
Pitfalls in the use of systemic risk measures∗

Gunter Löffler
University of Ulm

Peter Raupach
Deutsche Bundesbank

July 6, 2015

Abstract

We examine pitfalls in the use of return-based measures of systemic risk contributions (SRCs).
For both linear and non-linear return frameworks, assuming normal and heavy-tailed distri-
butions, we identify non-exotic cases in which a change in a bank’s systematic risk, idiosyn-
cratic risk, size or contagiousness increases the risk of the system but lowers the measured
SRC of the bank. Assessments based on estimated SRCs could thus produce false interpreta-
tions and incentives. We also identify potentially adverse side effects: A change in a bank’s
risk structure can make the measured SRC of its competitors increase more strongly than
its own one.
Keywords: Systemic Risk; CoVaR; Marginal Expected Shortfall; Tail Risk
JEL classification: G21, G28.

1 Introduction

A measure of systemic risk aims to quantify how much an entity – be it a bank or hedge fund
or sovereign – contributes to the vulnerability of the financial system. Recent years have seen a
strong interest in refining such measures. Judging from the citation frequency, the two most influ-
ential concepts seem to be the CoVaR family of measures proposed by Adrian and Brunnermeier
(2011) and the marginal expected shortfall of Acharya, Pedersen, Philippon, and Richardson
(2012).1 Originally intended for use in bank regulation, the literature now discusses these mea-
sures not only in conjunction with regulation but employs them for a variety of purposes: to
examine whether systemic risk is priced (Meine, Supper, and Weiß (2015), Nucera, Schwaab,
Koopman, and Lucas (2015)); to measure whether banks benefit from their too-big-to-fail status
(Barth and Schnabel, 2013); to examine which funding channels or instruments are most impor-
tant for systemic risk (López-Espinosa, Moreno, Rubia, and Valderrama (2012), Battaglia and
Gallo (2013)); or to measure the contagion potential of sovereigns (Fong and Wong (2012)).

The literature on value at risk (VaR) has shown that the properties of risk measures and
the consequences of choosing a specific measure for a particular purpose are not immediately
obvious (cf. Artzner, Delbaen, Eber, and Heath (1999), Basak and Shapiro (2001)). With this
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1On 05/21/2015, Google Scholar showed 1051 citations for Adrian and Brunnermeier (2011) and 807 for
Acharya et al. (2012).
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paper, we want to contribute to a better understanding of systemic risk measures by pointing
out pitfalls that can arise in typical applications. We examine whether the measures can give
conflicting or misleading signals, e.g. indicate that a change in a bank’s characteristics lowers its
systemic risk contribution even though the change increases the risk of the system. Though we
mainly interpret our results for a situation in which the measures are used in bank regulation,
conclusions carry over to other applications. Wherever researchers build an analysis on measures
of systemic risk, the reliability of their results will depend on the quality of the measures, and
on how well their properties are understood.

The measures that we examine are the marginal expected shortfall (MES), the CoVaR, the
exposure ∆CoVaR, and the beta. They have in common that stock returns are the key input for
empirical measurement. The MES (Acharya et al. (2012)) is defined as an institution’s average
equity return on days in which the market return is below its 5% quantile. Originating in portfolio
theory and suggested by its name (but not necessarily obvious from the definition), the MES is
a marginal risk measure in that it equals the gradual change in a risk measure – the expected
shortfall of the whole system’s risk – when an institution gains weight in the system.

Risk contribution can also be understood as the change in systemic risk when an institution
gets into distress rather than when it is added to the system. This is the intuition behind the
∆CoVaR measure introduced by Adrian and Brunnermeier (2011). It is the VaR of the system
conditional on an institution being in distress, compared to the system’s VaR conditional on
the institution being in normal condition. Adrian and Brunnermeier also consider the VaR of
an institution conditional on the system being in distress. The corresponding measure, called
exposure ∆CoVaR, is more akin to portfolio theoretic concepts such as the MES. Several authors,
e.g. Acharya et al. (2012) or Benoit, Colletaz, Hurlin, and Pérignon (2013), also analyze the beta,
not necessarily as a candidate systemic risk measure but rather as a benchmark for the proposed
measures. We include it for the same reason.

We start by examining within a linear market model framework how the measures respond
to differences in systematic and idiosyncratic risk as well as in size. We find that the ∆CoVaR
responds to idiosyncratic risk in an ambiguous way. When applied in regulation, the use of
∆CoVaR could create incentives for banks to increase idiosyncratic risk in order to lower their
estimated systemic risk contribution. The way in which each of the four measures reacts to sys-
tematic risk (as measured through the exposure to a common factor) can cause similar problems,
provided that an institution has a large weight in the system. With respect to size, finally, we
find that the beta is susceptible to situations in which an increase in a bank’s size lowers the
estimated risk contribution.

For the sake of exposition, the presentation of results focuses on analytic derivations that as-
sume a multivariate normal distribution for returns. Simulations with multivariate t-distributions
as well as with a dynamic structural model show that the effects also appear in the presence of
heavy tails and time-varying variances and sensitivities, and that they do not depend much on
whether equity returns or asset returns are taken as a basis for the analysis.

Next, we examine a contagion framework in which negative shocks to one bank spill over
to other banks. Even simple contagion structures can lead to a complex behavior of the four
systemic risk measures. Some risk measures, notably the ∆CoVaR, have a tendency to assign a
low systemic risk to infectious banks, others tend to do the opposite.

Our results are fundamental in the sense that we point out possible pitfalls that can arise in
typical situations, with respect to key characteristics such as idiosyncratic risk or infectiousness.
This should help in improving the use of existing measures, as well as in refining them. Deriving
an exhausting set of axiomatic requirements for systemic risk measures and benchmarking exist-
ing proposals against them, though desirable, is beyond the scope of our paper. To illustrate why
this is difficult to achieve, consider the case of contagion. Not only are there many definitions of
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contagion, as discussed by Pericoli and Sbracia (2003), it is also not evident which properties the
measures should have. While it may seem intuitive to require that the systemic risk contribution
of an infectious bank should, ceteris paribus, be larger than that of an infected bank, this is not
obvious if the measure is used to identify risk control strategies. A regulator trying to increase
the stability of a system could do so by either making banks more resilient that are likely to get
infected, or by lowering the contagion intensity of contagious banks. Which option is preferred
will depend on the costs of bringing about changes in infectiousness or resilience, the way in
which banks respond to incentives, and other criteria applied by the regulator.

Closely related to our work are papers that explore the properties and limitations of systemic
risk measures. Benoit et al. (2013) examine the similarity of risk rankings produced by different
measures but do not examine whether the use of the measures can create unwanted incentives.
Boucher, Kouontchou, and Maillet (2013) and Danielsson, James, Valenzuela, and Zer (2014)
discuss measurement problems, from which we abstract in our analysis. Guntay and Kupiec
(2014) suggest to separate systemic risk from systematic risk. While there may be situations in
which it is useful to disentangle systematic risk from the effects of spillovers or interactions, we
follow others (e.g. Bisias, Flood, Lo, and Valavanis (2012), and Allen and Carletti (2013)) and
employ an inclusive definition of systemic risk because a systematic shock such as the bursting
of a bubble can be sufficient to create jeopardizing system-wide losses.

Apart from the measures that we focus on because of their widespread application, there
are several other return-based measures, many of which are related to MES and CoVaR; other
branches of the literature employ holdings-based and network-based analyses of systemic risk.
For an overview of the extensive literature, cf. Bisias et al. (2012), Benoit, Colliard, Hurlin, and
Pérignon (2015), and Hüser (2015).

The remainder of the paper is structured as follows. In Section 2, we introduce the systemic
risk measures studied in this paper. Section 3 discusses possible problems in a linear return
setting, while Section 4 introduces contagion. Section 5 concludes.

2 Systemic risk measures studied in this paper

∆CoVaR and exposure ∆CoVaR

Adrian and Brunnermeier (2011) suggest measures based on what they call CoVaR, which is
implicitly defined through

P

(
Xj ≤ −CoV aRj|C(Xi)

α

∣∣∣∣C (Xi
))

= α .

(To ease comparison with the other measures, we give the CoVaR the opposite sign of that in
the original paper. All systemic risk measures in this paper will have the property that a higher
value indicates a higher risk contribution.)

CoVaR is the value at risk (VaR) of object j conditional on event C happening to object i.
Taking the event to be that i is at its VaR level, Adrian and Brunnermeier suggest to examine

∆CoV aRj,iα = CoV aRj|X
i=−V aRiα

α − CoV aRj|Xi=Mediani

α .

∆CoV aRj,iα measures the change in the α-VaR of j conditional on i moving from its median state
to its own α-VaR. Adrian and Brunnermeier mostly examine the case in which j is given by the
overall system, i.e. a market index or a collection of banks, and i is an individual institution;
this is called ∆CoVaR throughout this paper. However, Adrian and Brunnermeier also consider
the opposite direction in what they call exposure ∆CoVaR, which is defined through

∆CoV aRj,systemα = CoV aRj|X
system=−V aRsystemα

α − CoV aRj|Xsystem=Mediansystem

α
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∆CoV aRj,systemα is the change in the VaR of portfolio j conditional on the system moving into dis-
tress. The measure is more akin to marginal expected shortfall and beta than ∆CoV aRsystem,jα .

Adrian and Brunnermeier estimate the CoVaR with a quantile regression over 25 years of
weekly data, choosing a confidence level α of 1%. We abstract from estimation problems by
deriving results through closed-form expression, or Monte Carlo simulations with a large number
of observations.

Adrian and Brunnermeier suggest that, in the presence of time-varying risk, the precision
of CoVaR estimates can be improved by conditioning the return-based estimates on current
fundamental information. In most of our analysis, we consider static return frameworks. As
we also abstract from estimation error, unconditional return-based estimates are optimal and
fundamental information would not increase precision. The static framework also implies that
a state-dependent modeling as in Adams, Füss, and Gropp (2014) would not enhance the infor-
mativeness of the CoVaR analysis.

In the base case, we do not model differences between asset returns – the use of which is
advocated by Adrian and Brunnermeier – and equity returns. This is done for the sake of
exposition, and seems justified given that for the short return horizons examined in the literature,
the return distributions do not differ greatly except for their volatility. In a robustness check
(Subsection 3.3), we show that conclusions are preserved insofar as all problems identified in the
base case continue to exist when we use a dynamic structural credit risk model to differentiate
between asset and equity returns, and when we introduce heavy tails and tail dependence into
the return distributions of the base case model. However, further problematic effects appear that
we do not observe in the base case.

Marginal expected shortfall (MES)

The marginal expected shortfall put forward by Acharya et al. (2012) is defined as

MESi = −E (Ri |RS < QαS ) ,

where Ri denotes the net equity return of institution i, RS is the system return, and QαS is the
quantile of the system return on level α. Acharya et al. (2012) examine daily returns with a
confidence level of 5%.

In the original work, the system return is proxied by the S&P 500, i.e. the authors include non-
financial firms in the system. We deviate from this approach and follow Adrian and Brunnermeier,
who empirically specify the system as consisting of financial institutions only. The system’s
scope matters in our analysis when we inspect the situation in which a single bank is very large
compared to the system. Such a situation would be less likely if the system were taken to be the
whole economy. Hence, our setup includes the perspective of a smaller country’s financial system
with a few big players (e.g. pre-crisis Iceland); their size is one of the parameters a systemic risk
charge might react to in an undesired way.

Acharya et al. combine the MES measure with other information such as capital and size
to calculate the systemic expected shortfall; see also Acharya, Engle, and Richardson (2012),
who propose an extension with a focus on stochastic volatility. We stay with the MES since this
additional information is beyond the scope of our analysis.2

2The systemic expected shortfall focuses on events that are actually critical to banks and likely to include
default. Such events are typically not in the sample used for the estimation of a systemic risk measure. By
contrast, the MES can directly be estimated and compared with the other measures considered in this paper.
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Beta

Beta, the classic way to measure systematic risk, is defined as the regression coefficient in

Ri = ai + betaiRS + ui, (1)

where Ri is the return of an individual bank and RS is typically an index return. As with the
other measures, we understand it as an index of banks. We write betai, not βi, to highlight its
role as a systemic risk measure, and reserve the Greek letter for the loading on a latent common
factor.

While the difference between systemic risk (the danger of a breakdown of the financial system)
and systematic risk (the exposure to common risk factors) is well acknowledged, a greater amount
of the latter is likely to increase the former. For this reason, beta can also give an indication
of systemic risk. Because of this and the widespread use of beta in finance, we examine its
properties and compare them to those of other measures, similarly to Acharya et al. (2012) and
Benoit et al. (2013).

Gauthier, Lehar, and Souissi (2012) test different capital allocation rules for their potential
to improve system stability. Although their “component value-at-risk” allocation is also given
the attribute “beta” in parentheses, it is more akin to the MES and the exposure ∆CoVaR at
least in a linear setup with normal distributions (cf. Subsection 3.1 of Section 3). Also, and
despite similar names, the concept of beta introduced here and that of tail beta introduced by
Straetmans, Verschoor, and Wolff (2008) only have the idea in common that individual returns
(or losses) are traced back to common factors. The tail beta is actually a conditional probability
and designed to be invariant to marginal distributions. These are large conceptual and numerical
differences to beta.

3 Systemic risk measures in the linear case

In this section, we use a linear factor model to examine whether the suggested measures for
systemic risk fulfill elementary requirements with respect to a bank’s choice of risk. We start with
a linear combination of normally distributed factors, which we call the normal model. It allows
analytical representations of the systemic risk measures, which we present first. Afterwards, we
investigate in which way the measures depend on risk parameters. Assuming that the parameters
are under control of the banks, the sensitivities reveal potential incentives that a systemic risk
measure would hypothetically put on banks if applied as a systemic risk charge. Control over
risk parameters will never be complete (and will have multiple other effects, e.g. on profitability),
but clearly banks have more options to steer the risk of their business than average industrial
firms.

As motivated in the introduction, we do not aim at judging systemic risk measures according
to how useful they would be if systemic risk were regulated according to some optimum principle.
We leave the way open in which a systemic risk charge or other regulatory measures are imple-
mented but assume that banks desire to appear to be of low systemic importance, according to
the systemic risk measure in place. Hence we inspect whether sensitivities to risk parameters
have appropriate signs. Of course, other incentives may exist, in particular benefits from receiv-
ing a “too-big-to-fail” status. In cases in which such incentives are stronger than the opposite
ones arising from the regulation of systemic risk, a change in the interpretation of the results
may be required.

