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Abstract

We propose to pool alternative systemic risk rankings for financial institutions using the

method of principal components. The resulting overall ranking is less affected by estimation

uncertainty and model risk. We apply our methodology to disentangle the common signal

and the idiosyncratic components from a selection of key systemic risk rankings that are

recently proposed. We use a sample of 113 listed financial sector firms in the European

Union over the period 2002-2013. The implied ranking from the principal components is

less volatile than most individual risk rankings and leads to less turnover among the top

ranked institutions. We also find that price-based rankings and fundamentals based rankings

deviated substantially and for a prolonged time in the period leading up to the financial

crisis. We test the adequacy of our newly pooled systemic risk ranking by relating it to

credit default swap premia.
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1. Introduction

Since the 2008–2009 global financial crisis, many new approaches have been developed to

quantify and rank ‘systemic risk’ contributions of firms in the financial sector. However, few

of these approaches are currently actively used at public policy institutions such as central

banks or supervising authorities. Possible reasons for this lack of adoption include a weak

theoretical foundation for a number of these measures, as well as their frequent reliance

on financial market data, which renders the rankings inherently volatile. We argue that

the presence of multiple alternative and arguably noisy measures of financial sector firms’

systemic risk contributions raises two important questions. First, is there a straightforward

way to combine currently available systemic risk rankings to amplify the signal and reduce

the noise due to model risk and estimation uncertainty? Is a combined ranking sufficiently

robust for policy purposes and targeted banking supervision? Second, does a robust measure

of systemic importance correlate with financial institutions’ cost of debt finance? Is it in

line with a public sector guarantee for the most systemically important institutions? Similar

questions are raised in, for instance, Kelly, Lustig, and Van Nieuwerburgh (2011).

In our study we argue that the first questions can be addressed in an affirmative way

while responses to the last questions depend mostly on the financial health of the sovereign.

Specifically, we provide a principal components based methodology to combine systemic

risk rankings of financial institutions with the aim of achieving a robust combined ranking.

The combined ranking is based on six risk ranking methodologies and disentangles their

common (signal) and idiosyncratic (noise) parts. Our approach reflects the notion that risk

averse policy makers only pay attention to systemic risk rankings when other complementary

approaches point in the same direction. Indeed, when different measures of systemic risk

point in the same direction, it may be branded as irresponsible to pay no attention to the

common signal, given the stakes at hand. In our study we find that if systemic risk rankings

do not point in the same direction, policy makers interpret this situation as a warning signal

that prices in markets may be dislocated from their fundamentals. Of course, some rankings

and systemic risk measures may be more useful than others. Information about a possible
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dislocation between prices and fundamentals may be distilled from our methodology. Since

our principal components are obtained from a cross-sectional dataset, the analysis can be

performed and repeated in any time period.

In order to extract the common information content of different input rankings, we

perform an iterated cross-sectional aggregation of rankings based on a fairly straightforward

factor model. The combined ranking is constructed from the eigenvalue that explains most

of the variance of the observed data subject to a normalization. The usual optimality

properties of the principal component hold in our modeling approach as well; see Lawley

and Maxwell (1971). In our study, the method of principal components is used in the cross-

section direction only. We do not obtain estimates of factors in a time series context. For

a time series approach to ‘systemic risk’ we refer to Moreno and Pena (2013) and Giglio,

Kelly, and Pruitt (2015).

We apply our general framework to the European Union financial sector, studying

N = 113 firms during T = 139 months from March 2002 to September 2013. As a result,

our sample contains most of the build-up phase of financial instability in Europe during the

expansion years of 2003-07, the materialization of systemic risks during the global financial

crisis between 2008-09, and the most acute phase of the euro area sovereign debt crisis from

2010-12. Our sample of listed financial sector firms contains commercial banks, insurers,

asset managers, and broker/dealers. In terms of ranking methodologies, we consider risk

rankings based on criteria such as SRISK (Acharya, Engle, and Richardson, 2012; Brown-

lees and Engle, 2015), MES (Acharya, Pedersen, Philippon, and Richardson, 2010), the

leverage ratio (Fostel and Geanakoplos, 2008; IMF, 2009; Geanakoplos and Pedersen, 2014),

systematic risk defined as the so-called CAPM beta times market capitalization (Benoit,

Colliard, Hurlin, and Pérignon, 2015), ∆CoVaR (Adrian and Brunnermeier, 2014; Castro

and Ferrari, 2014), and firm’s Value-at-Risk (Adams, Füss, and Gropp, 2014; White, Kim,

and Manganelli, 2015).

We focus on three main empirical findings. First, we demonstrate that the cross-sectional

consistency between the different rankings is far from perfect. The respective mean rank

correlations are positive, but routinely fall below 0.5. The poor association is not due to a
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few outliers, but is symptomatic of the fact that different ranking methodologies actually

order financial firms differently in the cross-section. Of course, this is problematic for su-

pervisory purposes. In addition, standard unit root tests suggest that a substantial fraction

(up to 66%) of ranks tend to be non-stationary in the time dimension. Given the possibly

non-stationarity properties of many of the rankings, we focus mainly on the cross-sectional

dimension of the principal components analysis and discuss how these properties vary over

the course of the two financial crises embedded in our sample. We clearly find that our com-

bined ranking is substantially less volatile over time than most rankings taken in isolation.

Crucially, our pooled risk ranking leads to relatively little variation (turnover) among firms

at the top of the ranking. This feature is important for targeted banking supervision, as

re-deploying on-site supervisory teams is costly and requires months of lead time in practice.

Second, when studying the time series of the results from our cross-sectional principal

components analysis, we find a rising discrepancy during 2006–2007 between the loadings

of price-based systemic risk rankings (such as VaR, ∆CoVaR, and MES) versus systemic

risk rankings that also incorporate book values (such as Leverage and SRisk). This appears

to signal a dislocation between market prices and fundamentals already in the onset to

the 2008 financial crisis. Hence different systemic risk measures signal different messages

at a time when they are, arguably, the most important. Similar (smaller sized) changes

in loadings emerge several times during the subsequent European sovereign debt crisis.

Substantial deviations between the information embedded in different systemic risk rankings

as evidenced by the principal component loadings may be used by policy makers as possible

“red flags” to signal that imbalances in markets are building up, and that closer inspection

of such potential imbalances is warranted.

Third, when we investigate the relationship between systemic importance and credit

default swap (CDS) prices, we show that the systemic importance of financial firms tends

to vary negatively with their CDS premia, provided that the sovereign is financially healthy.

