Italy Spain Eurozone

France 1.000
Germany 0.903 1.000
Greece -0.749 -0.414 1.000
Italy 0.782 0.966 -0.180 1.000
Spain -0.171 0.256 0.763 0.467 1.000
Eurozone 0.746 0.955 -0.130 0.993 0.528 1.000

Table 2: Correlation matrix between the GDP growth rates and the Eurozone
GDP growth rate.

Table 2, on the contrary, shows a different scenario. By analyz-
ing the correlations between the GDP growth rates one can notice
that Germany and France are still positively related, but now Italy
has radically changed its position: in fact, it is positively and signifi-
cantly linked with both France and Germany, meaning that its GDP
growth rate presents a behaviour much more similar to that of north-
ern economies with respect to southern ones. Spain and Greece are
still related. Note that Germany and Italy have the strongest rela-
tionship with the whole Eurozone behaviour.

3.2 Model estimation and validation

The first step consists in deriving the CIR coefficients for all the coun-
tries and for the two general processes Zit,{1,2} through the maximiza-
tion of the log-likelihood function. In order to be able to do out-of-
sample tests, we have used data from 2010 until 2013: in this way we
can generate all the processes for 2014, and we can predict the values
of the spreads for all the countries. The estimated parameter values
obtained for the two systematic processes St,1 (Euribor interest rate)
and St,2 (Eurozone GDP growth rate) are reported in Table 3.

a1 v1 b1 a2 v2 b2

All countries 0.011 0.028 0.124 0.053 0.066 0.140

Table 3: Estimated parameters of the systematic processes St,1 and St,2.
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In Table 4 are reported the estimated parameters of the idiosyn-
cratic processes yit,1 (10-years bond interest rate) and yit,2 (GDP growth
rate), where i refers to each of the five countries considered in this
analysis.

France Germany Greece Italy Spain

θ1,1 0.194 0.123 1.309 0.441 0.549
θ2,1 0.078 0.073 0.086 0.091 0.108
θ3,1 0.116 0.124 0.548 0.150 0.152
θ1,2 0.010 0.021 0.004 0.020 0.016
θ2,2 0.038 0.044 0.0001 0.113 0.0001
θ3,2 0.127 0.137 0.126 0.081 0.125

Table 4: Estimated parameters of the idiosyncratic processes yit,1 and yit,2.

Table 4 shows that Greece has the highest volatility parameter for
the process that describes bond interest rates (θ3,1): this is consistent
with the descriptive statistics and, in particular, with the graph shown
in Figure 1.

Secondly, we have to derive the weight coefficients of the system-
atic and the idiosyncratic processes, consistently with equation (2.14):
they are reported in Table 5.

France Germany Greece Italy Spain

α1 -0.978 0.126 0.935 -0.276 -0.366
β1 0.612 0.772 0.998 0.855 0.851
α2 -1.416 0.779 1.448 1.058 0.581
β2 -0.267 0.936 0.958 0.959 0.278

Table 5: Weight coefficients of the two general processes Zi
t,{1,2}.

Through the specification of the parameters obtained so far we
are now able to generate the total processes Zit,1 and Zit,2 for the
period 2010-2013 or for 2014, and for all the countries. An interesting
point consists in the analysis of the correlation coefficients between
them. Table 6 represents the correlation matrix between Zit,1 for t =
2010, ..., 2014.

Table 6 (which shows the correlations between the processes that
describe the spread between bond interest rates and monetary rates) is
absolutely consistent with Table 1, showing again two distinct clusters
characterized by a strong inner correlation: France and Germany on
one side, and Spain, Italy and Greece on the other one.
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France Germany Greece Italy Spain Euribor

France 1.000
Germany 0.702 1.000
Greece 0.008 -0.504 1.000
Italy 0.410 -0.257 0.776 1.000
Spain 0.300 -0.250 0.787 0.841 1.000
Euribor 0.944 0.496 0.083 0.491 0.392 1.000

Table 6: Correlation coefficients between the processes Zi
t,1.

Table 7, instead, reports the correlation coefficients between Zit,2,
which is the process that describes the difference between the idiosyn-
cratic GDP growth rate and the global Eurozone GDP growth rate.

France Germany Greece Italy Spain Eurozone

France 1.000
Germany -0.927 1.000
Greece 0.749 -0.931 1.000
Italy -0.859 0.814 -0.598 1.000
Spain 0.940 -0.995 0.924 -0.825 1.000
Eurozone -0.998 0.906 -0.712 0.857 -0.920 1.000

Table 7: Correlation coefficients between the processes Zi
t,2.