What matters for a bank is not only its own systemic risk but also the systemic risk of its
competitors. If a bank’s actions increase the systemic risk of competitors, the bank may have
a desire to take such actions in order to gain a competitive advantage. We therefore consider
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different types of sensitivities: the impact of a bank’s risk parameter on its own systemic risk
measure as well as side effects on other banks.

We consider a banking system consisting of N banks. Ri, the return of bank i, is determined
by the exposure to a common risk factor F and idiosyncratic risk εi. As explained above, we
leave it open whether we have equity or asset returns in mind. Whether this neglect is justified
will be discussed in Subsection 3.3 by means of a robustness check. Both factor returns and
idiosyncratic components are assumed to be independent normal random variates. The size of
bank i relative to the whole system is assumed to be wi. Corresponding to the return type,
size may be understood as market capitalization or total bank assets. We follow Adrian and
Brunnermeier (2011) and take this system return to be the one that takes the role of a general
market index, a choice that we also make in the estimation of MES and beta.

The system and its components are described through the following equations:

Ri = βiF + εi, RS =
N∑
i=1

wiRi with F ∼ N
(
µ, σ2F

)
, εi ∼ N

(
0, σ2i

)
,

N∑
i=1

wi = 1, (2)

where F and all εi are independent, βi denotes the exposure to the common factor, and RS is
the return on the banking system index. We assume that all βi are positive.

3.1 Analytic expressions for the risk measures

To calculate measures of systemic risk, we need to specify conditional distributions. Owing to
the linearity of the system and the normality of the random variables, we can approach the
problem in a linear regression framework. We start with an analysis of CoVaR measures. When
we condition RS on Ri, we study an orthogonal representation

RS = ci + diRi + vi, Ri⊥vi,

and obtain:

di =
cov(RS , Ri)

σ2(Ri)
, ci = E(RS)− diE(Ri); σ2 (vi) = σ2(RS)− d2iσ2(Ri).

When we use ∆CoVaR to study how the system is affected by a distress of bank i, we obtain:

∆CoV aRS,iα = −Qα (RS |Ri = Qα (Ri)) +Qα (RS |Ri = Q0.5 (Ri))

= − [ci + diQα (Ri) +Qα (vi)] + [ci + diQ0.5 (Ri) +Qα (vi)]

= −di [Qα (Ri)−Q0.5 (Ri)] = −diσ(Ri)Φ
−1(α) ,

with Φ denoting the standard normal cdf. Expanding di gives

∆CoV aRS,iα =
cov (RS , Ri)

σ (Ri)
Φ−1(1− α) . (3)

We now turn to what Adrian and Brunnermeier (2011) call exposure ∆CoVaR. For this
measure, Ri has to be conditioned on RS rather than RS on Ri. We therefore study

Ri = ai + biRS + ui, (4)

(which is also the definition equation (1) of the beta measure) to obtain:

bi =
cov(RS , Ri)

σ2(RS)
, ai = E(Ri)− biE(RS); σ2 (ui) = σ2(Ri)− b2iσ2(RS) . (5)
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When we use the exposure ∆CoVaR to study how bank i is affected by the system, similar
calculations as for the ∆CoVaR give:

∆CoV aRi,Sα =
cov (RS , Ri)

σ (RS)
Φ−1(1− α) (6)

The next measure considered is the marginal expected shortfallMESi = −E (Ri |RS < QαS ).
As in exposure ∆CoVaR, a bank’s return is conditioned on the system return. We therefore start
from (4) to derive:

MESi = −E (Ri |RS < QαS ) = −E (ai + biRS + ui |RS < QαS )

= −ai − biE (RS |RS < QαS )−E (ui |RS < QαS ) .

By construction of an OLS regression, ui and RS are uncorrelated. Because their joint distribu-
tion is multivariate normal (both are linear images of independent normals), they are indepen-
dent, so that E (ui |RS < QαS ) is zero. We therefore obtain MESi = −ai − biE (RS |RS < QαS )
and, expanding ai,

MESi = −E (Ri)− biE (RS −E (RS) |RS < QαS )

= −βiµ− bi σ (RS)E
(
Z
∣∣Z < Φ−1 (α)

)
, Z ∼ N (0, 1)

= −βiµ−
cov (RS , Ri)

σ (RS)
E
(
Z
∣∣Z < Φ−1 (α)

)
= −βiµ+

cov (RS , Ri)

σ (RS)

φ
(
Φ−1 (α)

)
α

(7)

The last transform is a familiar result for truncated normal distributions. Comparing (6) and (7),
MES and exposure ∆CoVaR turn out to be essentially substitutes in a linear model of normals,
in that they differ only by a constant factor and a shift that is typically small on a short-term
horizon.

Beta has a very simple form in the linear setup. Comparing (1) with (4) and applying
(5), it is betai = cov (RS , Ri) /σ

2 (RS). Note that the weighted average of all betas equals 1
by construction, which makes a difference in our sensitivity analyses where we let a single βi
increase while keeping the others constant. This is impossible for the betai, as there is always a
compensating change in the betaj of other banks. The difference between betai and βi is therefore
not just a notational one, besides the influence of idiosyncratic risks on betai.

The following formulas summarize the systemic risk measures in our linear model:

∆CoV aRS|iα =
cov (RS , Ri)

σ (Ri)
Φ−1(1− α) ; ∆CoV aRi|Sα =

cov (RS , Ri)

σ (RS)
Φ−1(1− α); (8)

MESi = −βiµ+
cov (RS , Ri)

σ (RS)

φ
(
Φ−1 (α)

)
α

; betai =
cov (RS , Ri)

σ2 (RS)
. (9)

The covariance between the individual and the system return is common and central to all four
measures; it is then scaled down by a specific variation measure either of individual or system
returns. Only the MES deviates from this pattern by an additive component, of which we
however show in Appendix A.7 that it is usually of low influence.

3.2 Sensitivities to risk parameters

With the analytic expressions at hand, we can now investigate the sensitivities of systemic risk
measures to changes in a bank’s risk parameters. We study effects of bank-specific idiosyncratic
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(σi) and systematic risk (βi), but also of size3 (wi). Size is not literally a risk parameter but has
impact on the risk of the system, even in a simple setup as ours, where it only affects the weights
of individual returns in the average return RS . As argued above, two kinds of sensitivity appear
to be relevant.

First, there is the effect that a bank’s parameter has on its own systemic risk charge; we call
it the direct effect and measure it by the partial derivative.

Second, there is also a potential side effect on other banks’ systemic risk charges. A bank
could benefit if its relative risk ranking compared to other banks improves. We measure this side
effect through the change in the ratio of a bank’s systemic risk to the systemic risk of another,
representative bank. We call this sensitivity the relative effect. Summing up, for a parameter
pi applying to bank i and one of the systemic risk measures SRM considered in this paper, we
calculate

∂ SRMi

∂pi
(direct effect) and

∂

∂pi

[
SRMi

SRMj

]
, j 6= i, (relative effect).

We focus on two basic properties the sensitivities should fulfill in order to avoid unwanted
incentives and interpretations. If a change in the parameter of a bank increases the risk of the
whole system, it should also increase the systemic risk measure of the bank. In addition, it
should not lower the systemic risk relative to other banks. To give the two properties a precise
meaning, we must specify what we understand by the risk of the system. We define it as σ (RS)
but note that in our multivariate normal setup, V aRα (RS) or expected shortfall ESα (RS) are
almost synonym to the standard deviation, as regards monotonicity.4 Both for idiosyncratic and
systematic risk, there is no ambiguity about what sensitivity is appropriate. If βi or σi rises,
ceteris paribus, this always increases σ (RS), so that bank i should be assigned more systemic
risk. Positive partial derivatives to βi and σi are therefore appropriate.

By contrast, the case of size is ambiguous. If a bank’s weight in the system increases, this
can make σ (RS) rise or fall. For instance, when a bank with low βi and moderate idiosyncratic
risk gains weight, σ (RS) can fall because of the low βi even though idiosyncratic risks become
less diversified. Assigning such a growing bank less systemic risk would then be appropriate, at
least as long as the role of size is limited to its impact on the joint distribution of returns.5

Evaluating all the sensitivities means analyzing the signs taken on by the elements of an 8×3
Jacobian and how they depend on other parameters. The results are summarized in Table 1.
Since the sign of a sensitivity can depend on the parameterization, we provide the following
information:

• In Panel A, we report the range of signs. A superscript n marks cases where the stated
range applies under normal conditions. The single instance of “+/(–)” is discussed below.

• In Panel B, we report the signs of partial derivatives for a base case parameterization
where parameters are set to E (F ) = 0.05, σF = 0.2, σi = 0.2, which are expressed on an
annual basis; to translate them to daily returns, we divide E(F ) by 260 and the standard
deviations by

√
260. Further parameters are: N = 50, βi = 1, wi = 1/50 for all i; quantile

level α = 0.01 for the CoVaR measures and 0.05 for the MES.
3A change in size ceteris paribus is understood as a dollar change (of total assets or market capitalization,

de-pending on the return used), while the dollar value of the other banks remains constant. When the weight wi
of a bank increases, the other banks’ weights are therefore assumed to shrink proportionally, keeping the sum of
all weights at 1.

4An opposite situation in which a parameter shift lets σ(RS) rise while V aRα (RS) = −Qα (RS) shrinks would
require the VaR to be negative. Even for a particularly moderate tail (10%), low system volatility (10%), and a
long risk horizon (1 year), the annual drift of RS would have to exceed 12.8% to make the system VaR negative.

5Changing size may have additional effects, which, however, cannot be analyzed in our simple linear model.
For example, an increase in size could lower system stability because a larger banking sector makes it more likely
that systemic threats cannot be contained through government intervention.
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• In Panel C, we report signs for a system with a dominant bank of high systematic risk.
Parameters are: β1 = 1.5, w1 = 0.3, wj = 0.7/49 for j > 1; other parameters are as in the
base case.

Overall, Table 1 provides a good impression, in that most of the effects (direct and relative)
are either always positive or positive under normal conditions; only very implausible parameters
constellations, specified in the appendix, would generate the opposite sign. There is one case
marked by “+/(–)” in which the partial derivative can be negative under normal conditions, but
only when the partial derivative to σ (RS) is negative, too. Hence, this case is not problematic
within our framework. There are some exceptions, however, which we now look at in more detail.

If a bank increases its idiosyncratic risk, there are two opposing effects on ∆CoVaR: inspect-
ing the fraction in the representation of ∆CoV aR

S|i
α found in (8), the numerator cov (RS , Ri)

increases in idiosyncratic risk since the bank is part of the system. The relevant addend to the
covariance is given by wiσ2i so that the effect on the numerator becomes smaller, the lower the

weight of the bank within the system. The denominator, which equals
√
β2i σ

2
F + σ2i , is unaffected

by the bank’s weight, and the dependency on σi has a substantial linear part. Taken together,
assuming moderate values for wi and σi, the denominator’s sensitivity in σi will be stronger than
that of the numerator so that the ∆CoVaR can shrink while idiosyncratic risk rises. A systemic
risk charge based on ∆CoVaR would therefore create an incentive for banks to increase their
idiosyncratic risk, which would increase the volatility of the system return.

The partial derivative can be positive if the banks’ weight or the idiosyncratic risk are large
enough. To see which case probably prevails in practice we analyze the partial derivative of
∆CoVaR more deeply in the appendix.

In Figure 1 we pick a special case where all βi equal 1. Then,

∂CoV aRS,iα
∂σi

∝ wi
1− wi

−
(

1 +
σ2i
σ2F

)−1
, (10)

which gives rise to setting the ratio σi/σF on the horizontal axis of Figure 1 and wi on the
vertical.

Points where the partial derivative is negative are displayed in gray. The area marks cases
in which a bank striving for a low systemic risk measure might be tempted to increase its
idiosyncratic risk. The area seems to cover most of the practically relevant cases. For instance,
if the weight of a bank in the system is below 10 percent, the idiosyncratic risk can be up to 2.8
larger than its exposure to the systematic factor while the bank still has an incentive to increase
idiosyncratic risk. Even if the bank makes up one third of the system, it still may be tempted
to increase σi as long as this is not larger than σF .

To give an idea of the strength of the effect, we provide an example in Figure 2 where the
∆CoVaR is plotted as a function of σi (on an annual basis) between 0 and one half. Each line
refers to a certain βi; all other banks’ βj are held constant at 1 and their idiosyncratic risk at
0.2 (p.a.). All banks have the same weight; further parameters are given in the figure’s notes.
The upper graph confirms the negative dependency on σi. Bank i would benefit from large
idiosyncratic risk most if its βi is low. For the example of βi = 0.5, assume the bank raises σi
from 0.15 to 0.25. It could lower its ∆CoVaR from 0.0162% to 0.0113%, which is a reduction by
30.4 percent. For βi = 1.5, where the sensitivity is weaker, the reduction would amount to 13
percent. The middle graph shows that idiosyncratic risk has no side effect on the ∆CoVaR of
other banks (which also results from the formula) so that the lower graph, showing the relation
between the ∆CoVaR of two banks, is just a duplicate of the upper.

However, direct and relative effects can also have opposite directions, as we show using the
example of how ∆CoVaR reacts to systematic risk. In Figure 3, βi varies between 0.5 and 2. The
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Table 1: Effect of risk parameters on systemic risk measures.
We analyze sensitivities of systemic risk measures to certain risk parameters in a linear setting. Returns
are described through

Ri = βiF + εi, RS =

N∑
j=1

wjRj with F ∼ N
(
µ, σ2

F

)
, εi ∼ N

(
0, σ2

i

)
.

All εi and F are independent. A direct effect of a parameter is understood as the partial derivative
of a systemic risk measure. A relative effect refers to the ratio between the systemic risk measures
of two banks. It is the ratio’s partial derivative to a parameter of the bank in the numerator, e.g.
∂ (MESi/MESj) /∂σi.
Panel A presents possible signs of the derivatives. A superscript n marks cases where the sign applies
under normal conditions. Only very implausible parameters constellations, specified in the appendix,
would generate the opposite sign. In the single instance of “+/(–)”, the partial derivative can be negative
under normal conditions, but only when the partial derivative to σ(RS) is negative, too.
Panel B reports the partial derivatives’ signs for the base case where parameters (p.a. for drift and
volatility) are set to N = 50, E (F ) = 0.05, σF = 0.2, σj = 0.2 , βj = 1, wj = 1/50 for all j; quantile
level α = 0.01 for the CoVaR measures and 0.05 for the MES.
Panel C reports signs for a system with a dominant bank of high systematic risk. Parameters are:
βi = 1.5, wi = 0.3, wj = 0.7/49 for j 6= i; other parameters as in the base case.