The extent of systemic importance of banks appears to correlate with a benefit from a

funding perspective in the market for unsecured funds for some firms, most likely due to an

implicit public sector guarantee; see also Kelly et al. (2011). For banks located in certain
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stressed euro area countries we obtain the opposite result, particularly during the most acute

phase of the euro area sovereign debt crisis from 2010–2012. In this case the sovereign cannot

provide a credible guarantee, and, if anything, appears to have become a liability to its more

systemically important firms. To summarize, less implicit government support appears to

be available for European financial firms that are ‘too-systemically-safe-to-bother’, and for

firms that are backed by a financially weak sovereign.

Many contributions are made to formalize the notion of systemic risk and to investigate

systemic risk contribution of individual financial firms. Acharya et al. (2010) are amongst

the first to develop a model in which the capital shortfall experienced by a financial firm

at a time when the financial system is undercapitalized generates negative externalities to

the entire economy. He and Krishnamurthy (2014), Brunnermeier and Sannikov (2015),

and Boissay et al. (2015) study economies with financial frictions that are, due to highly

nonlinear amplification mechanisms, prone to instability and can occasionally enter volatile

crisis periods. In all these models, financial firms do not take account of the possible costs

of their risk taking during a crisis. It is important that empirical measures of systemic risk

contribution – once further progress is made towards reliable measurement – provide a way

to ‘internalize’ systemic risk externalities, for example via additional capital and liquidity

requirements, as well as targeted banking supervision. The latter entails deploying on- and

off-site teams to those banks where the expected loss from a bankruptcy would be the most

devastating to the macroeconomy.

ECB (2009, 2010, 2011), and Bisias et al. (2012) provide comprehensive surveys of the

empirical literature on systemic risk measurement. Hartmann et al. (2009) and Freixas

et al. (2015) survey the respective theoretical frameworks. Our study may also relate to two

other strands of literature. First, the optimal combination of alternative forecasts is often

taken as a simple and effective way to improve and robustify the forecasting performance of

individual models; see, for example, the seminal contribution of Bates and Granger (1969).

As a result, forecast combinations are now in widespread use in central banks, among private

sector forecasters, and in academic studies; see Aiolfi et al. (2010) for a comprehensive survey

on forecast and nowcast combination. Second, the analysis of factor models by the method
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of principal components is widely understood and frequently applied in the social sciences.

Recent applications of principal component methods to systemic risk include Billio et al.

(2012), Moreno and Pena (2013), and Giglio et al. (2015).

Two recent studies are closely related to ours. Giglio et al. (2015) evaluate a sizeable

collection of systemic risk measures and rank them in their ability to forecast macroeconomic

downturns in the U.S. and Europe. They adopt a dynamic factor analysis to obtain systemic

risk indexes in the time dimension, and then demonstrate that such a systemic risk index

provides significant predictive information out-of-sample for the lower tail of macroeconomic

outcomes. Our paper is related to theirs in that we both evaluate a compendium of systemic

risk measures, not in isolation, but as a group. Our analysis is different, however, in that

we apply factor analysis across rankings in the cross-section dimension, at each point in

time, to form optimal combinations of rankings. Giglio et al. (2015) instead follow Moreno

and Pena (2013) and apply factor analysis across firms to obtain a systemic risk index

in the time dimension. Benoit et al. (2015) provide a theoretical and empirical survey of

systemic risk measures. They demonstrate that, given a certain set of assumptions, several

popular systemic risk measures can be formulated as (non-linear) functions of market risk

measures such as the CAPM beta. In an earlier empirical investigation of U.S. financial firms

(Benoit et al. (2013)), they note that a one-factor linear model appears to explain most of

the variability across four systemic risk measures (MES, SES, SRISK, and ∆CoVaR). Our

paper is different in that they stop short of pursuing that intuition further by extracting

the common variation across systemic risk measures to obtain a combined ranking that

is less affected by model risk and estimation uncertainty (see also Danielson et al., 2015).

Moreover, once we obtain our combined ranking, we investigate how systemic importance

co-varies with CDS data at the firm level.

The remainder of this paper is set up as follows. Section 2 discusses our input measures

and corresponding ranks. Section 3 introduces our basic methods of pooling risk ranks. Our

main empirical results are discussed in Section 4. Section 5 investigates the relationship

between a firm’s systemic importance and its CDS spread. Section 6 concludes.
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2. Data

2.1. Data sources

We consider monthly observations of six systemic risk rankings for N = 113 financial

sector firms located in the European Union. The sample period is March 2002 to September

2013, comprising T = 139 months. We obtain our data from two sources. For risk measures

1–4 below, our data comes from the vLab website.4 For risk measures 5–6, we have been

granted access to the confidential Bundesbank submissions to the European Systemic Risk

Board (ESRB). The ESRB publishes aggregate statistics of ∆CoVaR in their quarterly

updates of their risk dashboard.5 While many other systemic risk measures exist, our sample

of risk measures 1–6 is a reasonably complete set of market based measures that regulators

may look at in practice. The set nests the measures investigated by Benoit et al. (2013).

All risk rankings are at a monthly frequency.

For our later empirical analysis, we also consider CDS data at the firm level. All CDS

are obtained from Bloomberg, and are end-of-month values.

2.2. Ranking criteria

We rank-order our sample of financial firms according to the following risk measures.

2.2.1. SRisk

SRisk is an estimate of the capital shortfall a given financial firm i is expected to ex-

perience conditional on a severe market decline, see Brownlees and Engle (2015). It op-

erationalizes the theoretical framework of Acharya et al. (2010) and can be interpreted as

the systemic risk contribution of a given financial firm. SRisk is a function of a firm’s size,

leverage, and its expected equity loss given a market downturn. As a result, it combines

balance sheet data (on liabilities) with market data (on equity market volatility, systematic

risk, and market capitalization).

4See http://vlab.stern.nyu.edu.
5See http://www.esrb.europa.eu/pub/rd/html/index.en.html.
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2.2.2. Marginal expected shortfall (MES)

MES is introduced as a risk measure in Acharya et al. (2010). We use the version of MES

as discussed in Brownlees and Engle (2015). MES is the expected return of a financial firm’s

stock conditional on a market return being in its lower tail. Brownlees and Engle (2015)

computes MES based on a TGARCH-DCC specification (see Engle (2002)), thus using a

dynamic volatility model and correlation model to estimate MES. Tail (beta) dependence

between market returns and a financial firm’s stock returns is recognized in policy circles to

be an important aspect of its systemic risk contribution, see Zhou and Tarashev (2013).