Comparing Table 6 with Table 7, it is interesting to note that
some coefficients change sign, meaning that the relationship between
some couples of countries changes depending on the variables under
analyses. For example, if we look at the matrix referred to Zit,1, Italy is
positively correlated to Spain and negatively correlated to Germany;
but if we change perspective and we look at the GDP growth rate, we
can notice that those two relationships change in sign, still remaining
significant. Another interesting case regards France: its bonds interest
rates, in fact, are positively correlated to the German ones, but its
GDP decreases when the German GDP increases. As in the previous
case, the correlation matrix of Table 7 is consistent with Table 2.

3.3 Network analysis

From the correlation matrices reported in Tables 6 and 7 we can cal-
culate their inverse and, therefore, obtain the partial correlations be-
tween countries. This, following Giudici and Spelta (2015) allows to
build a graphical Gaussian network between the default probabilities
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of different countries, which gives an important representation of sys-
temic risk channels.

Such partial correlations, referred to Zit,1, for t = 2010, ..., 2013,
are reported in Table 8, along with the p-values that correspond to
the hypotheses of them being equal to zero (no connection).

France Germany Greece Italy Spain

France 1.000

Germany 0.952 1.000
(429.71)

Greece 0.338 -0.371 1.000
(5.68) (7.04)

Italy 0.723 -0.752 0.053 1.000
(48.19) (57.22) (0.123)

Spain -0.412 0.402 0.515 0.529 1.000
(9.02) (8.50) (15.91) (17.07)

Table 8: Inverse correlation matrix for Zi
t,1.

Table 9, instead, reports the partial correlations Zt,2, again for
t = 2010, ..., 2013, obtained from the inversion of the matrix in 7.

France Germany Greece Italy Spain

France 1.000

Germany -0.854 1.000
(118.97)

Greece -0.689 -0.934 1.000
(39.81) (298.71)

Italy -0.004 0.411 0.398 1.000
(0.001) (8.94) (8.31)

Spain -0.833 -0.996 -0.960 0.409 1.000
(100.18) (5177.3) (515.77) (8.86)

Table 9: Inverse correlation matrix for Zi
t,2.

Finally, Table 10 reports the partial correlations of the spread be-
tween the two processes Zit,1 − Zit,2, again for t = 2010, ..., 2013, con-

sistently with the formulation of PDi
2.

By considering a significance level α = 0.01, we can select the
most significant correlations, and thus derive the graphical Gaussian
networks for PDt,1 and PDt,2, with t = 2010, ...2013, as in Figure 3.

The comparison between the three networks, calculated on past
data, reflects what has been underlined in the previous Section: the
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France Germany Greece Italy Spain

France 1.000

Germany -0.405 1.000
(8,65)

Greece -0.349 -0.434 1.000
(6.09) (10.21)

Italy -0.457 0.294 0.349 1.000
(11.61) (4.15) (6.09)

Spain 0.665 0.111 0.598 0.382 1.000
(34.91) (0.55) (24.43) (7.51)

Table 10: Inverse correlation matrix for Zi
t,2-Zi

t,2
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Figure 3: Networks for the five european countries considered in the sample:
Zt,1 (left), Zt,2 (center), and Zt,1 − Zt,2 (right).

inclusion of the GDP growth rate, and so of a macroeconomic variable,
in the study of the default probability is important and necessary in
order to capture all the correlations and the direct links between the
countries.

In the network on the left one can conclude that two clusters are
present: one composed by southern countries, Italy, Spain and Greece,
and the other one composed by northern economies, such as France
and Germany. Italy and Spain seem to act as intermediary coun-
tries, with the first positively correlated with France, and the latter
positively linked with Germany.

The central network, referred to the GDP growth rate, shows a
completely different situation: in particular, France becomes nega-
tively correlated to Germany, and this because of its decreasing GDP
during the last years, as well as Germany seems to be a different coun-
try, being negatively related to almost all the others.

Finally, the total network on the right shows the result obtained
by combining the previous networks: as underlined before, France has
completely changed its position, being now more related to south-
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ern countries and acting as an intermediary between north and south
economies. Spain and Italy are no more related to Germany, and this
is probably due to a sort of compensation effect between financial and
real processes.