Parameter Effect type ∆CoVaR Exp. ∆CoVaR MES Beta

Panel A: Range of the sign of partial derivative
idiosyncratic risk σi direct +/– + + +

relative +/– + + +
systematic risk βi direct + + +n +

relative +/– +/– +/– +/–
size wi direct +/(–) + + +/–

relative +n +n +n +n

Panel B: Sign of partial derivative in base case parameterization
idiosyncratic risk σi direct – + + +

relative – + + +
systematic risk βi direct + + + +

relative + + + +
size wi direct + + + +

relative + + + +

Panel C: Sign of partial derivative in parameterization “one risky and dominant bank”
idiosyncratic risk σi direct – + + +

relative – + + +
systematic risk βi direct + + + +

relative + + + +
size wi direct + + + –

relative + + + +

Panel D: Cases with neg. derivatives and references to Appendix A (analytic results)
idiosyncratic risk σi direct Base case, A.9 A.5 A.5 A.4

relative Base case, A.10 A.11 A.11 A.11
systematic risk βi direct A.2 A.6 A.7 A.6

relative Figure 3, A.13 A.12 A.12 A.12
size wi direct A.3 A.9 A.9 Figure 4, A.8

relative A.15 A.14 A.14 A.14
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Figure 1: Regions in which ∆CoVaR is a falling function of idiosyncratic risk. We examine
a system with N = 50 banks. We focus on the idiosyncratic risk of bank i, which has weight wi in the
system. Returns are described through

Rj = βjF + εj , RS =

N∑
j=1

wjRj with F ∼ N
(
µ, σ2

F

)
, εj ∼ N

(
0, σ2

j

)
.

All εj and F are independent. For the graph, banks are assumed to have a uniform β of 1. The horizontal
axis is given by the ratio of idiosyncratic to systematic risk. The vertical axis plots wi; other banks
have a uniform weight (1− wi) /49. The figure shows those points as a gray area where the inequality
∂∆CoV aRsystem,iα /∂σi < 0 holds.

upper graph indicates, regardless of the bank’s weight, that the ∆CoVaR always grows with βi,
as it should; in the appendix we show this to hold in general. However, the side effect (middle
graph) can be so strong that the ∆CoVaR relative to other banks decreases. This is observed
in the graph at the bottom in cases where bank i has a very large weight in the system. If a
bank were increasing its exposure to systematic risk, a hypothetical ∆CoVaR-based systemic
risk charge would therefore well “punish” this bank, but even more so its competitors.

To reveal the conditions under which the sensitivity to βi is so strange, we perform an
approximation, assuming that all banks have negligible weights, except bank i. Defining κ ≡
wi/ (1− wi) as a monotonic function of wi, β∗ ≡ (1− wi)

∑
j 6=iwjβj as the other banks’ weighted

average of systematic risks, and γ ≡ βi/β∗, we obtain

∂

∂βi

[
∆CoV aRS,iα

∆CoV aRS,jα

]
∝ ... ≈ 1− κ

(
κ
σ2i
σ2Fβ

2
∗

+ γ (κγ − 1)

)
, (11)

which is derived in Appendix A.13. This expression tends to be negative (i) when bank i is
large relative to the others, (ii) when its idiosyncratic risk is large relative to the other banks’
average systematic risk, given by σFβ∗, and (iii), when its βi is above the average. In other
words, if the ∆CoVaR were used to define a systemic risk charge, the effect of βi on a bank’s
own risk charge would be weaker than that on its competitors’ charge, and this disproportion
would be most pronounced if the bank was already riskier and larger than the others. In a
particularly competitive environment, the relative effect might be beneficial enough to outweigh
the increased costs involved with the own risk charge. In this way, ∆CoVaR could set a risk-
increasing incentive.

A similar relative effect can be observed for the other measures. Using the same numerical
example as for Figure 3, where σi is high and σF is low, the ratio6 SRMi/SRMj is falling in βi

6Here, SRM stands for exposure ∆CoVaR, MES or Beta.
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Figure 2: How ∆CoVaR responds to idiosyncratic risk. We examine the same system of N = 50
banks as in Figure 1, with the following additional assumptions. Banks have equal weights 1/50. Except
bank i, all banks are uniform. They have a βj = 1 and a standard deviation of idiosyncratic risk of 0.2
on an annual basis, the same as that of the systematic factor. On the x axis, the idiosyncratic risk σi of
bank i varies from 0 to 0.5. Lines in the upper graph, each for a certain exposure βi to the systematic
factor, plot the ∆CoVaR of bank i on a daily basis at a quantile level of 0.01. The middle graph shows
the ∆CoVaR for one of the other banks. The bottom graph shows the ∆CoVaR for bank i divided by
that of another bank.

if the weight of bank i is exceptionally high. The partial derivative calculated in Appendix A.12
gives the same result: assuming for simplicity that the weight of bank j in the system can be
neglected, we find

lim
wj→0

∂

∂βi

[
SRMi

SRMj

]
∝ 1− w2

i σ
2
i

β̄2σ2F
.

Hence, βi will have a negative relative effect under the condition that idiosyncratic risk, multiplied
by the weight of bank i, exceeds average systematic risk, given by β̄σF . There is a commonality
with ∆CoVaR in that the relative effect on all four systemic risk measures tends to be negative
if size and idiosyncratic risk are high while average systematic risk is low.

While the effect of a bank’s size on ∆CoVaR is worth a look as well, we discuss it without
technical details; these are found in Appendix A.3. Recall that we treat size independently
of its particular meaning in this part of the paper, be it total assets or market capitalization.
Assuming the size of bank i to change while those of the others remain unchanged, we observe an
ambiguous effect in the following sense. On the one hand, the ∆CoVaR would increase with size
under fairly general conditions, e.g., if βi is not smaller than the average β of the other banks. If,
on the other hand, the bank has sufficiently low systematic and idiosyncratic risk, the sensitivity
can switch so that the bank would be assigned less systemic risk, and this would hold for any
size. We can show, however, that the whole system would necessarily become less volatile then.
The ∆CoVaR thus sets a correct incentive insofar as growth would be rewarded only if this also
decreases system volatility.

We now discuss a further ambiguous case, which is the direct effect of size on beta. The
general formula for the partial derivative is too complicated to identify simple conditions under
which it is positive. We therefore make the simplifying assumption that only the bank of interest
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Figure 3: How ∆CoVaR responds to systematic risk. We examine the same system of 50 banks
as in Figure 2, with the following modifications: σi = 0.4; σF = 0.1 (both p.a.); βj = 1 for j 6= i. On
the x axis, the systematic risk βi of bank i varies from 0.5 to 2. The lines in the upper graph, each for a
certain exposure weight wi in the system, plot the ∆CoVaR of bank i on a daily basis at a quantile level
of 0.01. The middle graph shows the ∆CoVaR for one of the other (uniform) banks. The bottom graph
shows the ∆CoVaR for bank i divided by that of another bank.

i has a non-negligible weight in the system, whereas all other banks are infinitesimally small.
Then they do not contribute idiosyncratic risks to the system anymore. As the resulting formula
is still difficult to interpret, we consider the limiting case where also wi is small. Formula (A-8)
in Appendix A.8 gives

lim
wi→0

∂ betai
∂wi

∝ σ2i − βi (βi − β∗)σ2F ,

where β∗ is the average exposure of the other banks to systematic risk. The derivative is nega-
tive if the bank’s exposure to systematic risk is above the average and the idiosyncratic risk is
comparably small. Even for arbitrarily large σi there is always a βi above which the derivative
becomes negative. If a systemic risk charge were based on betai without further corrections,
the direct effect of size would be particularly undesirable since exactly those banks would be
rewarded for growth that bear more systematic risk than the others, while this growth would
increase the variance of the system return; the latter is shown in Equation (A-9) in Appendix
A.8.

Numerical examples suggest similar effects in the general case where wi is positive and the
idiosyncratic risks of other banks are non-negligible. Figure 4 illustrates the extent to which a
bank might benefit from growth if beta were used as a systemic risk charge. We assume the base
case parameters for the factor as well as for idiosyncratic risk, and take all banks except bank i
to have a β of 1. Bank i’s weight in the system varies from 0 to 0.5 so that it can become very
dominant relative to the other 49 banks with weight wj = (1− wi) /49. For different exposures
βi to systematic risk, the figure shows how betai depends on bank i′s weight. Up to βi = 1.5, the
bank would not benefit from growth – in sharp contrast to the case βi = 3.7 If bank i grows from

7This parameter, corresponding to betas between 2 and 3, appears fairly large. Here are some empirical
observations for comparison. Stiroh (2006) reports an average beta for banks of 0.45 at a standard deviation of
0.42. He finds a maximum beta of 3.41. Note that these figures are betas for an index which covers all sectors,
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Figure 4: How beta responds to size. We examine the same system of N = 50 banks as in Figure 2.
On the x axis, the weight of bank i varies from 0 to one half. The lines in the upper graph, each for a
certain exposure βi to the systematic factor, plot the beta of bank i, which is the regression coefficient bi
in Ri = ai + biRS + ui. It is calculated without estimation error according to equation (9). The middle
graph shows the beta for one of the other (uniform) banks. The bottom graph shows the beta for bank
i divided by that of another bank.

zero to 29% of the system, ceteris paribus, it lowers its beta by a full integer. At the same time,
the index becomes more volatile; σ (RS) is increased from 20.2 to 32.2 percent (p.a.). Turning
to the side effect (middle graph), we observe that the betas of the other banks decrease as well.8

This decrease is so strong that the lines for the ratios betai/betaj (bottom graph) are nearly
flat. However, in Appendix A.14 we analytically show that the relative size effect on beta is still
positive.

Observing that the relative size effect on beta is appropriate, while the direct effect is not
always so, we could try to “repair” the direct effect by introducing a sensible scaling factor.
Ad hoc, the first step might be a normalization, which is obsolete, however, since the weighted
average of betas equals 1 by construction. Second, we might scale the beta up by a measure
of system risk, e.g. σ (RS). Doing so is very much in line with the “component value-at-risk”
approach introduced by Gauthier et al. (2012) as one of their candidate rules for capital allocation.

Looking up (8) and (9) for representations of the other systemic risk measures, we find our
scaled beta to be cov (RS , Ri) /σ (RS), which is essentially the same as exposure ∆CoVaR and
MES, apart from constant factors and a typically small offset in the case of the MES. As they
both get their sensitivities right, we conclude that rescaling the beta would indeed help but end
in a concept equivalent to the exposure ∆CoVaR.

To summarize, a fairly clear message can be taken away from our analysis of sensitivities. If
a systemic risk charge for banks were defined as a monotonic function of ∆CoVaR, the charge

unlike in our setup where only banks are included. A regression on an index of banks only would give an average
beta of 1, so that we might expect standard deviations for the betas at the order of 0.42/0.45 = 0.93, as a rough
approximation. Betas above 2 or even 3 thus do not appear implausible. Related year-specific beta estimates
reported by Baele, De Jonghe, and Vander Vennet (2007) have a mean of 0.61 and annual standard deviations
around 0.50, which would suggest a standard deviation of betas around 0.82 (= 0.5/0.61) for a bank based index.

8The finding that all betas decrease may be surprising at first glance since their weighted average must equal
1. It can be explained by noting that the high-beta bank gains weight along with the fall in betas.
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could set adverse incentives w.r.t. banks’ risk parameters under many realistic conditions. MES
and ∆CoVaR are nearly equivalent in the linear normal setup. All measures could set a wrong
incentive w.r.t. the exposure to systematic risk if the bank is very dominant in the system.
Beta can behave adversely w.r.t. size. If rescaled appropriately, beta boils down to a measure
equivalent to the exposure ∆CoVaR.

3.3 Robustness to distributional assumptions

So far, we have assumed returns to follow a multivariate normal distribution. It yields tractable
solutions but has limitations. In contrast to our previous assumptions, empirical returns may
exhibit heavy tails as well as tail dependence, features to which systemic risk measures might
react sensitively because they focus on tail behavior. Heavy tails can be due to time-varying
volatilities, another empirical feature of returns that we have not modeled so far. Furthermore,
the choice of asset vs. equity returns as the basis for systemic risk measures is something that
we cannot consistently study with a multivariate normal framework. In a standard structural
model of debt, for example, asset values follow a lognormal distribution, while equity – behaving
like a call option on assets – has a non-lognormal return distribution.

To study whether the previous results are robust to variations in distributional assumptions,
we first use a structural model to generate theoretically consistent asset and equity returns.
Equity returns in this model exhibit time-varying volatilities and sensitivities, and are therefore
heavy-tailed and tail dependent. We then complement this robustness check by replacing the
multivariate normal distribution of the previous sections with a multivariate t, through which
we can easily vary the degree of tailedness and tail dependence.

For the first robustness test we extend a structural model developed by Collin-Dufresne and
Goldstein (2001) to multidimensional processes. We prefer this model as it is one of the few
that generate stationary returns both for assets and equity. While Appendix C describes our
modeling approach in detail, the main characteristics are as follows:

Asset values follow geometric Brownian motions. They are correlated through exposures to
a common factor, which is also a geometric Brownian motion. Drifts are derived from a market
model for asset values where, as in the CAPM for equity, risk premia for individual asset returns
are proportional to the coefficient βi, which links the asset return of bank i with the common
factor.

While the lognormal asset returns have static parameters, debt is continuously adjusted by
bank management to keep the equity ratio (defined as equity value over asset value) close to
a strategic target level. The strength of the adjustment is governed by a speed-of-adjustment
parameter and the current difference between the equity ratio and its target. In consequence,
the equity ratio is a mean reverting process. As the ratio fluctuates around the target level, the
instantaneous volatility of equity is driven up and down since its approximate relation to the
(constant) asset volatility is σ (Rt,equity) ≈ σ (Rt,assets) × Vt/Et, where Vt/Et is the reciprocal
equity ratio. This stochastic volatility makes the model similar to the empirical approach taken
by Brownlees and Engle (2012) and Acharya et al. (2012) to analyze systemic risk measures, but
there are also essential differences.9

We use simulations10 to perform three tests that closely correspond to the scenarios in Fig-
9While their model is richer in that it includes dynamic correlations between systematic and idiosyncratic

shocks to equity returns, asset returns are not explicitly modeled. By contrast, we put weight on the consistency
of asset and equity returns, which are both stationary. Default events are explicitly modeled.