2.2.3. Leverage ratio (LVG)

We consider the “quasi-market value of leverage” as defined in Engle et al. (2014). Ac-

cordingly, leverage is A/W, where A is the market value of equity plus the book value of

debt, and W is the market value of equity. Research undertaken relatively early after the on-

set of the global financial crisis by the IMF (2009) argued that it was not necessarily weakly

capitalized financial firms that tended to do badly during the crisis, as could perhaps have

been expected, but that instead failed banks tended to be characterized by high leverage

ratios and funding illiquidity; see also Fostel and Geanakoplos (2008) and Geanakoplos and

Pedersen (2014). As a result, leverage is a key variable for supervisors.

2.2.4. Dollar systematic risk (β×MV)

β×MV combines two ingredients of separate interest: a time-varying beta estimate times

a firm’s market capitalization. In this way, we obtain an estimate of the nominal (absolute)

risk of the firm’s market capitalization to systematic (market) shocks. The time-varying

beta coefficient is estimated based on Engle (2012). We interact the beta coefficient with a

measure of total size for two reasons. First, it can be shown that MES (our second measure)

is an affine function of the CAPM beta (see Section 5 in Benoit et al. (2015)) if a single

factor model describes asset returns. By interacting a beta coefficient with size we break

this (trivial) link. Second, size is an important determinant of systemic importance in its

own right; see Völz and Wedow (2011).
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2.2.5. ∆CoVaR

CoVaR is defined as the value-at-risk (VaR) of the financial system as a whole, usually

approximated by a market index, conditional on a certain institution i being in distress. The

distress of institution i, in turn, is captured by that institution being at its own individual

VaR. ∆CoVaRi is defined as the VaR of the financial system when institution i is in distress,

minus the VaR of the system when institution i is at its median value. In Adrian and

Brunnermeier (2014), the relationship between the VaR of the system and the equity return

of a given institution is allowed to depend on additional covariates, as in Hautsch et al.

(2014).

2.2.6. Value-at-Risk (VaR)

The value-at-risk of institution i is an intermediate output of the calculation of ∆CoVaR,

see Adrian and Brunnermeier (2014). We include it as a measure of market perceptions

regarding a firm’s business risk. For an application of VaR and volatility spillovers in a

systemic risk context, see Adams et al. (2014) and Diebold and Yilmaz (2014). VaR is

increasing in equity price volatility, which in turn reflects the volatility of a firm’s assets and

associated future dividends.

2.3. Rankings

To make the data as comparable across months and across rankings as possible, we

compute the ranks as follows. Let Yi,j,t denote the original observed data (such as SRisk)

for firm i = 1, . . . , Nj,t for ranking j = 1, . . . , 6 at time t, where Nj,t denotes the number of

firms for ranking j at time t. Our data for our subsequent analysis of risk rankings is

Xi,j,t = 1− rank
Nj,t

(Yi,j,t)/(Nj,t + 1), (1)

i.e., all ranks Xi,j,t are unit free, and lie inside the unit interval by design. Ranks Xi,j,t are

comparable across rankings, while the original quantities Yi,j,t are not. A higher Xi,j,t is

associated with a higher systemic importance.
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3. Basic methodology

3.1. Factor model

To investigate the joint information content of the different systemic risk rankings, we

use a factor model structure of the form

Xi,t = Λtfi,t + εi,t, i = 1, . . . , N, t = 1, . . . , T, (2)

where Xi,t = (Xi,1,t, . . . , Xi,J,t)
′ ∈ RJ×1, Λt ∈ RJ×R, fi,t ∈ RR×1, εi,t ∈ RJ×1, T is the number

of months, N denotes the number of financial institutions, and R and J denote the number

of factors and systemic risk rankings, respectively. Based on the risk rankings discussed in

Section 2, J = 6, while we have N = 113 firms observed over T = 139 months.

If there are no missing values, parameter and factor estimation are straightforward. All

required estimators are available in closed form. In particular, we have

Λ̂t = Ut = [U1,t, ..., UR,t], f̂i,t = Λ̂′
tXi,t, F̂t = (F̂1,t, . . . , F̂R,t) = XtΛ̂t,

Ŝt =
1

N

N∑
i=1

Xi,tX
′
i,t = Λ̂tΣ

f
t Λ̂

′
t + Σϵ

t,

where Σf
t is the variance-covariance matrix of the common factors, Σϵ

t is the variance-

covariance matrix of the error terms, Ut collects the eigenvectors of Ŝt corresponding to

its R largest eigenvalues and F̂t ∈ RN×R with columns F̂r,t for r = 1, . . . , R. The first col-

umn F̂1,t of F̂t is associated with the eigenvalue that explains most the variance of Ŝ and is

therefore our main object of interest.

We note that factors (principal components) are only identified up to a sign convention.

In principle, loadings can flip signs over adjacent time periods t just because of this feature.

To prevent this from happening in our empirical study below we require the loadings on

LVG to be positive.

3.2. An EM algorithm for missing values

In the presence of missing values, the estimation algorithm needs to be slightly extended.

We adopt the Expectation-Maximization (EM) iterative procedure as described in Stock and
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Watson (2002). The procedure is designed for the setting Xi,j,t ∼ NID(Λj,tfi,t, 1−Λj,tΣ
f
tΛ

′
j,t),

where Λj,t is the jth row of Λ, and, as above, Σf
t ∈ RR×R is the covariance matrix of the

common factors. The algorithm works in the following basic steps. Starting from a set

of estimates Λ̂t, we first construct pseudo observations X∗
i,j,t, with X∗

i,j,t = Xi,j,t if Xi,j,t

is observed, and X∗
i,j,t = Λ̂j f̂i,t otherwise. Next, we re-standardize the X∗

i,j,ts and apply a

principal components analysis to obtain our next estimates of Λ̂t and F̂t. These steps are

repeated until convergence. In our empirical application, we typically obtain convergence of

the EM algorithm in less than five iterations.

4. Empirical results

4.1. The case for combing systemic risk rankings

This section argues that it is sensible from a supervisory perspective to combine different

systemic risk rankings. We show that different rankings give vastly different systemic risk

indications during certain periods. Moreover, the individual systemic risk rankings can

be quite volatile in the time dimension. By contrast, even a “naive” combined ranking

that takes an unweighted average of all available rankings at the firm level already exhibits

considerably less time series variability than most individual rankings.