3.4 Default probability estimation

After having analyzed the correlation coefficients, we can now calcu-
late the two default probabilities of the 5 countries for 2014: the first
probability (PDi

t,1) considers only the spread between bond interest
rates and monetary rates and it is calculated with equation (2.19);
the second default probability (PDi

t,2) incorporates both the spread
between interest rates and the spread between the country-specific
GDP growth rate and the Eurozone GDP growth rate, and it is based
on equation (2.21). Both probabilities can be derived on past data
(2010-2013) or can be predicted for the next year (2014).

More precisely, Figure 4 shows the probabilities of default calcu-
lated on past data (from 2010 until 2013): the first graph refers to
PDt,1, while the second one describes PDt,2.
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Figure 4: Default probabilities from 2010 until 2013: PDt,1 (left) and PDt,2

(right).

From Figure 4 it is clear that the inclusion of the GDP growth rate,
together with the spread between interest rates, changes the default
probabilities during the period 2010-2013. This is especially evident
for Greece, which experienced an increase in the PD after the addition
of the GDP. This is consistent with the fact that its GDP growth rate
has been strongly negative for the first years after the crisis. The
same reasoning can be applied also to France, Italy and Spain: they
all present a decrease in the PD because of their decrease in the GDP.
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A different situation is the one of Germany: it has always been
characterized by a positive GDP growth rate, and for this reason its
default probability increases after having included Zt,2 in the deriva-
tion of the PD.

Figure 5, instead, shows the two estimated probabilities of default
for 2014.
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Figure 5: Estimated default probabilities for 2014: PDt,1 (left) and PDt,2

(right).

Figure 5 shows a decrease in the probabilities of default for all the
countries during 2014. This is explained by the radical drop in the
interest rates of the 10-years bonds during the last period. Moreover,
by comparing the curves, it is clear that Spain and Germany have
PD2014,2 < PD2014,1: this is consistent with their increase (very strong
for Spain) in the GDP during the last year. Italy and France, on the
contrary, present PD2014,2 > PD2014,1, and again this is due to the
actual negative values of their GDP growth rates.

It is important to remark that Figure 4 and 5 show a change in the
default probabilities after having included the GDP growth rates in
the analyses. This is a clear evidence of the importance of including
an economic perspective, together with a financial one, in the analysis
of the evolution of a country.

Finally, we can calculate the correlation matrices between the two
default probabilities, and see how they change considering only the
financial viewpoint (PDt,1) or both a financial and an economic per-
spective (PDt,2).

By comparing Table 11 and 12 it is clear that France and Italy
are the most interesting situations: their default probabilities are,
respectively, positively and negatively related to those of Germany on
the liability side, but if we implement also the GDP growth rate, such
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France Germany Greece Italy Spain

France 1.000
Germany 0.703 1.000
Greece 0.014 -0.508 1.000
Italy 0.410 -0.257 0.785 1.000
Spain 0.299 -0.250 0.798 0.843 1.000

Table 11: Correlation coefficients between the default probabilities PDi
1.

France Germany Greece Italy Spain

France 1.000
Germany -0.594 1.000
Greece -0.059 -0.211 1.000
Italy -0.448 0.278 0.686 1.000
Spain 0.316 -0.280 0.781 0.517 1.000

Table 12: Correlation coefficients between the default probabilities PDi
2.

correlations become opposite in sign. This behaviour is consistent
with the previous observations, and also with Table 7, where can be
noticed that France/ Italy and Germany have an opposite relationship
with the Eurozone GDP growth rate.

From this Section an important conclusion emerges: correlations
between idiosyncratic processes are significant, but it is even more
important to consider correlations between each country-specific pa-
rameter and the overall european level of the same quantity. This final
remark justifies our choice of including an european level within our
model, looking at the spread between an idiosyncratic variable in each
country and its mean value in the Eurozone.

4 Future research

We have demonstrated that correlated stochastic processes, coupled
with network models, can be very useful in the joint modelling of the
dynamic of debt sustainability of an economy, as measured by the
Debt/Gdp ratio.

Future research involves extending what suggested in Acharya et
al. (2014) and Grey et al. (2013) who explicitly models the correla-
tions and the associated systemic loops between the different sectors
of an economy: the government, the financial sector and the financial
sector.
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To this aim, our model should be extended to both the financial
and non financial corporate aggregate sectors and, possibly, to model
the dynamic of individual firms.
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