10We run 10 million independent simulations of bank and system returns. In CoVaR calculations, simulated
returns would not fall into the conditioning event because its probability is zero. Instead we condition on a
superset of positive probability. The COV ARS|R1=V aR

1
0.01

0.01 , for example, is determined as follows: select the
simulation runs in which the return R1 lies between the 0.8% and 1.2% quantile of R1, and determine the 1%
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Table 2: Effects of risk parameters on systemic risk measures in a non-normal setting.
We use simulations to analyze sensitivities of systemic risk measures to certain risk parameters in a
multivariate extension of the structural model of Collin-Dufresne and Goldstein (2001). Details are
described in Appendix C.
Lognormal asset returns are drawn from geometric Brownian motions that are correlated through a
common factor. Equity returns are derived from a stochastic differential equation, assuming debt is
continuously adapted towards a target leverage ratio. Both returns are stationary, conditional on banks’
survival.
A direct effect is understood as the change in a bank’s own systemic risk measure owing to a change in
one of the bank’s parameters. The relative effect describes changes in the ratio between the systemic risk
measures of two banks, e.g. MESi/MESj , while the risk parameter of bank i changes.
A plus (minus) sign indicates that the systemic risk measure / the ratio of two measures grows (falls) with
the parameter. If both signs appear, the sign can be positive or negative, depending on other parameters.
Gray cells +/– mark cases where the outcome is different from its counterpart in Panel A of Table 1
(normal linear setup).
The base case parameters (p.a. for drift, volatility and mean reversion) are set to N = 50, E (F ) = 0.03,
σF = 0.05, σj = 0.04, βj = 1, wj = 1/50, target log debt ratio l̄j = −0.1, mean reversion λj = 2.38, for
all j; quantile level α = 0.01 for the CoVaR measures and 0.05 for the MES.
For the effect of idiosyncratic risk, σi varies from 0.01 to 0.1. Monotonicity in σi is checked for βi between
0.5 and 2.
For the effect of systematic risk, βi varies from 0.5 to 2. Monotonicity in βi is checked for a weight wi
between 0.02 (equal share) and 0.45. In this exercise we set σi = 0.08 and σF = 0.025 to provoke the
effect found in the normal model. For the effect of a bank’s weight in the system, wi varies from 0.02
(equal share) to 0.45. The effect of wi is checked for βi between 0.5 and 3.

Parameter Effect Return type ∆CoVaR Exp. ∆CoVaR MES Beta

idiosyncratic risk σi direct assets – + + +
equity – + +/– +

relative assets – + + +
equity – + +/– +

systematic risk βi direct assets + + + +
equity + + + +

relative assets +/– +/– +/– +/–
equity +/– +/– +/– +/–

size wi direct assets + + + +/–
equity + +/– + +/–

relative assets + + + +
equity +/– +/– + +

ures 2–4. The risk parameters for asset returns are broadly consistent with Moody’s KMV asset
volatilities of banks and the values found by Memmel and Raupach (2010); from there we also
take values for mean reversion speed and target leverage. Table 2 presents parameters and
results.

In the first test, representing the counterpart to the analysis illustrated in Figure 2, we vary
the idiosyncratic risk of asset returns and check the direct and relative effect on the systemic
risk measures. This is done for different βi. Both for asset and equity returns we observe that an

quantile of RS for this selection. The MES is determined as the average simulated return of a bank under the
condition that the simulated system return is below its 5% quantile. The beta is estimated through a regression
of a bank’s simulated returns on the simulated system returns.
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increase in idiosyncratic risk lowers ∆CoVaR, which is the same result as in the normal model.
Importantly, bank i’s equity returns get heavier distribution tails when idiosyncratic risk rises11,
meaning that the decrease in ∆CoVaR goes along with both increased individual variance and
heavier tails. Here we find negative sensitivities where they did not exist in the normal model:
for high βi, there is both a direct and relative negative effect on MES. Interestingly, no such effect
is observed for asset returns, which suggests that tail thickness, as the outstanding difference in
the return distributions, plays a role here.12

Second, similar to Figure 3, we test the sensitivity to βi, using different weights of bank i
in the system. To examine whether we obtain similar effects as in the normal setup, other risk
factors are given values derived from (11) to provoke negative sensitivities.13 Both for asset and
equity returns, an increasing βi has a negative relative effect on all four systemic risk measures
if the weight of a bank is very high (0.45). This finding conforms to the results of the normal
model. Again, the increase in βi is accompanied by a (moderate) increase in tail thickness.14

In a third test, similar to Figure 4, we vary the weight wi of bank i in the system. Using
different values for βi, the results of the normal model are confirmed insofar as an increase of
the weight can lower the beta if the factor sensitivity βi is high, which holds for asset and equity
returns. Further negative sensitivities appear that were nonexistent in the normal model: for
high βi, there is a negative relative size effect on ∆CoVaR and both a direct and relative negative
effect on exposure ∆CoVaR. As in the first test, no such effect is observed for asset returns, which
seems to confirm that tail thickness matters.

What we observe when wi grows while βi = 2 is that a highly leptokurtic return (with a
constant kurtosis of 8.5) increasingly shapes the index return, the kurtosis of which grows from
3.4 to 5.9. Hence, the riskiness of the index does not only rise for its increased volatility but also
for a heavier loss tail. Both effects go along with a negative relative effect on beta and either
∆CoVaR version.

We conclude this robustness test with the observation that all undesired sensitivities found in
the normal model are confirmed for lognormal asset returns and for equity returns with heavier
tails. However, further problematic sensitivities show up if distribution tails are thicker.

As an alternative way of generating heavy-tailed returns, we consider a multivariate t dis-
tribution. To draw returns from a multivariate t with ν degrees of freedom, we first simulate
multivariate normal returns according to (2) and then scale these returns with ((ν − 2)/w)0.5 ,
where w is a random draw from a chi-square distribution with ν degrees of freedom.15 The
random scaling factor is the same for the N banks of one trial, but differs across trials.

As before, we determine the systemic risk measures using simulations.16 We consider the
degrees of freedom ν to be 4, 5, 6, 8, or 10 for different parameterizations of (2) and thus obtain

11When σi varies from 0.01 to 0.1, the kurtosis of the equity return grows from 3.10 to 6.66 (assuming βi = 0.5)
or from 5.47 to 8.38 (assuming βi = 2). The equity index return has a fairly stable kurtosis around 3.4.

12To exclude that the difference in the effect on the systemic risk measures is simply due to differences in
the general volatility level, we do the following exercise: equity returns are rescaled after simulation such that
they have the same daily standard deviation as their corresponding asset returns. After rescaling, the exposure
∆CoVaR still exhibits the same negative sensitivity to size (which does not exist for asset returns). As the
correlation matrices of equity and asset returns are also very similar, tail thickness is the only plausible remaining
explanation for the fact that the negative effect is observed with equity returns only.

13The equations (11) and (A-10) do not actually apply here but may give an indication. In the test, σi is
doubled from 0.04 to 0.08 (p.a.), while σF is halved from 0.05 to 0.025.

14When βi varies from 0.5 to 2 (assuming the highest weight for bank i), the kurtosis of the equity return grows
from 5.54 to 6.15. The equity index return exhibits kurtosis values between 4.82 and 5.08.

15The t distribution can be characterized as a normal variance mixture with mixing factor (ν/w)0.5. We then
divide by the standard deviation of the t distribution (ν/(ν − 2))0.5 to obtain the same standard deviation as in
the normal model.

16For the t distributed returns we perform 100 million antithetic simulations. Systemic risk measures are
calculated as before.
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a large number of results, which we do not report in full here. They are similar to the ones
from the structural model in that key results from the previous section continue to be found in
typical cases, and that there are some variations. For example, when we start with the base case
parameters and then increase idiosyncratic risk from 0.2 to 0.3, systematic risk from 1 to 1.5
or the weight of one bank from 0.02 to 0.25, the simulations show negative effects on the risk
measures in each of the two cases where Panel B of Table 1 has a negative sign; in the cases
where the effect of Table 1 has a positive sign, the simulated effects are also positive except
for ν = 4, which shows additional negative effects for ∆CoVaR and exposure ∆CoVaR. There
are other situations in which the degrees of freedom have an influence on the sign of effects.
When we move from the base case parameterization to a lower idiosyncratic risk of 0.1, ∆CoVaR
increases for ν ≥ 5, consistent with the negative sensitivity found in the normal model, while
it decreases for ν = 4. This observation does not question the general conclusion, though. As
just described, lowering the degrees of freedom to small values does not only make undesired
sensitivities disappear but also makes new ones appear.

Summing up, replacing the multivariate normal with other distributions leads to results that
are more complex than before, but the key conclusion of the previous section is confirmed: there
are non-exotic situations in which a parameter change that increases the risk of the system lowers
the estimated systemic risk contribution of the bank for which the parameter was changed.

4 Systemic risk measures in the contagion case

After studying linear return relationships within a simple one-factor model, we now turn to
examining contagion effects. An overview of different contagion definitions is given in Pericoli
and Sbracia (2003). The main definition that we examine is one in which contagion is brought
about by spillovers of idiosyncratic shocks.

Assume that the returns of the banks and the system evolve according to

Ri = βiF + εi +
∑
j 6=i

γjI{εj<κ}εj , RS =
∑
i

wiRi . (12)

That is, there can be contagion from one bank to other banks in the system. If bank j is afflicted
by a realization of idiosyncratic risk that is worse than κ, other banks are partially affected,
too. As in the previous section, we assume that F and all εj are independent normal variates.
Since the dependence structure is now considerably more involved, we resort to Monte Carlo
simulation to derive statements about systemic risk measures. Based on 100 million simulated
returns, the measures are estimated as described in Footnote 10.

As before, the analysis is conducted using assumptions typical of daily returns. In the base
case, banks are equally weighted (wi = 1/N), factor betas are uniformly set to one, and the
following per-annum drift and volatility and parameters are chosen: E (F ) = 0.05, σF = 0.2,
and σi = 0.2 for all i. As before, dividing these parameters by 260 or

√
260 translates them to

daily returns. The number of banks is set to N = 50.
For the first analysis, we assume that only bank 1 is infectious, i.e. γj = 0 for j > 1. We

set the contagion threshold κ to −0.0204, which corresponds to the 5% quantile of ε1. The only
parameter that is left to specify is the contagion intensity γ1. Figure 5 shows the risk figures
that result if we vary γ1 from 0 to 1 and keep the other parameters at the values just described.
The way in which the risk measures depend on the contagion intensity differs markedly. Below
we briefly describe and elucidate the observed patterns for each measure.
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Figure 5: Risk measures in the contagion case. We simulate returns for N equally-sized banks.
The banking system return is the average of bank returns. Bank returns are driven by a common factor
F , idiosyncratic risk, and a spillover of idiosyncratic risk from bank 1 to the other banks:

R1 = β1F + ε1, Rj = βjF + εj + γ1I{ε1<κ}ε1 for j > 1, RS = N−1
N∑
j=1

Rj .

Parameters (p.a. for drift and volatility) are set to N = 50, κ = −0.0204, E (F ) = 0.05 (p.a.), σF = 0.2
(p.a.), σi = 0.2 (p.a.), βi = 1 for all i. The infectiousness of bank 1 is varied from γ1 = 0 to γ1 = 1.
The measures are estimated through Monte Carlo simulation with 100 million trials. CoVaRα measures
are computed on a daily basis for α = 1%, using observations between the (α− 0.2%) and (α+ 0.2%)
quantiles of the conditioning variable. The MES relates to α = 5%.

4.1 ∆CoVaR

To understand how ∆CoVaR is affected by the contagion intensity γ1, we express the system
return as a function of the return of an individual bank. For ease of exposition, we will incorporate
the choice of uniform unit betas and equally-weighted banks that we made for the simulation.
When applied to bank 1, the left-hand part of (12) then implies F = R1 − ε1, which can be
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plugged into the representation of RS to eliminate the factor return F :

RS = R1 −
N − 1

N

[
1− I{ε1<κ}γ1

]
ε1 +

1

N

N∑
j=2

εj . (13)

When we use (13) to study the system return conditional on a quantile of R1, it is not
enough to replace R1 by its quantile. The conditional distribution of ε1 also differs from the
unconditional one. However, it is not affected by the contagion intensity γ1, which facilitates the
analysis.

Changing γ1 can influence the ∆CoVaR through effects on both the 50% quantile and the 1%
quantile of RS . For the 50% quantile, effects will be relatively small because the probability that
contagion occurs if R1 is at its median is very small. This probability, which again is independent
of γ1, can be determined by exploiting the fact that the conditional distribution of ε1 is normal
(see Appendix B). For the parameter combination used here, contagion occurs with a probability
of 1.00% if R1 is at its median, and with a probability of 50.02% if R1 is at its 1% quantile (see
Equation (B-3) in Appendix B). For the purpose of understanding the patterns of Figure 5, it is
therefore sufficient to focus on the 1% CoVaR.

Figure 5 shows that changes in the contagion intensity do not affect the ∆CoVaR until γ1
reaches a value of around 0.75. This may seem surprising, given that contagion happens with a
probability of over 50% once R1 is at its 1% quantile. However, it does not necessarily follow that
contagion events are crucial for the CoVaR, which is the 1% quantile of RS conditional on R1

taking some value. Equation (13) shows that one way of arriving at a low conditional realization
of RS is to have a very positive realization of ε1. If ε1 is positive, however, there is no contagion.

The extent to which low realizations of RS are associated with contagion is illustrated in
Figure 6. It plots the simulated RS against the simulated ε1 conditional on R1 being near its 1%
quantile.17 With γ1 = 0.6, none of the simulated cases of contagion is associated with a system
return that is below its 1% quantile. In consequence, a change in the contagion intensity does
not affect the ∆CoVaR. Moving on to γ1 = 0.8 and γ1 = 1, contagion increasingly matters for
the 1% quantile of the system return. In consequence, a higher γ1 leads to a higher ∆CoVaR
because it magnifies the negative effects of contagion.

For an infected bank – here we take it to be bank 2 – we can derive:

RS = R2 −
N − 1

N
ε2 +

1

N

(
1− I{ε1<κ}γ1

)
ε1 +

1

N

N∑
j=3

εj . (14)

The direct effects of γ1 and ε1 that we discussed above now play a smaller role because they
enter the equation with a factor of 1/N rather than (N − 1) /N . However, there is an additional
effect because the quantiles of R2 also depend on γ1. Increasing γ1 lowers both the median and
the 1% quantile of R2, with the effect on the latter being more pronounced. This is the key
factor behind the pattern shown in Figure 5: contagion increases the risk of the infected bank
as well as the entire system.

Comparing the infectious and the infected bank, Figure 5 shows that contagion drives a wedge
between the ∆CoVaR of the two banks, which increases with the strength of the spillovers. In
the presence of contagion, ∆CoVaR assigns a larger systemic risk to the infected bank.