As a motivating example, Figure 1 plots the systemic risk rank of Deutsche Bank using all

six methodologies. We observe two general features that apply to many financial sector firms

in our sample. First, the measures can give quite different signals about how systemically

important a specific firm is in relative terms. For example, Deutsche Bank is among the top

three systemically important firms according to SRisk. It is substantially less risky when

systemic risk is measured in terms of MES, β×MV, or VaR. This suggests that the leverage

of Deutsche Bank drives its high rank in SRisk, even though Leverage (LVG) on its own also

results in a less dominant systemic risk rank except during 2007–2008. Second, we see that

the different ranks may be quite volatile over time. VaR and ∆CoVaR show clear peaks

in the rankings during 2006–2007, whereas both ∆CoVaR and MES appear very volatile

during the European sovereign debt crisis period 2011–2012. This is a clear impediment for

the use of these measures in the day-to-day supervisory practice.
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Figure 1: Rank instability: the case of Deutsche Bank
The figure shows the time series plots of the rankings associated to Deutsche Bank over the sample 2002/3-
2013/9. The raw input ranks vary from i = 1, . . . , 113 on the vertical axis, where 1 denotes the most
systemically risky financial firm.

A more complete picture is presented in Figure 2 where we present the cross-sectional

scatter diagrams between SRisk and the other systemic risk rankings on one specific date.

First we notice that the cross-sectional association between the different rankings is far from

perfect. We find, as expected, substantial correlation between SRisk and Leverage, though

even there theR2 of a linear regression of one on the other does not exceed 0.66. The situation

for the other rankings is worse: the correlation between the different measures is poor, with

R2s typically not exceeding 0.23. Also the scatter diagrams clearly indicate that the poor

fit is not due to a few outliers, but is symptomatic of the different rankings ordering the

financial firms in the sample differently. This may be problematic for supervisory purposes.

In Table 1 we provide descriptive statistics of the volatility of our six input rankings.

The table reports the cross-sectional average of the firm-level time series standard devia-

tion of each rank. The time series standard deviation is computed over different periods

and indicates how (un)stable a specific rank is over time. We compare the volatilities for
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Figure 2: SRisk rank vs other risk ranks
The figure shows the scatter plots of SRisk ranks versus other ranks at 29/6/2012. Symbols refer to i =
1, . . . , 113 firms. Ranks are calculated as in (1).

Table 1: Descriptive statistics: rank volatility
For each ranking, the table reports 100 × the cross-sectional average of the time series
standard deviations of the ranks. We report results for the period 2006-2013 (column
two), and distinguish four different sub-samples (columns three to six).

2006-2013 pre-crisis fin. crisis debt crisis post OMT
Start Jan 2006 Jan 2006 Aug 2007 Oct 2009 Sep 2012
End Sep 2013 Jul 2007 Sep 2009 Aug 2012 Sep 2013
%SRisk 12.6 5.3 9.1 3.9 2.6
β×MV 7.5 3.5 5.1 5.5 4.3
MES 18.3 11.4 13.3 15.1 13.5
LVG 9.8 3.0 4.8 4.8 3.7
∆CoVaR 13.8 10.0 9.4 13.5 4.5
VaR 15.6 11.6 12.3 11.2 5.5
Naive 1/6 9.1 5.3 6.0 5.4 3.5

the individual rankings with a “naive” combined ranking (bottom row), which equals the

unweighted average over the six ranks included in our study. For the period 2006-2013, the

β×MV and LVG based rankings tend to be the least volatile. This is intuitive, as they
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are in part based on the book value of assets (LVG). For β×MV, the estimate of market

β typically increases for sharp falls in market value, leaving the relative position of β×MV

rather stable. Rankings that are exclusively or primarily based on financial market data

inputs are more volatile (MES, VaR, ∆CoVaR, SRisk, in that order). Over the full sample,

the time series variation in our naive unweighted average of all rankings is higher than that

of β×MV, but lower than that of all the other rankings.

Table 1 reports the results for different sub-samples. We distinguish a pre-crisis pe-

riod (January 2006–July 2007), a period of financial crisis (August 2007–September 2009),

the most acute phase of euro area sovereign debt crisis (October 2009–August 2012), and

a key period following the announcement of the Outright Monetary Transaction (OMT)

programme by the European Central Bank (September 2012–September 2013). The OMT

programme is widely credited for ending the most acute phase of the euro area sovereign

debt crisis; see, for example, Lucas et al. (2014).

Overall, the rank volatility is higher during the financial and the euro area sovereign

debt crisis than in the pre-crisis and post-OMT periods. Put differently, risk rankings

may be particularly volatile in exactly those periods where they are (arguably) of the most

immediate interest to policy makers. Reassuringly, the unweighted average (naive combined

ranking) is among the least volatile ranking methods in each of the subsamples. This again

suggests that combining rankings may result in substantial benefits.6

From a supervisory perspective, high “turnover at the top” of any ranking creates dif-

ficulties in formulating a supervisory strategy. Table 2 studies this issue by reporting the

number of top 25 most systemically important financial institutions that were also in top

25 one year earlier. The closer the number is to 25, the more stable is the top of that

ranking. Again, rankings that are based (in part) on balance sheet items tend to do better

in terms of stability than rankings mainly based on market prices. Among the six input

rankings, β×MV is the most stable, followed by %SRisk, LVG, VaR, MES, and ∆Covar. A

6The ranking volatility is substantially lower over sub-periods than it is for the full sample. This is
largely due to a number of institutions changing their rank gradually over the sample period, which results
in a substantial (unconditional) rank volatility over the full sample.
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Table 2: Descriptive statistics: rank stability
The table reports the number of top 25 firms in December of any year which are also in top 25 one
year earlier. The closer the table entry is to 25, the less turnover occurred. CR1 is a combined ranking
based on the first principal component.

%SRisk β×MV MES LVG ∆CoVaR VaR Naive 1/6 CR1

2007 20 23 15 20 14 18 17 18
2008 18 23 13 17 19 16 22 23
2009 24 22 14 20 14 15 22 23
2010 23 23 14 19 6 12 17 17
2011 23 23 17 18 22 23 20 20
2012 23 24 15 23 11 15 19 18
Average 21.8 23 14.6 19.8 14.3 16.5 19.5 19.8

Table 3: Descriptive statistics: rank stationarity
The table reports the rejection rates of the null hypothesis of a unit root based on Augmented
Dickey-Fuller (ADF) univariate tests. Lag length selection is automatic and based on the Schwarz’
Bayesian information criterion (BIC). CR1 is the ranking based on the first principal component.

