

Detect & Describe: Deep learning of bank stress in the news

Samuel Rönnqvist¹ and Peter Sarlin²

¹ Turku Centre for Computer Science / Åbo Akademi Uni. / Goethe Uni. Frankfurt ² Hanken School of Economics / RiskLab Finland at Arcada

> Systemic Risk Analytics, Helsinki September 24, 2015

Detect & Describe

Financial text as a source of information on risk:

- Descriptive indicators from text
- In this paper, focus on bank distress

Key questions:

- Can we detect distress based on text?
- Can we obtain *descriptions* of events?

Background

Fore-/nowcasting bank distress

- Long term: Accounting data to measure imbalances
- Short term: Market data to indicate volatility/jumps
- Data challenges, e.g.:
 - information content / noise
 - availability
 - immediacy
- Identifying sources of financial risk
 - Accounting data indicate risk categories
 - Market data lacks descriptive information per se

Text as an information source

Alternative: Text data as a source of information on risk

Case: Bank distress (defined by event data)

1. To detect distress:

- ► e.g., news articles as coinciding predictors Articles → Bank distress measure
- 2. To describe distress:
 - ► Extract text descriptions related to detected distress Extracts ← Bank distress measure

Text as an information source

- 1. To detect distress
- 2. To describe distress
- Basis: predictive modeling of events based on text
- Problem: text data is very sparse, relatively few distress events
 How to model?

Deep learning with neural networks:

- Learning abstractions of data, rather than handcrafting them
 - \rightarrow Multiple layers of learning
 - ightarrow Data-driven, flexible
- State-of-the-art performance in computer vision etc.
- Semantic deep learning:
 - Learning semantic abstractions of text (Le & Mikolov, 2014), as features in risk modeling
 - Dimensionality reduction: millions to hundreds

Recap: Artificial Neural Networks

Single-layer network (Logistic regression)

 \blacktriangleright Hidden layer & logistic function \rightarrow a non-parametric model

Deep learning set-up: two-step learning with neural networks
 Step 1: Unsupervised semantic modeling

- In: Large set of news articles (~0.1-1M)
- Out: Semantic vectors (representations of article semantics)
- Step 2: Supervised predictive modeling
 - In: Semantic vectors
 - Out: Distress signal (based on hundreds of events)

Step 1: Learning semantic vectors, through word prediction

Step 1: Learning semantic vectors, through word prediction

Step 2: Learning to predict distress, based on semantic vectors of articles

Experiments

- Data:
 - Text: 6.6M news articles from Reuters, 2007-2014
 - 243 reference events (govt. intervention, state aid, etc.), 2007Q2-2012Q2, involving 101 European banks (Betz et al., 2014)
- 262k articles mention any target bank
 - ► 8.6% of articles coincide with distress of bank
- Tasks:
 - 1. Learn to nowcast bank distress, based on mentioning articles
 - 2. Extract descriptions, based on predictive model

Step 1: 262k articles (210M words) \rightarrow 262k semantic vectors

Experiments: predictive evaluation

- We rather give false alarms than miss events (imbalanced loss function, preference $\mu = 0.9$)
- Usefulness score to evaluate gain of the model
- Relative Usefulness: no gain \rightarrow perfect model (0 \rightarrow 100%)

Experiments: predictive evaluation

Out-of-sample, relative Usefulness 27% (AUC 0.71)

μ	$\hat{U}_{r}(\mu)$	συ	\hat{F}_{eta}	σ_{F}	τ̂Ν	ΓÎΝ	ÊΡ	ŤΡ
0.1	-33.34	2.47	0.070	0.03	18823	2249	0	2
0.2	-14.41	1.08	0.016	0.01	18823	2249	1	2
0.3	-8.094	0.62	0.023	0.01	18819	2242	4	8
0.4	-4.937	0.39	0.036	0.01	18807	2225	16	26
0.5	-3.044	0.25	0.037	0.02	18787	2208	36	43
0.6	-1.781	0.16	0.066	0.02	18694	2142	130	109
0.7	-0.879	0.09	0.114	0.02	18455	2023	368	228
0.8	-0.203	0.04	0.229	0.03	17503	1740	1321	511
0.85	0.147	0.02	0.397	0.05	15462	1331	3362	919
0.9	0.271	0.01	0.713	0.03	10306	577	8517	1673
0.95	0.146	0.01	0.934	0.01	4873	112	13950	2139

Experiments: distress indices

- Distress index: article distress scores aggregated by bank and period
- Overview: European-level average and percentiles of indices

Experiments: descriptions

Key points identifiable through the index

How to describe the events?

► Use the model to score relevance of text excerpts

 $\sum \textit{article score} \times \textit{word score} \times \textit{word frequency}$

Experiments: descriptions

Sep. 2008 "...<u>crisis</u> has kept markets on tenterhooks by forcing European authorities to <u>rescue</u> troubled banks. Belgian-Dutch group Fortis FOR.BR underwent nationalisation on Sunday after emergency..."

- Oct. 2008 "...banks booked <u>losses</u> on the U.S. housing market. On Sunday, the Dutch <u>government</u> agreed a 10 billion euro cash injection to ING to shore..."
- Oct. 2012 "...high. Expectations that Spain will apply for a <u>bailout</u>, prompting the European Central Bank to start buying its bonds, have helped support the euro..."

Conclusions

> We built a semantic model, and predictive model for distress

- The link between text and events (defined by data)
- Provides stress index to detect events of relevance
- Provides text excerpts to *describe* the events
- Future work:
 - Extend coverage of event data
 - Explore alternative deep set-ups for the task
 - Improve method for description extraction

Thank you for your attention.