While this pattern is consistent with the discussion from above, we would like to provide
another way of understanding it. In Figure 7, we visualize the conditional distribution of the
system return by plotting it against the return of the infectious bank and the return of an infected

17Recall that selecting observations in which the return R1 lies between its 0.8% and 1.2% quantile is our
numerical procedure for conditioning on the 1% quantile of R1.
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Figure 6: System return and idiosyncratic risk of the infectious bank if the return of the
latter is at its 1% quantile. We simulate returns for the same system as in Figure 5 in which bad
outcomes of ε1 can spill over to returns of the other banks. Eliminating the systematic factor implies:

RS = R1 +
N − 1

N

[
I{ε1<κ}γ1 − 1

]
ε1 +

1

N

N∑
j=2

εj .

In the chart, we plot simulated RS against simulated εi for a selection of observations in which R1 is in
a close interval (±0.2%) around its 1% quantile. The infectiousness parameter γ1 is set to either 0.6, 0.8,
or 1.

bank, respectively. We choose the contagion intensity γ1 to be 0.75 and we also show scatterplots
for two subsamples defined according to whether there is contagion (εi < κ) or not. Conditional
on the bank returns being at their 1% quantiles, the system return has a lower mean in the case
of the infectious bank.

While this tends to make the ∆CoVaR of the infected bank more extreme, there is a stronger
effect working in the opposite direction. For the infectious bank, the conditional variance of the
system return is relatively low. In the contagion case, the system return is highly correlated
with the infectious bank because that bank’s idiosyncratic risk has spread through the system.
If there is no contagion, the conditional volatility is relatively low because it is then relatively
likely that the system return has been brought about by a low factor return.18

The low conditional variance of the system return means that – according to ∆CoVaR – the
systems appears to have a relatively low risk, conditional on the infectious bank being at its 1%
quantile.

4.2 Exposure ∆CoVaR

Comparing the four measures in Figure 5, the exposure ∆CoVaR of the infectious bank exhibits
the most complex pattern. At first, it becomes larger. Then it shrinks, but this new tendency is
again reversed. Rearranging (13), we can examine how the return of the infectious bank depends
on the system return:

R1 = RS +
N − 1

N

(
1− I{ε1<κ}γ1

)
ε1 −

1

N

N∑
j=2

εj . (15)

Using this equation is now considerably more involved than above. A change in γ1 affects the
quantiles of RS as well as the conditional distribution of ε1. An inspection of the simulated

18If there is no contagion, the system return can be low because of a low factor realization or a low average real-
ization of the infected banks’ idiosyncratic risk. With 49 banks, however, the variance of the average idiosyncratic
shock is very low, making it less likely to be the reason for a low system return.
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Figure 7: Simulated system returns versus returns of infectious and infected banks. We
simulate returns for the same system as in Figure 5. The infectiousness of bank 1 is set to γ1 = 0.75. We
plot simulated system returns RS against individual returns R1 (infectious bank, on the left) and Rj (an
infected bank, on the right). Panel A plots the full sample. Panel B contains only cases of contagion,
where ε1 < κ. Panel C contains cases of no contagion. The vertical red line marks the event that the
individual bank return is at its 1% quantile, the event which CoV aR1% conditions on.
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CoVaR figures reveals which forces drive the observed patterns: the initial upward move goes
back to a decrease in the CoVaR50%; this decrease is then overcompensated by changes in the
CoVaR1%, which exhibits a trough-shaped behavior, with the bottom of the trough being close
to γ1 = 0.5. We explain those in turn.

An increase in γ1 makes it less likely that RS is at its median once contagion has occurred
because contagion shifts RS away from its median and this shift is stronger the larger γ1.19 In
consequence, a higher γ1 means that there will be fewer realizations with ε1 below the contagion
threshold if RS is at its median. There is another effect having the same impact on CoVaR50%:
an increasing γ1 pulls

(
1− I{ε1<κ}γ1

)
ε1 towards zero if there is contagion. Together, this makes

the CoVaR50% decrease, as it is defined as the negative of the 1% quantile of R1 conditional on
RS being at its median. An opposite effect – an increase of γ1 lowers the median of RS – is
relatively small.

What happens if we condition on the 1% quantile of RS in order to determine the CoVaR1%?
An increase in γ1 now makes it more likely that it was contagion that led to the extreme
realization of RS . More contagion implies more extremely negative realizations of ε1, but what
matters for the CoVaR1% is

(
1− I{ε1<κ}γ1

)
ε1, which is pulled towards zero as γ1 increases. To

get an intuition why the second effect is stronger, consider the extreme case in which γ1 equals
1. Then, the smallest value that

(
1− I{ε1<κ}γ1

)
ε1 can take is κ, even though there will be

many realizations with an ε1 smaller than κ. The overall trough-shaped pattern in the exposure
∆CoVaR arises because this effect is at some point outsized by another effect of γ1 which works
in the opposite direction: increasing γ1 lowers the 1% quantile of RS which we condition on.

For the infected banks the pattern is less complex: the ∆CoVaR grows in γ1. We can
rearrange equation (14):

R2 = RS +
N − 1

N
ε2 +

1

N

(
I{ε1<κ}γ1 − 1

)
ε1 −

1

N

N∑
j=3

εj .

The effects of changes in the conditional distribution of
(
1− I{ε1<κ}γ1

)
ε1 are now less important

than in the case of the infectious bank studied above because the factor 1/N is much smaller
than (N − 1) /N . Changes in the conditional quantiles of R2 are therefore driven by changes in
the quantiles of RS . Since the 1% quantile of RS is more sensitive to changes in γ1 than the 50%
quantile, the exposure ∆CoVaR of bank 2 becomes larger.

4.3 MES

For the infectious bank, we again inspect:

R1 = RS +
N − 1

N

(
1− I{ε1<κ}γ1

)
ε1 −

1

N

N∑
j=2

εj .

MES and exposure ∆CoVaR are similar in that we condition on a tail event of the system return.
Increasing γ1 makes it more likely that contagion has occurred in the conditioning event that RS
is below its 5% quantile. A higher probability of contagion means that the conditional means of

19More precisely, contagion shifts the system return down so that some realizations of RS will also be shifted
(from above) towards the median. However, even with γ1 = 0 the majority of “contagion” events has realizations
of RS below the median. If γ1 rises, more returns with contagion are therefore pushed away from the median than
are pushed towards it. This lowers the presence of contagion events among those having a return at the median,
in total. There is also a slight compensating effect since the median of RS is decreased, too; but the effect has
lower order because the median is mainly driven by F and aggregate idiosyncratic risk, which both do not depend
on γ1.
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both RS and ε1 are more negative. But the direct effect of γ1 works in the opposite direction.
Through

(
1− I{ε1<κ}γ1

)
ε1, an increase in γ1 makes the MES less extreme. The concave shape

of the MES arises because the first effect dominates for small γ1, while the second effect gains
weight when γ1 gets larger.

For an infected bank, the reasoning is very close to the one for the exposure ∆CoVaR:

R2 = RS +
1

N

(
I{ε1<κ}γ1 − 1

)
ε1 −

1

N

N∑
j=2

εj + ε2 .

What matters most are changes in the quantile of RS , which is driven down by increases in γ1 .
The second term does not contribute much because it contains the factor 1/N .

For γ1 very close to 1, the MES indicates that the infected bank is riskier than the infectious
bank. This is easiest understood if infection occurred and γ1 = 1. In this case, the equations for
R1 and R2 differ only in ε2, which adds to R2 by +ε2 while it adds to R1 by −ε2/N . Conditional
on RS < QαS , the expected value of ε2 is negative because it also contributes to the system return.

4.4 Beta

To understand why the beta of the infectious bank with respect to the system is hump-shaped in
the contagion intensity γ1, we study the covariance conditional on infection. (Without infection,
we are in the standard one-factor case, irrespectively of the value of γ1.) In (13) we replace R1

by F + ε1 to obtain

RS = F +

[
N − 1

N
I{ε1<κ}γ1 +

1

N

]
ε1 +

1

N

N∑
j=2

εj .

Conditional on {ε1 < κ}, the covariance is

cov (R1, RS |ε1 < κ) = cov

F + ε1, F +

[
N − 1

N
γ1 +

1

N

]
ε1 +

1

N

N∑
j=2

εj

∣∣∣∣∣∣ ε1 < κ


= σ2F +

[
N − 1

N
γ1 +

1

N

]
σ21,cont ,

where σ21,cont is the {ε1 < κ}-conditional variance of ε1. Similarly, we obtain:

σ2 (RS |ε1 < κ) = σ2F +

[
N − 1

N
γ1 +

1

N

]2
σ21,cont +

1

N2
σ2j .

The unconditional covariance, which matters for the beta, is also affected by the covariance
of the conditional means. The mean of R1 conditional on contagion is E (F ) +E (ε1|ε1 < κ) and
does not depend on γ1, while the mean of RS conditional on contagion is

E (F ) +

(
N − 1

N
γ1 +

1

N

)
E (ε1|ε1 < κ) ,

which does depend on γ1. In consequence, the covariance of the conditional means is linear in
γ1.

The observation that the covariance of RS and R1 is linear in γ1 while the variance is quadratic
in γ1 explains the hump-shaped relationship between the beta of the infectious bank 1, which is
cov (R1, RS) /σ2 (RS), and the contagion intensity γ1.
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For the infected banks, and again conditional on contagion, we observe that the covariance
is quadratic in γ1:

cov (R2, RS |ε1 < κ) = cov

F + ε2 + γε1, F +

[
N − 1

N
γ1 +

1

N

]
ε1 +

1

N

N∑
j=2

εj

∣∣∣∣∣∣ ε1 < κ


= σ2F +

[
N − 1

N
γ21 +

1

N
γ

]
σ21,cont +

1

N
σ22 .

The same holds for the covariance of the conditional means because the conditional mean of an
infected bank’s return as well as the mean of the system return depend on γ1. In the definition
of beta, both the numerator and the denominator are thus quadratic in γ1, which explains the
almost flat relationship between γ1 and the beta of an infected bank.

4.5 Robustness

To examine whether the results are robust to the parameter choices and distributional assump-
tions made above, we examine several modifications:

[1] By making one bank infectious as we do in the base case, the infected banks have a lower
mean return and a higher volatility than the infectious bank. To correct for this effect
we add a constant to the infected banks’ returns and change their idiosyncratic volatility
such that they have the same expected return and overall volatility as the infectious bank.
The size of the adjustments can be derived using standard results for truncated normal
distributions.

[2] We change the contagion threshold from –0.0204 to –0.0289, which corresponds to the 1%
quantile of the idiosyncratic risk component.

[3] We change the contagion threshold from –0.0204 to –0.0383, which corresponds to the 0.1%
quantile of the idiosyncratic risk component.

[4] Infectious banks might be larger than infected banks. We therefore change the weight of
the infectious bank from 2% in the base case to 25%. The other weights are changed to
(1− 0.25) /49.

[5] Infectious banks might have a larger exposure to the common factor. We therefore change
the factor beta of the infectious bank from β1 = 1 to 1.25.

[6] In the base case, there is just one infectious bank. In this variation, the number of infectious
banks is increased to five, each of them having the same contagion intensity.

[7] Instead of being i.i.d. normal, we assume the factor return F to follow a GARCH(1,1)
process with the same unconditional volatility as in the base case. We choose δ = 0.04 and
λ = 0.95 and set

σ2(Ft) = (1− δ − λ)× 0.22/260 + δF 2
t−1 + λσ2(Ft−1).

[8] Instead of assuming a normal distribution for the factor returns and the idiosyncratic
components, we assume them to follow t-distributions with 4 degrees of freedom.
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[9] So far, the variations change parameters or distributional assumptions within the contagion
framework of equation (12). Here we consider another contagion structure by setting up
a spillover of volatility instead of a spillover of return shocks: if the idiosyncratic risk of
the contagious bank falls below κ, the idiosyncratic risk of the infected banks is m times
higher than in the base case. The base level of idiosyncratic risk is chosen such that the
total volatility of the infected banks equals the one of the infectious bank. Based on return
behavior surrounding the Lehman collapse20, we assume m = 3.

[10] We model a time delay in the spillover. Specifically, we shift 50% of the spillover to the
next day:

Rit = βiFt + εit + 0.5
∑
j 6=i

γjI{εjt<κ}εjt + 0.5
∑
j 6=i

γjI{εj,t−1<κ}εj,t−1

Due to the large number of variations, we cannot present the full set of results for varying
contagion intensities. Though the variations may shift the risk measure curves, flatten or elevate
them, patterns are mostly very similar to the ones shown in Figure 5. This outcome is exemplified
in Table 3, which lists the risk measures for a contagion intensity of 0.75. For this choice, Figure 5
shows that ∆CoVaR assigns a higher risk to the infected banks; exposure ∆CoVaR does as well
but with a smaller difference, while MES and beta assign a lower risk to the infected banks.
In most variations, the sign of the differences is not changed. For the variations considered
here, it never changes for ∆CoVaR, once for MES and twice for beta. Exposure ∆CoVaR shows
the largest number of changes, which does not appear surprising given that it showed the most
complex behavior in Figure 5.

The findings from Figure 5 therefore seem fairly robust to variations in the parameters and
the modeling framework. As in the previous section, they are also robust to distributional
assumptions. We find that the risk measures can differ in the way they respond to contagion as
it was modeled here. Some risk measures, notably ∆CoVaR, have a tendency to assign a low
systemic risk to infectious banks, others tend to do the opposite. One might suspect that the
differences between ∆CoVaR measures on the one hand, and MES and beta on the other hand
go back to the fact that CoVaR is based on quantiles, and that the findings change when moving
to co-expected shortfall (CoES). However, further analyses shows that this is not the case. For
example, when we implement the ∆CoES as suggested by Adrian and Brunnermeier (2011) for
the base case parameters, the ∆CoES is 1.92% for the infectious bank and 2.58% for the infected
bank.

The findings suggest that the use of systemic risk measures could create undesirable incentive
effects. Consider again Figure 5, and assume that initially there is no contagion. If a systemic risk
charge were based on ∆CoVaR, for example, a bank would have a marginal incentive to become
infectious. Its charge would not change, while the charge of its competitors would increase. This
would create an advantage for the bank that becomes infectious because its competitors would
be required to hold more capital, to pay an insurance premium, or be restricted in some other
way. Even if the tighter regulation counteracted the increase in systemic risk that is brought
about by an increase in contagion, it would be undesirable to create such an incentive in the first
place.

In the base case of Section 3, such effects appear to be most pronounced for ∆CoVaR.
However, none of the four measures appears to be immune against creating perverse incentives
in the presence of contagion.