%SRISK β×MV MES LVG ∆CoVaR VAR Naive 1/6 CR1

Rejection % 0.36 0.69 0.85 0.34 0.56 0.36 0.51 0.75

naive/unweighted combination is stable at the top, with on average approximately 20 firms

in the top-25 that were also at the top one year earlier. The principal components based

ranking behaves slightly better than the naive average rank, in the sense of having even less

turnover at the top.

To investigate the persistence in systemic risk rankings, Table 3 reports the results of

univariate Dickey-Fuller tests for the time series of rankings for a specific metric and firm.

For each metric, the table reports the frequency (across firms) of rejections of the unit root

hypothesis. For %SRisk, LVG, and VaR, the unit root hypothesis is not rejected for about

2/3 of the firms considered, indicating that these ranks are persistent and slowly moving.

∆CoVaR appears slightly less persistent, with the unit root hypothesis being rejected for

slightly more than half of the firms. The MES and β×MV measures appear to be least

persistent in a time series sense. Given the possibly non-stationarity properties of many of

the rankings, we focus in our subsequent analysis mainly on the cross-sectional dimension

of the principal components analysis and discuss how these properties vary over the course

of the two financial crises embedded in our sample period.
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Table 4: Descriptive statistics: Correlation among risk ranks
The table reports the time series medians of the cross-sectional linear (Spearman) correlations, as
well as their time series inter-quartile ranges in brackets below. See Figure 2 as an example of
cross-sectional correlation at a single point in time.

%SRisk β×MV MES LVG VaR
β×MV 0.36

[0.22, 0.53]
MES 0.43 0.52

[0.38, 0.49] [0.44, 0.63]
LVG 0.81 0.36 0.32

[0.78, 0.84] [0.23, 0.47] [0.23, 0.40]
VaR 0.37 0.27 0.48 0.44

[0.31, 0.47] [0.10, 0.39] [0.40, 0.55] [0.31, 0.52]
∆CoVaR 0.29 0.62 0.51 0.20 0.20

[0.21, 0.38] [0.54, 0.67] [0.37, 0.62] [0.11, 0.29] [0.12, 0.28]

Table 4 presents pairwise (Spearman) cross-sectional correlations for different systemic

risk rankings. This allows us to see whether there is much overlap between the information

contained in the different rankings, or not. If the overlap is limited, different measures may

accentuate different facettes of systemic importance (unlikely in our assessment), or may

be subject to substantial estimation uncertainty and model risk (as argued in Danielson

et al., 2015). The cross-sectional correlations are in general rather stable over time and

positive. The highest median correlation (0.81) is between SRisk and LVG. The cross-

sectional correlation between ∆CoVaR and β×MV (0.62) is quite high as well.

4.2. Principal components analysis and combined ranking

We now turn to our principal components analysis of the systemic risk rankings. Figure 3

presents the distribution of the J = 6 ordered and sum-normalized eigenvalues δ1, . . . , δJ .

The histograms provide the time series frequencies of the cross-sectional (sum normalized)

eigenvalues.

The factor corresponding to the first eigenvalue explains approximately 50% of the total

variation. There is quite some time series variation in the percentage of variance explained by

the first principal component given that it ranges from 30%-70% over time. We can conclude

that there are times at which the information contained in the six systemic risk rankings is

quite dispersed, while at other times the information content is fairly concentrated. The first
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Figure 3: How many risk factors? Distribution of six ordered eigenvalues
Each principal components analysis is performed over the cross-section of firms, with time t held fixed. The
figure shows the time series histograms of the J = 6 ordered and sum normalized eigenvalues.

two eigenvalues together explain more than 70% of the total data variance. As a result, it

is unlikely that more than two factors are required to summarize the information contained

in the six systemic risk rankings at any time.

Figure 4 gives some more insight by providing the time series plot of the different eigen-

values. Interestingly, the first factor bottoms out near a value of 30% at the beginning of

2007, a few months before the onset of the financial crisis. By contrast, the second eigen-

value appears to peak during the same period. We interpret this as a signal that different

systemic risk measures signal different messages precisely when they are the most important.

Our six risk measures are most similar at the absolute height of the global financial crisis,

a few months after the collapse of Lehman brothers. This is a humbling finding, providing

a dual conclusion. First, a simple combined robust ranking may be preferable to a single

individual risk measure from a supervisory perspective. Second, a useful additional signal

for supervisory purposes may be obtained by keeping track of the times when the different

rankings appear less in agreement. It is precisely during such periods that more scrutiny
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Figure 4: Time series plot of ordered eigenvalues
The figure shows the time series plots of six ordered eigenvalues from the most important in terms of
explained variance (top) to the least important (bottom). The sample is from 2002M3-2013M9.

may be warranted from the side of the supervisor.

To investigate which rankings are most informative for the first principal component,

the top 6 panels in Figure 5 present the distribution of factor loadings for the first principal

component. The distributions of the loadings appear similar for all six systemic risk rankings.

Only the time series dispersion of the loading on VaR is somewhat higher, followed by

∆CoVaR. All loadings have a positive and similarly sized mean. We may conclude that the

first factor has the interpretation of a “level” component, where each ranking contribute

approximately equally to the first factor’s composition.

The bottom 6 panels in Figure 5 provide a complementary message by showing the

frequencies of loadings for the second principal component. There is a clear difference

between the loadings for %SRisk and LVG on the one hand, and β×MV, MES, and ∆CoVaR

on the other hand, with VaR striking the middle ground. The second component thus

appears to pick up a difference between rankings that are more based on the book (such as

LVG, %SRisk) versus the other rankings.
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Figure 5: Factor loadings for the first and second factor: distributions
The distribution (over time) of loading parameters Λ̂t associated with the first factor (top six panels) and
second factor (bottom six panels), see (2).

If we consider the time series plots of the loadings in Figure 6, we confirm the roughly

equal weights for each of the 6 rankings during most of the sample period. At the same time,

we see a clear change in behavior before the inception of the sub-prime crisis in August 2007,

particularly for VaR and ∆CoVaR, and to a lesser extent also for β×MV. In a strikingly

non-volatile market environment, just before the burst of the lending bubble, market based

risk indicators (such as VaR and ∆CoVaR) can suggest a substantially different ordering of

the systemic risk of financial sector firms than measures that are at least partly based on

book values (such as LVG and %SRisk). This finding is in line with the “volatility paradox”

as described in Brunnermeier and Sannikov (2015) and Boissay et al. (2015). It is also in

line with impressions from policy circles such as Borio (2010)’s “financial stability paradox”,

according to which systemic risks are highest when measured risks (such as, for example,

the U.S. VIX) are particularly low. It is encouraging that a combined ranking based on the

19



%SRisk 
MES 
∆CoVaR 

β×MV 
LVG 
VaR 

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

−0.25

0.00

0.25

0.50

%SRisk 
MES 
∆CoVaR 

β×MV 
LVG 
VaR 

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

−0.5

0.0

0.5

Figure 6: Time series frequencies of factor loadings for the first and the second factor
The figure shows the cross-sectional loading parameters associated with the first (top panel) and second
(bottom panel) principal components.

first principal component goes “short” the more market based measures at such times to

match the information content in the other rankings.7

The second panel in Figure 6 shows the time series pattern for the loadings of the

second principal component. During the first half of the sample, the factor clearly takes

a difference between LVG and %SRisk on one side, and MES, β×MV, and ∆CoVaR on

the other, with relatively little weight for VaR. In the onset of the financial crisis, however,

when the dominance of the first principal component diminishes, the weights for the second

component start shifting considerably. Late 2006 and most of 2007, VaR starts to combine

strongly with MES and ∆CoVaR to form a separate signal. In Spring 2007, these three

rankings roughly make up all of the second factor, with the remaining loadings being near 0.

For the rest of 2007, these price-based measures are offset against LVG, and to some extent

%SRisk. VaR thus appears to have taken over the position of β×MV in the onset of the

7Principal components are determined only up to a sign convention. In principle, loadings could “flip”
just because of this feature. This is not the case here, as we required the loading on LVG to be positive.
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Table 5: Top 25 systemically important firms: September 2013
The table presents the top 25 (alphabetic order, first column) systemically risky financial firms at September
2013 for our sample of N = 113 listed firms headquartered in the European Union according to a rank CRt

based on ˆF1,t. X and o indicate whether these systemically risky financial firms were in the top 25 also at
four different time periods, or not. The four time periods are the midpoints of the subsamples in Table 1.

Top 25 at Sep 2013 Oct 2006 Sep 2008 Mar 2011 Mar 2013
Aegon NV X X X X
Allianz SE X X X X
Aviva PLC X X X X
AXA SA X X X X
Banco Bilbao Vizcaya Argentaria o o X X
Banco Popolare SC o o o X
Banco Santander SA o X X X
Barclays PLC X X X X
BNP Paribas X X X X
CNP Assurances X o o o
Commerzbank AG X X X X
Credit Agricole SA X X X X
Credit Suisse Group AG X X o X
Deutsche Bank AG X X X X
Erste Group Bank AG X X o X
ING Groep NV X X X X
Intesa Sanpaolo SpA o o X X
Legal & General Group PLC X X X o
Lloyds Banking Group PLC o o X o
Natixis X X X o
Nordea Bank AB o o X o
Royal Bank of Scotland Group PLC X X X X
Societe Generale X X X X
UniCredit SpA o X X X
Unione di Banche Italiane SCPA o o X X

2008 financial crisis.

Also during the subsequent sovereign debt crisis, loadings for the second factor are sub-

stantially different than in the pre-2007 era. In particular, the second factor now mainly

picks up the discrepancy between VaR and LVG on the one hand, and β×MV and ∆CoVaR

on the other hand. This factor becomes increasingly important as the European sovereign

debt crisis unravels, as can be seen from the relative magnitude of the first eigenvalue in

Figure 4.

Table 5 presents the top 25 systemically important financial institutions in our sample

at September 2013, in alphabetical order. In addition, the table checks whether these top-25

firms were also classified as such at the end of four specific months: before the crisis (Oct
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2006), after the fall of Lehman (Sep 2008), during the sovereign debt crisis (Mar 2011), and

after the OMT implementation (Mar 2013). Both banks and other (non-bank) financial

institutions can be found at the top of the list. This holds for all periods considered.

It is clear that there is much persistence in the composition of the list: several financial

institutions that were the most systemically important in or before 2008 still are systemically

important in 2011 and even 2013. This suggests that regulations regarding SIFIs adopted

between 2009-2012 may not have had sufficient ‘bite’ to substantially alter the composition

of what are the systemically important financial firms in Europe.

5. Systemic importance and market prices

This section focuses on the relationship between systemic risk rankings and the CDS

spreads of commercial banks. We measure the systemic risk ranking by the first principal

component CR1 from Section 4 based on all six systemic risk rankings considered. CDS

data are only available for a subset of our financial firms. We focus on banks, as implicit

public sector guarantees are discussed mostly in the context of banks. Our data consist of

CDS spreads for a sub-group of 35 banks from December 2005 to September 2013. The

group of banks consists of the intersection between the banks in our original data set and

the European banks that participated in the EBA 2014 stress test and for which liquid CDS

data is available.

In the first part of this section we use correlation analysis to establish whether there

exists a negative relationship between systemic importance and the level of CDS spreads.

One of the arguments raised in the literature is that systemically important banks might

benefit from an implicit public sector guarantee; see Völz and Wedow (2011) and Kelly

et al. (2011). Conversely, it may also be the case that governments in distress are incapable

of bailing out their systemically important banks, which might lead to a positive relation

between systemic importance and the CDS spread. We compute the linear cross-sectional

correlations between the combined ranking CR1 and the CDS premium level. Table 6 shows

the results.

The cross-sectional correlations reveal that the combined systemic risk ranking covaries
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Table 6: Linear correlation: systemic importance and CDS premia
This table includes selected time series quantiles (quantile 5%(Q05), quantile 25%(Q25), quantile 50%
(Q50), quantile 75%(Q75), quantile 95%(Q95)) of the linear cross-sectional correlations between the
combined ranking and the CDS premia. The cross-sectional correlations are also reported separately for
the sub-sample of banks from stressed versus non-stressed countries.