20For the 29 depositary institutions listed in (Acharya et al. (2012), Appendix A) we examine the idiosyncratic
volatility over the 30 days ending on September 12, 2008, as well as over the 30 days starting on September 15,
2008 (Lehman collapse). Using a one-factor model with the S&P 500 as the factor, the median idiosyncratic
volatility increases by a factor of 2.98.
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Table 3: Systemic risk measures in the presence of contagion: robustness tests.
We simulate returns of N banks. The aggregate system return is the value-weighted average of bank
returns. Bank returns are driven by a common factor F , idiosyncratic risk, and bank-to-bank spillovers
of idiosyncratic risk:

Ri = βiF + εi +
∑
j 6=i

γjI{εj<κ}εj , RS =

N∑
i=1

wiRi.

In the base case, parameters (p.a. for drift and volatility) are set to N = 50, κ = −0.0204, E (F ) = 0.05,
σF = 0.2, σi = 0.2, βi = 1, wi = 1/50 for all i. Banks 2 to 50 are not infectious (γj = 0, ∀j > 1),
while the infectiousness parameter of bank 1 is set to γ1 = 0.75. For the variations, the table lists the
changes relative to the base case. The measures are estimated through Monte Carlo simulation with 100
million trials. CoVaRα measures are computed for α = 1% with observations between the (α− 0.2%)
and (α+ 0.2%) quantiles of the conditioning variable. The MES relates to α = 5%.

Specification Bank ∆CoVaR Exp. ∆CoVaR MES Beta

Base Case Infectious 0.0208 0.0315 0.0310 1.0369

Infected 0.0280 0.0329 0.0294 0.9993

[1] Equal return mean and Infectious 0.0209 0.0515 0.0310 1.0392

volatility across banks Infected 0.0286 0.0593 0.0284 0.9993

[2] Threshold κ = −0.0289 Infectious 0.0208 0.0553 0.0277 1.0112

(P (ε1 < κ) = 0.01) Infected 0.0256 0.0594 0.0270 0.9996

[3] Threshold κ = −0.0383 Infectious 0.0207 0.0573 0.0260 1.0020

(P (ε1 < κ) = 0.001) Infected 0.0224 0.0579 0.0259 1.0002

[4] Factor beta of infectious Infectious 0.0233 0.0394 0.0363 1.2510

bank β1 = 1.25 Infected 0.0278 0.0333 0.0294 0.9947

[5] Weight of infectious Infectious 0.0257 0.0342 0.0337 1.1430

bank w1 = 25% Infected 0.0287 0.0323 0.0290 0.9522

[6] Five infectious banks Infectious 0.0373 0.0428 0.0418 1.0240

Infected 0.0398 0.0436 0.0412 0.9971

[7] GARCH(1,1) for Infectious 0.0262 0.0327 0.0318 1.0370

systematic factor Infected 0.0303 0.0339 0.0302 0.9991

[8] t-distribution with 4 Infectious 0.0403 0.0388 0.0355 1.0442

degrees of freedom Infected 0.0447 0.0397 0.0331 0.9992

[9] Volatility spillover instead Infectious 0.0208 0.0275 0.0259 1.0000

of return spillover Infected 0.0237 0.0320 0.0257 1.0003

[10] 50% of spillover is Infectious 0.0201 0.0335 0.0262 0.9848

shifted to next day Infected 0.0227 0.0307 0.0276 1.0001

27



5 Conclusion

We examine possible pitfalls in the use of return-based measures of systemic risk contributions.
Specifically, we check for cases in which a change in an entity’s systematic risk, idiosyncratic risk,
size or contagiousness increases the risk of the system but lowers the systemic risk contribution of
the entity. In such cases, rankings based on estimated systemic risk contributions could produce
false interpretations and incentives. In particular, if banks benefit from having a lower estimated
systemic contribution in the eyes of their regulators, the use of such measures could motivate
banks to take actions that increase the risk of the system rather than reduce it.

While the link between the measured systemic risk contribution and the actual impact on
systemic risk is often appropriate, we identify several non-exotic cases in which it is not. In a
linear factor model framework with multivariate normal risk factors, we find that the ∆CoVaR
measure proposed by Adrian and Brunnermeier (2011) can imply a lower systemic risk contribu-
tion if a bank increases its idiosyncratic risk. Beta can lead to unwanted effects if a bank with
a large systematic risk increases its size. Exposure ∆CoVaR (Adrian and Brunnermeier (2011))
and marginal expected shortfall (Acharya et al. (2012)) show appropriate sensitivities for all but
one situation in which all considered measures behave similarly: if a bank is very dominant, its
risk contribution may fall relative to the contribution of another bank if the bank increases its
systematic risk.

The last example highlights that a bank can favorably alter its systemic risk contribution
relative to those of other banks even though its own risk contribution increases. A study of
sensitivities should therefore not be limited to the change in the systemic risk contribution of
the bank under analysis but include side effects.

The results are not limited to the return model with multivariate normal risk factors that we
start off with. The problematic sensitivities that we identify in this framework also appear when
we examine heavy-tailed equity returns generated by a dynamic structural model, or returns
drawn from a multivariate t distribution. On top, we find further non-exotic cases of undesired
sensitivities that did not appear in the normal model.

Once we introduce contagion into the analysis, we also find differences between the four
measures, but none of them is immune against creating false incentives. Stronger spillovers can
be associated with a lower systemic risk contribution even though they increase the risk of the
system.

Our results should not be interpreted in the sense that measure A is to be preferred to
measure B if it shows a lower number of unwanted effects in the analysis. Within our framework,
we cannot weigh or compare the importance of specific problems that we identify. In addition, we
abstract from estimation error, while systemic risk measures need to be estimated with limited
data in practice. Some measures may be less sensitive to estimation error than others.

Despite these caveats, our results are of general relevance and applicability because we show
that systemic risk measures can exhibit undesirable properties in standard return frameworks.
Knowledge about such limitations is important for practical systemic risk measurement as well
as for the development of new measurement approaches.

Appendix A Sensitivities

In this section we explore the sensitivities summarized in Table 1 in a systematic way. We
duplicate the table here with references to the analyses provided in this section. As in the main
text, a superscript n marks cases where the opposite sensitivity would appear only under very
unusual conditions.
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Parameter Effect type ∆CoVaR Exp. ∆CoVaR MES Beta

σi direct +/–; A.9 +; A.5 +; A.5 +; A.4
relative +/–; A.10 +; A.11 +; A.11 +; A.11

βi direct +; A.2 +; A.6 +n; A.7 +; A.6
relative +/–; A.13 +/–; A.12 +/–; A.12 +/–; A.12

wi direct +/(–); A.3 +; A.9 +; A.9 +/–; A.8
relative +n; A.15 +n; A.14 +n; A.14 +n; A.14

We start the analysis with a number of definitions and auxiliary formulas. First we set
w∗j ≡ (1− wi)−1wj , j 6= i, to define bank weights within the sub-system excluding bank i.
Corresponding averages of the exposure to systematic risk are β∗ ≡

∑
k 6=iw

∗
kβk and

β̄ ≡
∑N

k=1
wkβk = wiβi + (1− wi)β∗ .

Setting ε∗ ≡
∑

j 6=iw
∗
j εj and

ε̄ ≡
∑N

k=1
wkεk = wiεi + (1− wi) ε∗

for aggregate idiosyncratic risks, the index return then reads

RS = β̄F + ε̄ = wiRi + (1− wi) (β∗F + ε∗) ,

while its variance, using σ∗ ≡ σ (ε∗), can be written in different ways:

σ2 (RS) = β̄2σ2F + σ̄2 = (wiβi + (1− wi)β∗)2 σ2F + w2
i σ

2
i + (1− wi)2 σ2∗ (A-1)

The covariances cov (Rj , RS) play a central role; we denote them by cj,S and obtain the following
representation:

cj,S ≡ cov (Rj , RS) = βj β̄σ
2
F + wjσ

2
j = wjσ

2(Rj) + (1− wj)βjβ∗σ2F . (A-2)

As we assumed all βj to be positive, all cj,S are positive, too.

A.1 Direct effect of idiosyncratic risk on ∆CoVaR

The new variables turn (3) into

∆CoV aRS,iα =
ci,S
σ (Ri)

Φ−1(1− α) =

[
wiσ(Ri) + (1− wi)βiβ∗

σ2F
σ(Ri)

]
Φ−1(1− α) . (A-3)

Applying ∂σ (Ri) /∂σi = σi/σ (Ri), we obtain

∂∆CoV aRS,iα
∂σi

=

[
wi

σi
σ (Ri)

− (1− wi)βiβ∗
σ2F

σ2(Ri)

σi
σ (Ri)

]
Φ−1 (1− α)

∝ wi
1− wi

− βiβ∗
σ2F

σ2(Ri)
=

wi
1− wi

− β∗
βi

(
1 +

σ2i
β2i σ

2
F

)−1
,

which is the formula from which we derived (10) in the special case βk = 1 for all k.
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A.2 Direct effect of systematic risk on ∆CoVaR

We can directly show that the partial derivative to systematic risk is always positive:

∂

∂βi

[
∆CoV aRS,iα

]
∝ ∂

∂βi

[
ci,S
σ (Ri)

]
∝ σ2 (Ri)

∂ci,S
∂βi

− ci,Sσ (Ri)
∂σ (Ri)

∂βi

= σ2 (Ri)
∂ci,S
∂βi

− ci,S
1

2

∂σ2 (Ri)

∂βi
=
(
β2i σ

2
F + σ2i

)
σ2F
(
wiβi + β̄

)
−
(
βiβ̄σ

2
F + wiσ

2
i

)
βiσ

2
F

∝
(
β2i σ

2
F + σ2i

) (
wiβi + β̄

)
−
(
βiβ̄σ

2
F + wiσ

2
i

)
βi = wiβ

3
i σ

2
F + β̄σ2i > 0 .

A.3 Direct effect of size on ∆CoVaR

We assume that the size of bank i changes while the other banks’ size is kept constant. This
means that all w∗j remain constant (and so β∗), which is why (A-3) leads to the simple formula

∂∆CoV aRS,iα
∂wi

=

[
σ (Ri)− βiβ∗

σ2F
σ (Ri)

]
Φ−1 (1− α)

∝ −βiβ∗σ2F + σ2 (Ri) = βi∆βσ
2
F + σ2i , (A-4)

where ∆β ≡ βi − β∗. We observe that a bank’s weight in the system has an ambiguous effect.
Generally, we would expect the ∆CoVaR to increase with size. That is true in many cases, e.g.,
if βi ≥ β∗. Formula (A-4) shows that the partial derivative is then positive, as it should be.

If, on the contrary, a bank has a rather low exposure to the systematic risk factor and also
comparably low idiosyncratic risk, the derivative can have the opposite sign, for instance, if
σi = 8%, σF = 20% (both p.a.), βi = 0.5, and β∗ = 1.

We show that this is not necessarily a problem because the system return would become less
volatile if such a bank gained weight. Assume the partial derivative in (A-4) is negative. It
implies σ2i + ∆ββiσ

2
F < 0 and the weaker condition ∆β < 0. With ∂β̄/∂wi = β̄∆β, we obtain

from (A-1):

∂σ2 (RS)

∂wi
∝ β̄∆β σ2F + wiσ

2
i − (1− wi)σ2∗ < (wiβi + (1− wi)β∗) ∆β σ2F + wiσ

2
i

< wi
(
βi∆β σ

2
F + σ2i

)︸ ︷︷ ︸
<0

+ (1− wi)β∗ ∆β︸︷︷︸
<0

σ2F < 0 . (A-5)

In short form, we conclude

∂∆CoV aRS,iα
∂wi

< 0 ⇒ ∂σ2 (RS)

∂wi
< 0.

The ∆CoVaR thus sets a correct incentive insofar as a bank is rewarded for growth through a
∆CoVaR-based systemic risk charge only if this lowers the volatility of the system return.

A.4 Direct effect of idiosyncratic risk on beta

Using (A-1) and (A-2), standard calculus shows

∂ betai
∂σi

∝ ∂ betai
∂σ2i

=
∂

∂σ2i

[
ci,S

σ2 (RS)

]
∝ σ2 (RS)

∂ci,S
∂σ2i

− ci,S
∂σ2 (RS)

∂σ2i
∝ σ2 (RS)− ci,Swi

=
N∑
k=1

wkck − ci,Swi =
∑
k 6=i

wkck > 0.
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A.5 Direct effect of idiosyncratic risk on exposure ∆CoVaR and MES

σ (RS) is obviously a growing function of σ2i , and so is betai. The exposure ∆CoVaR equals
Φ−1 (1− α)×betai×σ (RS), which is a product of two monotonic functions of σ2i and a constant.
Hence, the exposure ∆CoVaR is increasing in σi.

As the MES differs from the exposure ∆CoVaR only by a constant factor and an offset that
does not depend on σi, it shows the same monotonicity w.r.t. idiosyncratic risk.

A.6 Direct effect of systematic risk on beta and exposure ∆CoVaR

We first consider beta:

∂ betai
∂βi

=
∂

∂βi

[
ci,S

σ2 (RS)

]
∝ σ2 (RS)

∂ci,S
∂βi

− ci,S
∂σ2 (RS)

∂βi

=
(
β̄2σ2F + σ̄2

) [
β̄ + wiβi

]
σ2F −

(
βiβ̄σ

2
F + wiσ

2
i

)
2β̄wiσ

2
F .

We divide by σ2F and estimate the outcome from below by removing the second addend of
σ̄2 = w2

i σ
2
i + (1− wi)2 σ2∗ so that we obtain

∂ betai
∂βi

∝ . . . ≥
(
β̄2σ2F + w2

i σ
2
i

) [
β̄ + wiβi

]
− 2β̄wiβiβ̄σ

2
F − 2β̄wiwiσ

2
i

= β̄3σ2F + wiβiβ̄
2σ2F + w2

i β̄σ
2
i + w3

i βiσ
2
i − 2wiβiβ̄

2σ2F − 2w2
i β̄σ

2
i

= β̄3σ2F + w3
i βiσ

2
i − wiβiβ̄2σ2F − w2

i β̄σ
2
i

= β̄2σ2F β̄ + w3
i βiσ

2
i − wiβiβ̄2σ2F − wiβiw2

i σ
2
i − (1− wi)β∗w2

i σ
2
i

= (1− wi)β∗
(
β̄2σ2F − w2

i σ
2
i

)
∝ β̄2σ2F − w2

i σ
2
i .

Hence, we can state

wi <
β̄σF
σi

⇒ ∂ betai
∂βi

> 0 . (A-6)

The condition is fulfilled unless a bank is either extremely dominant in the system or has huge
idiosyncratic risk. For example, assuming that a bank’s idiosyncratic risk does not exceed the
double of all banks’ average systematic risk, as given by β̄σF , this bank would need to make up
more than half of the banking system to make the beta fall in βi.