Cross-sectional
All Stressed Non-stressed

countries countries countries
Q05 −0.15 −0.21 −0.57
Q25 0.05 −0.04 −0.40
Q50 0.15 0.10 −0.17
Q75 0.28 0.26 −0.01
Q95 0.44 0.43 0.14

positively with the CDS spread approximately 80% of the observed months. If we divide

our banks into two groups according to whether the bank is headquartered in a stressed

or non-stressed country, the pattern is markedly different for banks from stressed versus

non-stressed countries. Stressed countries in our classification are Greece, Italy, Ireland,

Portugal, Portugal and Spain, while non-stressed countries are Austria, Denmark, France,

Germany, Netherlands, UK and Sweden.8 Systemic risk rankings and CDS spreads covary

positively most of the time for stressed countries, whereas they covary negatively most of the

time for non-stressed countries. A negative covariation relates to the claim of a systemic risk

discount for financial institutions that profit from implicit government guarantees; compare

the arguments in Kelly et al. (2011). Banks from stressed countries are less likely to benefit

from such guarantees as their sovereign is already stressed, see Breckenfelder and Schwaab

(2015). This may cause a higher, positive correlation between systemic risk ranking and

CDS spread in those countries, quite opposite to the situation for banks under non-stressed

sovereigns.

Table 7 further scrutinizes the above patterns by means of panel regressions. We regress

the CDS spread levels on lagged rankings in the following way. Using the original CR1

values from the previous month, we construct half-samples, terciles, and quartiles using the

natural breaks for the ranks. For example, for terciles we group firms with CR1 in the

8For similar groupings of countries, see e.g. Acharya and Steffen (2015) and Eser and Schwaab (2015).
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ranges T1= [1.00, 0.67], T2= [0.67, 0.33], and T3= [0.33, 0.00], respectively, with T1 being

the most systemically important. For each group, we construct a dummy variable that we

include in the regression. In addition, we try to account for part of the credit risk of each

bank by including lagged log leverage and the lagged log market value of the bank. From a

credit risk perspective, leverage may result in a higher credit risk as it is a prime ingredient

of the distance to default (see e.g. Geanakoplos and Pedersen, 2014; Duffie et al., 2009),

whereas size typically results in lower credit risk due to diversification arguments (see e.g.

Wheelock and Wilson, 2012). We also include a dummy variable for the group of distressed

countries.

Regressions (1)–(3) present the results for halves, terciles, and quartiles, respectively. We

treat the least systemically important group as our benchmark in each case. For all three

regressions, we note that the most systemically important firms (H1, T1, Q1) correlate with

higher CDS spread levels. Only if we go to quartiles, the CDS spread level for Q1 is slightly

below that of Q2, but the difference is far from significant. It appears that systematic risk

correlates with a positive rather than a negative CDS premium. This contrasts with the

systemic risk discount for such firms claimed elsewhere in the literature, for other settings.

The Distress dummy is positive, which matches the positive spread for stressed countries.

Note that time dummies are included, such that any trends have been removed and the

results mainly refer to the cross-sectional patterns. Also leverage (LVG) and size (MV)

have their expected positive and negative sign, respectively. In our context, however, these

variables may also correlate with our combined systemic risk ranking, such that the effect

of H1, T1 (and T2), and Q1 (and Q2, Q3) is over and above that of the controls MV and

LVG.

Table 6 was suggestive of a different relation between CDS spreads and systemic risk

rankings for distressed (D) and non-distressed (ND) firms. Regressions (4)–(6) present the

results where we interact the groups with the Distress dummy variable. Interestingly, for

non-distressed countries, the relation between systemic risk and CDS spreads is negative for

all subgroups of systemic risk rankings, although they are not statistically significant. By

contrast, for distressed countries the relation is positive and significant at the 5% or 10%
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level. The premia are highest for the most systemically risky firms. The coefficients for

the other control variables are very stable, with the exception of the Distress dummy. This

dummy picks up the effect of the least systemically risky firms in distressed countries. As

the coefficient is negative, it confirms our earlier results that dominant effect in our sample

is that of a high CDS spread for firms that have a harder time benefiting from implicit

guarantees by their governments.

As the strength of government guarantees varied over the course of our sample period, we

perform a sample split analysis in models (7)–(9) using the quartile groups. We distinguish

the pre-crisis period (7), the period of the financial crisis (8), and the subsequent period

of the sovereign debt crisis (9). This considerably reduces our sample size, such that most

results become insignificant. Still, it is interesting to look at the patterns we obtain from

the data. The most systemically relevant firms from non-distressed countries (ND-Q1 and

ND-Q2) have higher spreads during the financial crisis, but lower spreads cross-sectionally

during the subsequent European sovereign dept crisis. Again, we stress that time effects have

already been accounted for by the month dummies. The negative coefficients are in line with

the argument of implicit government guarantees in a situation where the government appears

solvent. For the stressed countries, we confirm the findings that systemically important firms

had higher CDS spreads in the cross-section during the financial crises than in the pre-crisis

period. However, during the sovereign debt crisis, the cross-sectional difference in spreads

for systemically important banks further increases, in line with a lack of credible government

guarantees for these firms during most of this period.

We conclude that the relation between CDS spreads and systemic risk rankings is subtle

and changes over the course and the nature of a crisis. In line with earlier work, we find

weak signals that systemically risky firms may benefit from implicit government guarantees,

but only to the extent that these guarantees are issued (implicitly) by a credibly solvent

sovereign. If the sovereign itself is under stress, systemically risky firms typically have higher

CDS spread levels compared to their non-systemic counterparts.
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6. Conclusions

We have presented a principal components methodology for the pooling of systemic

risk rankings of financial institutions to obtain a combined ranking that is less affected by

estimation uncertainty and model risk. In an application to 113 E.U. financial sector firms

from 2002-2013 we find that the combined ranking is more stable at the top and is less volatile

than individual input rankings. Hence our pooled rank is potentially suitable for policy

purposes and it can be a guidance to target banking supervision within the ECB. We further

assess the relationship between systemic importance and financial market outcomes, such as

firms’ CDS premia. In particular, we find weak evidence of implicit government guarantees

in cases where the sovereign is strongly solvent. In cases of a distressed government, we find

opposing evidence that systemically risky financial institutions correlate with higher CDS

spread levels.

References

Acharya, V., Steffen, S., 2015. The “greatest” carry trade ever? Understanding eurozone bank risks. Journal
of Financial Economics 115 (2), 215 – 236.

Acharya, V. V., Engle, R., Richardson, M., 2012. Capital shortfall: A new approach to ranking and regulating
systemic risks. The American Economic Review 102(3), 59–64.

Acharya, V. V., Pedersen, L. H., Philippon, T., Richardson, M., 2010. Measuring systemic risk. NYU working
paper.