As regards the exposure ∆CoVaR, we apply the same argument as in Appendix A.5: the
exposure ∆CoVaR, Φ−1 (α)×betai×σ (RS), is an increasing function of βi because its components
σ (RS) and betai are increasing.

A.7 Direct effect of systematic risk on MES

Recall MESi = −βiµ+ betai σ (RS)Cα, where Cα ≡ α−1φ
(
Φ−1 (α)

)
is a positive constant. The

MES is special because of its drift related term, which decreases in βi. The partial derivative is

∂MESi
∂βi

= −µ+ Cα
∂

∂βi
[betai σ (RS)] , (A-7)

of which we know from (A-6) that the partial derivative on the right-hand side is positive. If we
can neglect µ, we know that the MES is an increasing function of βi. Whether it actually can
be neglected depends on the risk horizon. While µ is proportional to the risk horizon, σ (RS) is
so to its square root. As the risk horizonis 1 day throughout this paper , and since Cα is already
larger than 2 for α = 5%, the first term is by magnitudes smaller than the second. The MES
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will therefore be an increasing function of systematic risk under all plausible conditions. Even
on an annual basis, −µ would usually be dominated by the positive part in (A-7).21

A.8 Direct effect of size on beta

As the partial derivative of betai is complicated, we make the simplifying assumption that only
bank i has a non-negligible weight in the system, whereas all other banks are infinitesimally
small. In the limit, idiosyncratic risks of these banks are diversified away (σ∗ = 0), so that we
obtain:

∂ betai
∂wi

=
∂

∂wi

[
ci,S

σ2 (RS)

]
∝ σ2 (RS)

∂ci,S
∂wi

− ci,S
∂σ2 (RS)

∂wi
= σ2 (RS)

∂ci,S
∂wi

− ci,S
∂σ2 (RS)

∂wi

=
(
β̄2σ2F + w2

i σ
2
i

) (
βi ∆β σ2F + σ2i

)
−
(
βiβ̄σ

2
F + wiσ

2
i

)
2
(
β̄∆βσ2F + wiσ

2
i

)
,

where ∆β ≡ βi − β∗. As the conditions under which this expression is positive are still difficult
to identify, we focus on the case where wi is also small enough to set it zero. We obtain

∂ betai
∂wi

∣∣∣∣
wi=0

∝ σ2i − βi ∆β σ2F . (A-8)

This derivative should preferably be positive. It is not, however, if the bank’s exposure to
systematic risk is above the average and the idiosyncratic risk is comparably small. Note that
the growth of such a bank would increase the variance of the system return, which can be seen
in (A-5), where we have found

∂σ2 (RS)

∂wi
∝ β̄∆β σ2F + wiσ

2
i − (1− wi)σ2∗ . (A-9)

Under the limiting assumption σ∗ = 0, the variance of RS grows in wi if βi > β∗.

A.9 Direct effect of size on exposure ∆CoVaR and MES

We first consider the main part of the exposure ∆CoVaR, ci,S/σ (RS). Using the property
∂σ (RS) /∂wi = (2σ (RS))−1 ∂σ2 (RS) /∂wi, we find:

∂

∂wi

[
ci,S

σ (RS)

]
∝ σ2 (RS)

∂ci,S
∂wi

− 1

2
ci,S

∂σ2 (RS)

∂wi

=
(
βi ∆β σ2F + σ2i

) (
β̄2σ2F + w2

i σ
2
i + (1− wi)2 σ2∗

)
−
(
βiβ̄σ

2
F + wiσ

2
i

) (
β̄∆βσ2F + wiσ

2
i − (1− wi)σ2∗

)
= σ2Fσ

2
i

{
βi∆β w

2
i − βiβ̄wi − β̄∆β wi + β̄2

}
+ σ2i σ

2
∗ (1− wi)

+σ2Fσ
2
∗βi (1− wi)

[
∆β (1− wi) + β̄

]
= . . . = σ2Fσ

2
i (1− wi)β2∗ + σ2i σ

2
∗ (1− wi) + σ2Fσ

2
∗βi (1− wi) (1− wi)βi > 0

This means that the exposure ∆CoVaR is always an increasing function of wi. The same holds
for the MES since the additive term −µβi in (7) is independent of wi.

21Assuming α ≤ 5%, the drift over one year would have to be roughly twice as large as the annual market
volatility to make the MES fall in βi. This would be a very unusual market. Details of the corresponding estimate
are available on request.
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A.10 Relative effect of idiosyncratic risk on ∆CoVaR

The parameter σi has neither an impact on another bank’s return volatility σ (Rj) nor on its
covariance cj,S with the system return. According to ∆CoV aRS,jα = cj,S/σ (Rj) Φ−1(1− α), the
∆CoVaR of bank j is then also unaffected. Hence, the relative and the direct effect of σi fall
together, apart from a constant factor.

A.11 Relative effect of idiosyncratic risk on exposure ∆CoVaR, MES, and
beta

We consider the ratio of two banks’ systemic risk measures, such as betai/betaj . For exposure
∆CoVaR and beta the ratios are equal to ci,S/cj,S . As already stated, cj,S is invariant to σi so
that only the effect on the covariance ci,S remains to be analyzed. It is obviously positive because
∂ci,S/∂σi = 2wiσi > 0. The MES has drift related addends above and below the fraction line.
We neglect them in this section as they are small, based on the arguments provided in Appendix
A.7. We therefore consider the MES to be covered by the analysis of ci,S/cj,S .

A.12 Relative effect of systematic risk on exposure ∆CoVaR, MES, and beta

For the partial derivative of the ratio of covariances to βi, we obtain:

∂

∂βi

[
ci,S
cj,S

]
∝ cj,S

∂ci,S
∂βi

− ci,S
∂cj,S
∂βi

=
(
βj β̄σ

2
F + wjσ

2
j

)
σ2F
(
wiβi + β̄

)
−
(
βiβ̄σ

2
F + wiσ

2
i

)
σ2Fβjwi

∝ 1 + wj
σ2j

βj β̄2σ2F

(
wiβi + β̄

)
− w2

i

σ2i
β̄2σ2F

. (A-10)

In absence of a dominating bank, the only negative part of the expression is considerably smaller
than 1 under most conditions because of the factor w2

i . The relative effect of βi is then positive.
However, it may become negative if bank i is really large. Assume for simplicity that bank j is
very small so that the middle term vanishes. Then, the ratio ci,S/cj,S will negatively depend on
βi if wiσi > β̄σF .

A.13 Relative effect of systematic risk on ∆CoVaR

We start with a calculation of the partial derivative

∂

∂βi

[
∆CoV aRS,iα

∆CoV aRS,jα

]
= σ (Rj)

∂

∂βi

[
ci,S

cj,Sσ (Ri)

]
∝ σ (Ri)

∂

∂βi

[
ci,S
cj,S

]
−
ci,S
cj,S

∂σ (Ri)

∂βi

= σ (Ri)
σ2F
cj,S

{
βj β̄

2σ2F + wjσ
2
j β̄ +

(
wjσ

2
jβi − wiβjσ2i

)
wi
}
−
ci,S
cj,S

σ2F
σ (Ri)

βi

∝ σ2 (Ri)
{
βj β̄

2σ2F + wjσ
2
j β̄ +

(
wjσ

2
jβi − wiβjσ2i

)
wi
}
− ci,Scj,Sβi .

It is difficult to determine under which conditions this expression becomes negative. We therefore
use an approximation where we assume that bank i may dominate the system whereas the weight
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of the benchmark bank j can be neglected.22 Eliminating all terms containing wj gives

∂

∂βi

[
∆CoV aRS,iα

∆CoV aRS,jα

]
∝ . . . ≈ σ2 (Ri)

{
βj β̄

2σ2F − w2
i βjσ

2
i

}
− ci,Scj,Sβi

=
(
β2i σ

2
F + σ2i

) {
βj β̄

2σ2F − w2
i βjσ

2
i

}
− βi

(
βiβ̄σ

2
F + wiσ

2
i

) (
βj β̄σ

2
F + wjσ

2
j

)
≈

(
β2i σ

2
F + σ2i

) {
βj β̄

2σ2F − w2
i βjσ

2
i

}
−
(
βiβ̄σ

2
F + wiσ

2
i

)
βiβj β̄σ

2
F .

Further consolidation plus introduction of κ ≡ wi/ (1− wi) and ρ ≡ βi/β∗ lead to

∂

∂βi

[
∆CoV aRS,iα

∆CoV aRS,jα

]
≈ . . . ∝ σ2F

(
β2i β̄

2σ2F − β2i w2
i σ

2
i + β̄2σ2i − w2

i σ
4
i − β2i β̄2βjσ2F − βiwiσ2i β̄

)
∝ β̄2σ2F − w2

i

(
σ2i + β2i σ

2
F

)
− βiwiβ̄σ2F = σ2F β̄

[
β̄ − βiwi

]
− w2

i

(
σ2i + β2i σ

2
F

)
= (1− wi)σ2F β̄β∗ − w2

i

(
σ2i + β2i σ

2
F

)
= (1− wi) [wiβi + (1− wi)β∗]β∗ − w2

i

(
σ2i
σ2F

+ β2i

)
∝ [κβi + β∗]β∗ − κ2

(
σ2i
σ2F

+ β2i

)
= β2∗ − κ

(
κ
σ2i
σ2F

+ βi (κβi − β∗)
)

∝ 1− κ
(
κ
σ2i
σ2Fβ

2
∗

+ ρ (κρ− 1)

)
.

This expression can be positive or negative; it is discussed in the main text above Equation (11).

A.14 Relative effect of size on MES, exposure ∆CoVaR, and beta

The partial derivative of the ratio of covariances can be simplified to:

∂

∂wi

[
ci,S
cj,S

]
∝ cj,S

∂ci,S
∂wi

− ci,S
∂cj,S
∂wi

=
(
βj β̄σ

2
F + wjσ

2
j

) (
σ2i + βi ∆β σ2F

)
−
(
βiβ̄σ

2
F + wiσ

2
i

)
βj∆βσ

2
F

=
(
βjσ

2
Fwiβi + (1− wi)βjβ∗σ2F + wjσ

2
j

)
σ2i + wjσ

2
jβi ∆β σ2F − wiσ2i βj ∆β σ2F

=
(
βjβ∗σ

2
F + wjσ

2
j

)
σ2i + wjσ

2
jβi ∆β σ2F = βjβ∗σ

2
Fσ

2
i + wjσ

2
j

(
σ2i + βi ∆β σ2F

)
(A-11)

The derivative can actually become negative but only if the system volatility is a falling function
of wi. In fact, inspecting the last line, the derivative can only be negative if σ2i + βi∆βσ

2
F < 0;

this condition is sufficient for ∂σ2 (RS) /∂wi, as shown in (A-5). The case is similar to the direct
effect of size on the ∆CoVaR (Appendix A.3), which we classified to be ambiguous but, in a
sense, appropriate. However, the conditions under which the partial derivative in (A-11) can
become negative are considerably more exotic, as may be illustrated by the following estimate
(details omitted):

∂

∂wi

[
ci,S
cj,S

]
∝ . . . ≥ 1− 1

4
wj
σ2jβ∗

σ2i βj
.

A.15 Relative effect of size on ∆CoVaR

The effect can be traced back to (A-11) since σ (Ri) and σ (Rj) are invariant to wi:

∂

∂wi

[
∆CoV aRS,iα

∆CoV aRS,jα

]
=
σ (Rj)

σ (Ri)

∂

∂wi

[
ci,S
cj,S

]
∝ ∂

∂wi

[
ci,S
cj,S

]
.

22The relative effect in the reversed case (where bank i is small) is likely to be very similar to the direct effect
since the small bank has only weak impact on the index, and so is its effect on the large bank’s ∆CoVaR. Hence,
the small bank’s relative effect is basically the effect on its own ∆CoVaR, divided by a constant.
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The relative effect is then the same as for the other measures.

Appendix B Distribution of the noise term ε1, conditional on the
return

Given the return R1 = β1F + ε1 of the infectious bank in Section 4, we calculate the distribution
of ε1 under the condition that R1 equals its quantile value at level α. This is done by an
orthogonal linear representation, in the same way as in Section 3. Starting from the assumptions
F ∼ N

(
µ, σ2F

)
, ε1 ∼ N

(
0, σ21

)
and independence of F and ε1, we calibrate an equation ε1 =

a + bR1 + η such that R1 and η are independent and Eε1 = Eη = 0. This requires a = −bβ1µ
and

ε1 = b (R1 − β1µ) + η (B-1)

with b = cov (R1, ε1) /σ
2 (R1) = σ21/σ

2 (R1). The noise orthogonal to R1 has variance

σ2η = σ21 − b2σ2 (R1) = σ21β
2
1σ

2
F /σ

2 (R1) ,

which completes the conditional moments. Putting Qα (R1) = β1µ+ σ (R1) Φ−1 (α) into (B-1),
we obtain

ε1 |{R1 = Qα (R1)} ∼ N
(
b (Qα (R1)− β1µ) , σ2η

)
= N

(
σ21

σ (R1)
Φ−1 (α) ,

σ21β
2
1σ

2
F

σ2 (R1)

)
. (B-2)

We are also interested in the conditional probability of the contagion event, which is {ε1 < κ}.
Let us assume that the unconditional probability of contagion is χ. The R1-conditional proba-
bility is calculated by standardization of ε1 based on the moments given in (B-2):

P (ε1 < κ|R1 = Qα (R1)) = P
(
ε1 < σ1Φ

−1 (χ) |R1 = Qα (R1)
)

= Φ

(
σ1Φ

−1 (χ)−E (ε1|R1 = Qα (R1))

σ (ε1|R1 = Qα (R1))

)
= Φ

(
σ (R1) Φ−1 (χ)− σ1Φ−1 (α)

β1σF

)
. (B-3)

Appendix C The structural model for asset and equity returns

In this section we present the structural model used in the robustness test for the linear case.
We extend (and simplify) the model of Collin-Dufresne and Goldstein (2001), which has been
selected since it is one of the few that generate stationary returns both for assets and equity.23

We model asset returns as in the linear normal model of Section 3, with the modification that
returns over finite time intervals are now lognormal. The SDE system for the latent systematic
factor Ft and asset values Vi,t reads

dFt
Ft

= µdt+ σF dBt,
dVi,t
Vi,t

= βi
dFt
Ft

+ σi dBi,t

with independent Brownian motions Bt and Bi,t. The asset returns are stationary by con-
struction. It is convenient to replace the independent Brownian motions by the N -dimensional
Gaussian process

Zt ≡ (βiσFBF,t + σiBi,t)
N
i=1 ,

23The models of Leland (1994) and Leland and Toft (1996) might appear as natural alternatives since they
include stationary debt pricing. However, neither equity returns nor those of the market value of assets are
stationary.
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which has zero drift and the covariance function

Ωij (t, s) ≡ cov (Zi,t, Zj,s) =
(
βiβjσ

2
F + σ2i I{i=j}

)
min (t, s) . (C-1)

Most calculations are done in logarithmic terms, which we denote by small characters. The
log assets process vi,t ≡ log (Vi,t) of bank i is an arithmetic Brownian motion following

dvi,t = ηi dt+ dZi,t with ηi ≡ βiµ− 0.5
(
β2i σ

2
F + σ2i

)
. (C-2)

Each bank steers its debt by corporate action in order to achieve a certain target leverage.24

The model approximates this behavior by a controlled dynamic default threshold Ki,t, which we
interpret as the balance sheet value of debt. It is time-differentiable and assumed to follow, in
its logarithmic form, the ODE

dki,t =
[
λi
(
vi,t − ki,t + l̄i

)
+ βiµ

]
dt ,

where target leverage l̄i and adjustment speed λi are strategic parameters.25 Logarithmic “lever-
age” is defined as the distance li,t = ki,t − vi,t between the log default threshold and log assets.
As long as the bank is alive, li,t is an Ornstein-Uhlenbeck (OU) process

dli,t = λi
(
l̄i − li,t

)
dt− dZi,t .