Adams, Z., Füss, R., Gropp, R. E., 2014. Spillover effects among financial institutions: A state-dependent
sensitivity value-at-risk approach. Journal of Financial and Quantitative Analysis 49(3), 575–598.

Adrian, T., Brunnermeier, M., 2014. CoVaR. Federal Reserve Bank of New York Staff Reports 348.
Aiolfi, M., Capistran, C., Timmermann, A., 2010. Forecast combinations. In: Clements, M., Hendry, D.

(Eds.), Forecast Handbook. Oxford University Press, pp. 175–182.
Bates, J. M., Granger, C. W. J., 1969. The combination of forecasts. Operations Research Quarterly 20,

451–468.
Benoit, S., Colletaz, G., Hurlin, C., Pérignon, C., 2013. A theoretical and empirical comparison of systemic

risk measures. Unpublished working paper.
Benoit, S., Colliard, J.-E., Hurlin, C., Pérignon, C., 2015. Where the risks lie: A survey on systemic risk.

Unpublished working paper.
Billio, M., Getmansky, M., Lo, A. W., Pelizzon, L., 2012. Econometric measures of systemic risk in the

finance and insurance sectors. Journal of Financial Economics 104, 535–559.
Bisias, D., Flood, M. D., Lo, A. W., Valavanis, S., 2012. A survey of systemic risk analytics. Office of

Financial Research working paper 1.
Boissay, F., Collard, F., Smets, F., 2015. Booms and banking crises. Journal of Political Economy, forth-

coming.
Borio, C., 2010. Implementing a macroprudential framework: Blending boldness and realism, Keynote

address for the BIS-HKMA research conference on Financial Stability: Towards a Macroprudential Ap-
proach. Available at www.bis.org. Hong Kong SAR, 5-6 July 2010.

Breckenfelder, J., Schwaab, B., 2015. The bank-sovereign nexus across borders. Unpublished working paper.

27



Brownlees, C. T., Engle, R., 2015. SRisk: A conditional capital shortfall index for systemic risk measurement.
Unpublished working paper.

Brunnermeier, M. K., Sannikov, Y., 2015. A macroeconomic model with a financial sector. American Eco-
nomic Review, forthcoming.

Castro, C., Ferrari, S., 2014. Measuring and testing for the systemically important financial institutions.
Journal of Empirical Finance 25, 1–14.

Danielson, J., James, K. R., Valenzuela, M., Zer, I., 2015. Model risk of risk models. Technical report, LSE
systemic risk centre.

Diebold, F. X., Yilmaz, K., 2014. Trans-atlantic volatility connectedness among financial institutions. Un-
published working paper.

Duffie, D., Eckner, A., Horel, G., Saita, L., 2009. Frailty correlated default. The Journal of Finance 64 (5),
2089–2123.

ECB, 2009. The concept of systemic risk. European Central Bank Financial Stability Review, December
2009.

ECB, 2010. Analytical models and tools for the identification and assessment of systemic risks. European
Central Bank Financial Stability Review, June 2010.

ECB, 2011. Systemic risk methodologies. European Central Bank Financial Stability Review, June 2011.
Engle, R., 2002. Dynamic conditional correlation. Journal of Business and Economic Statistics 20 (3), 339–

350.
Engle, R., 2012. Dynamic conditional beta. Unpublished working paper.
Engle, R., Jondeau, E., Rockinger, M., 2014. Systemic Risk in Europe. Review of Finance (1), 1–46.
Eser, F., Schwaab, B., 2015. Evaluating the impact of unconventional monetary policy measures: Empirical

evidence from the ECB’s Securities Markets Programme. Journal of Financial Economics, forthcoming.
Fostel, A., Geanakoplos, J., 2008. Leverage cycles and the anxious economy. American Economic Review

98(4), 1211–1244.
Freixas, X., Laeven, L., Peydro, J.-L., 2015. Systemic Risk, Crises, and Macroprudential Regulation. MIT

press, Cambridge.
Geanakoplos, J., Pedersen, L. H., 2014. Monitoring leverage. In: Brunnermeier, M. K., Krishnamurthy, A.

(Eds.), Risk Topography: Systemic Risk and Macro Modeling. NBER, pp. 175–182.
Giglio, S., Kelly, B. T., Pruitt, S., 2015. Systemic risk and the macroeconomy: An empirical evaluation.

Journal of Financial Economics, forthcoming.
Hartmann, P., de Bandt, O., Alcalde, J. L. P., 2009. Systemic risk in banking: An update. Oxford Handbook

of Banking, ed. by A. Berger, P. Molyneux and J. Wilson, Oxford University Press.
Hautsch, N., Schaumburg, J., Schienle, M., 2014. Financial network systemic risk contributions. Review of

Finance 18(2), 154.
He, Z., Krishnamurthy, A., 2014. A macroeconomic framework for quantifying systemic risk. Unpublished

working paper.
IMF, 2009. Global financial stability report.

http://www.imf.org/External/Pubs/FT/GFSR/2009/01/index.htm.
Kelly, B. T., Lustig, H., Van Nieuwerburgh, S., 2011. Too-systemic-to-fail: What option markets imply

about sector-wide government guarantees. NBER working paper.
Lawley, D. N., Maxwell, A. E., 1971. Factor Analysis as a Statistical Method. American Elsevier Publishing,

New York.
Lucas, A., Schwaab, B., Zhang, X., 2014. Conditional euro area sovereign default risk. Journal of Business

and Economics Statistics 32 (2), 271–284.
Moreno, M. R., Pena, J. I., 2013. Systemic risk measures: the simpler the better? Journal of Banking and

Finance 37, 18171831.
Stock, J., Watson, M., 2002. Macroeconomic Forecasting Using Diffusion Indexes. Journal of Business and

Economic Statistics 20(2), 147–162.
Völz, M., Wedow, M., 2011. Market discipline and too-big-to-fail in the CDS market: Does banks’ size

reduce market discipline? Journal of Empirical Finance 18(2), 195–210.

28



Wheelock, A. C., Wilson, P. W., 2012. Do large banks have lower costs? New estimates of returns to scale
for U.S. banks. Journal of Money, Credit and Banking 44(1), 171–199.

White, H., Kim, T.-H., Manganelli, S., 2015. VAR for VaR: Measuring tail dependence using multivariate
regression quantiles. Journal of Econometrics 187, 169–188.

Zhou, C., Tarashev, N., 2013. Looking at the tail: price-based measures of systemic importance. BIS Quar-
terly Review, June.

29