Normally, default would occur at the first time whenKi,t = Vi,t holds or, equivalently, li,t = 0.
As we are interested in observable time series for banks, and for technical reasons, we assume
that the supervisor would take a bank into conservatorship and remove it from stock markets
when its equity, relative to assets, falls short of a small but positive amount. Formally, we define
the “default” time as τi ≡ inf {t : li,t = lmax} and set lmax = log (97%) in the simulations.

Equity is defined as the difference between the market values of assets and debt. For sim-
plicity, we assume the accounting and market value of debt to be identical, so that equity is just
Ei,t = Vi,t − Ki,t.26 Normally, a shock to Vi,t would partly carry over to the market value of
Ki,t, and especially so over short-term horizons where the adaptation of the smooth process Ki,t

is of second order, compared to the diffusion shocks to Vi,t. In our simplified model, however,
the short-term variation of assets completely carries over to the value of equity, which makes
it more volatile especially in moments of high leverage, compared to a model with precise debt
pricing. As we mainly test whether our results are robust to the presence of heavier tails in
return distributions, we find it acceptable that these tails are a bit heavier than those arising
from a fully-fledged debt pricing model.

Using
dEi,t = dVi,t − dKi,t =

[
βiµEi,t + λiKi,t

(
li,t − l̄i

)]
dt+ Vi,tdZi,t ,

Itô’s lemma gives the following SDE for log equity:

d logEi,t =

[
βiµ+ λi

li,t − l̄i
e−li,t − 1

− 1

2

β2i σ
2
F + σ2i(

1− eli,t
)2
]

dt+
1

1− eli,t
dZi,t (C-3)

24Such corporate action can have various forms but is most conveniently thought of as purely liabilities-related
transactions, such as debt/equity swaps or debt-financed stock repurchases.

25By adding βiµ to the drift of κi,t, we differ from Collin-Dufresne and Goldstein (2001) in that our parameter
l̄i actually equals the expectation of li,t under the stationary measure; in the original work there is a gap between
them. The difference in the parameters is only a matter of notation.

26This assumption is not found in the work of Collin-Dufresne and Goldstein (2001). Focusing on bond pricing,
they do not need to model the value of debt and equity explicitly. The only link between their structural model
and bond pricing is the distribution of the default time, which is already defined by the Ornstein-Uhlenbeck
process.
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The formula shows two things. First, as long as the log leverage li,t is stationary, equity returns
are stationary, too. Second, the dynamic diffusion generates heteroskedasticity in the equity
returns.27

We now write target leverages and adjustment speeds in vector form l̄ and λ and specify
the stationary distribution of lt = (li,t)

N
i=1. If we could ignore that processes are stopped at τi,

the stationary distribution would be N
(
l̄,Σ
)
, where Σij =

(
βiβjσ

2
F + σ2i I{i=j}

)/
(λi + λj). Of

course, stopping cannot be ignored since, otherwise, some of the processes would have to start
in the default state. We therefore select a distribution of lt that is stationary conditional on
survival, meaning that it fulfills

P (ls ∈ B|τi > s, i = 1, ..., N) = P (lt ∈ B|τi > t, i = 1, ..., N)

for arbitrary times t, s and measurable sets B ⊂ RN . This distribution is not analytically
available; we approximate it by simulation as described below.

For simulation purposes, we replace the SDE (C-3) by an equation where drift and volatility
are kept constant in a small time interval, in our case one day. The simulation of one-day asset
and equity returns consists of the following steps. As explained below, multiple independent
simulations must be performed in parallel.

1. Seed sample: drawM independent instances from a truncation of the multivariate N
(
l̄,Σ
)

distribution to the set (−∞, lmax)N , where lmax is the uniform stopping threshold for li,t.

2. Draw M independent instances of the one-day diffusion term from a normal distribution:
ε ∼ N (0,Ω (T, T )), where T ≡ 1/260 is one trading day and Ω is defined in (C-1). Log
leverage of the next day is obtained from28 l1 = l0 + diag(λ)

(
l̄ − l0

)
− ε which, however,

can also end up with some values larger than lmax. As we censor stopping events, in such
a case the l0 is replaced by a randomly selected instance of l0 from the sample, and a new
ε is drawn. If necessary, the replacement is repeated until l1 is smaller than lmax in all
components.29

3. Having obtained l1 from step 2, set l0 ≡ l1 and go back to step 2. Repeat this loop until
the distribution converges to survival-conditional stationarity.30 After convergence, go to
the next step.

4. Draw ε ∼ N (0,Ω (T, T )). Apply (C-2) to calculate daily asset returns as

Ri,V ≡ exp {ηiT + εi} − 1 .

5. Randomly pick one of the M instances of l0. Calculate one-day equity returns, according
to (C-3), but keeping coefficients constant for one day, as

Ri,eq ≡

[
βiµ+ λi

li,0 − l̄i
e−li,0 − 1

− 1

2

β2i σ
2
F + σ2i(

1− eli,0
)2
]
T +

1

1− eli,0
εi .

27The solution of the SDE could explode if we allowed li,t to reach zero. To prevent technical problems, we
stop the process at τi, which bounds the diffusion differential from above. In our simulations, the instantaneous
equity volatility can, at max, be about 3.3 times larger than the average.

28This AR(1) process is an approximation of the Ornstein-Uhlenbeck process. We could also set mean reversion
and variance of the AR process such that it has exactly the same distribution as the Ornstein-Uhlenbeck process
observed at discrete times; however, these parameters are almost exactly the same as λ and ε.

29If we knew the stationary distribution in advance, resetting l0 would not be necessary. It is so to achieve
convergence to the survival-conditional stationary distribution.

30We test for survival-conditional stationarity by the convergence of the sample characteristics mean, variance,
skewness and kurtosis.
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6. Add RV and Req to the sample and go back to step 4.31

As in the base case, the index return is defined as a weighted average. For the simulations we
set the following base case parameters. N = 50 homogeneous banks of equal size; σF = 0.05,
µ = 0.03, σi = 0.04 (all annualized); βi = 1, l̄i = −0.1; λi = 2.38. Note that the values relate
to bank asset returns, which are typically much less volatile than those of corporates. The risk
parameters are roughly consistent with KMV asset volatilities of banks and the values found by
Memmel and Raupach (2010).32 We generate M = 50, 000 samples for l0, based on a sequence
of 100 days to achieve survival-conditional stationarity. Estimates of systemic risk measures are
based on 10 million return vectors.

References

Acharya, V., R. Engle, and M. Richardson (2012). Capital Shortfall: A New Approach to
Ranking and Regulating Systemic Risks. American Economic Review 102 (3), 59–64.

Acharya, V. V., L. H. Pedersen, T. Philippon, and M. P. Richardson (2012). Measuring systemic
risk. CEPR Discussion Paper 8824.

Adams, Z., R. Füss, and R. Gropp (2014). Spillover effects among financial institutions: A state-
dependent sensitivity value-at-risk approach. Journal of Financial and Quantitative Analy-
sis 49, 575–598.

Adrian, T. and M. K. Brunnermeier (2011). CoVaR. NBER Working Paper w17454.

Allen, F. and E. Carletti (2013). What is systemic risk? Journal of Money, Credit and Bank-
ing 45, 121–127.

Artzner, P., F. Delbaen, J. Eber, and D. Heath (1999). Coherent measures of risk. Mathematical
Finance 9 (3), 203–228.

Baele, L., O. De Jonghe, and R. Vander Vennet (2007). Does the Stock Market Value Bank
Diversification? Journal of Banking & Finance 31 (7), 1999–2023.

Barth, A. and I. Schnabel (2013). Why banks are not too big to fail – evidence from the CDS
market. Economic Policy 28 (74), 335–369.

Basak, S. and A. Shapiro (2001). Value-at-risk-based risk management: Optimal policies and
asset prices. Review of Financial Studies 14 (2), 371–405.

Battaglia, F. and A. Gallo (2013). Securitization and systemic risk: An empirical investigation on
Italian banks over the financial crisis. International Review of Financial Analysis 30, 274–286.

Benoit, S., G. Colletaz, C. Hurlin, and C. Pérignon (2013). A Theoretical and Empirical Com-
parison of Systemic Risk Measures. Working Paper.

Benoit, S., J.-E. Colliard, C. Hurlin, and C. Pérignon (2015). Where the risks lie: A survey on
systemic risk. Working Paper.
31We could also calculate l1 and use it as the initial leverage vector for the next round. However, drawing l0

in step 4 independently from the pre-produced sample speeds convergence up as it avoids the otherwise strong
autocorrelation of volatilities.

32Memmel and Raupach (2010) perform univariate estimates of capital ratios. They report a median monthly
mean reversions of λmonthly = 0.18. This AR(1) parameter on a monthly basis transfers into an Ornstein-
Uhlenbeck mean reversion of λ = −12 × log (1 − λmonthly) = 2.38, where the time unit is one year.

38



Bisias, D., M. Flood, A. W. Lo, and S. Valavanis (2012). A survey of systemic risk analytics.
Annual Review of Financial Economics 4 (1), 255–296.

Boucher, C. M., P. S. Kouontchou, and B. B. Maillet (2013). The Co-CoVaR and some other
fair systemic risk measures with model risk corrections. Working Paper.

Brownlees, C. T. and R. F. Engle (2012). Volatility, correlation and tails for systemic risk
measurement. Working Paper.

Collin-Dufresne, P. and R. S. Goldstein (2001). Do credit spreads reflect stationary leverage
ratios? Journal of Finance 56, 1929–1957.

Danielsson, J., K. James, M. Valenzuela, and I. Zer (2014). Model Risk of Risk Models. Finance
and Economics Discussion Series 2014-34, Board of Governors of the Federal Reserve System
(U.S.), Washington, DC.

Fong, T. P. W. and A. Y. Wong (2012). Gauging potential sovereign risk contagion in Europe.
Economics Letters 115 (3), 496–499.

Gauthier, C., A. Lehar, and M. Souissi (2012). Macroprudential capital requirements and sys-
temic risk. Journal of Financial Intermediation 21, 594–618.

Guntay, L. and P. H. Kupiec (2014). Taking the risk out of systemic risk measurement. Working
Paper.

Hüser, A.-C. (2015). Too interconnected to fail: A survey of the interbank networks literature.
Working Paper.

Leland, H. E. (1994). Corporate debt value, bond covenants, and optimal capital structure.
Journal of Finance 49 (4), 1213–52.

Leland, H. E. and K. B. Toft (1996). Optimal capital structure, endogenous bankruptcy, and
the term structure of credit spreads. Journal of Finance 51 (3), 987–1019.

López-Espinosa, G., A. Moreno, A. Rubia, and L. Valderrama (2012). Short-term Whole-
sale Funding and Systemic Risk: A Global Covar Approach. Journal of Banking and Fi-
nance 36 (12), 3150–3162.

Meine, C., H. Supper, and G. N. Weiß (2015). Is tail risk priced in credit default swap premia?
Review of Finance. forthcoming.

Memmel, C. and P. Raupach (2010). How do banks adjust their capital ratios? Journal of
Financial Intermediation 19, 509–528.

Nucera, F., B. Schwaab, S. J. Koopman, and A. Lucas (2015). The information in systemic risk
rankings. Working Paper.

Pericoli, M. and M. Sbracia (2003). A Primer on Financial Contagion. Journal of Economic
Surveys 17 (4), 571–608.

Stiroh, K. J. (2006). A Portfolio View of Banking with Interest and Noninterest Activities.
Journal of Money, Credit and Banking 38 (5), 1351–1361.

Straetmans, S. T. M., W. F. C. Verschoor, and C. C. P. Wolff (2008). Extreme US Stock Market
Fluctuations in the Wake of 9|11. Journal of Applied Econometrics 23 (1), 17–42.

39


	1 Introduction
	2 Systemic risk measures studied in this paper
	3 Systemic risk measures in the linear case
	3.1 Analytic expressions for the risk measures
	3.2 Sensitivities to risk parameters
	3.3 Robustness to distributional assumptions

	4 Systemic risk measures in the contagion case
	4.1 CoVaR
	4.2 Exposure CoVaR
	4.3 MES
	4.4 Beta
	4.5 Robustness

	5 Conclusion
	A Sensitivities
	A.1 Direct effect of idiosyncratic risk on CoVaR
	A.2 Direct effect of systematic risk on CoVaR
	A.3 Direct effect of size on CoVaR
	A.4 Direct effect of idiosyncratic risk on beta
	A.5 Direct effect of idiosyncratic risk on exposure CoVaR and MES
	A.6 Direct effect of systematic risk on beta and exposure CoVaR
	A.7 Direct effect of systematic risk on MES
	A.8 Direct effect of size on beta
	A.9 Direct effect of size on exposure CoVaR and MES
	A.10 Relative effect of idiosyncratic risk on CoVaR
	A.11 Relative effect of idiosyncratic risk on exposure CoVaR, MES, and beta
	A.12 Relative effect of systematic risk on exposure CoVaR, MES, and beta
	A.13 Relative effect of systematic risk on CoVaR
	A.14 Relative effect of size on MES, exposure CoVaR, and beta
	A.15 Relative effect of size on CoVaR

	B Distribution of the noise term 1, conditional on the return
	C The structural model for asset and equity returns
	References

