Interconnectedness as a Source of Uncertainty for Systemic Risk*

Tarik Roukny

Université Libre de Bruxelles F.R.S - FNRS

Currently @ ESRB, Frankfurt

Systemic Risk Analytics Conference RiskLab, ESRB, Bank of Finland

September 24, 2015

*Joint work with Stefano Battiston (UZH) and Joseph Stiglitz (Columbia) 🚽 🔊 🔍

Today

Methodology to compute the Probability of Systemic Default

- o Network context
- o Contracts and holdings
 - External Assets
 - Collateralized Loans

Today

Methodology to compute the Probability of Systemic Default

- o Network context
- o Contracts and holdings
 - External Assets
 - Collateralized Loans
- Capacity of regulator to assess Systemic Risk in an interconnected system
 - o Multiple Equilibria arise due to specific connectivity patterns

イロト 不得下 イヨト イヨト 二日

3/37

- o Uncertainty on
 - Probability of Systemic Default
 - Expected Losses

Since the beginning of Great Recession

Since the beginning of Great Recession

 Regulators warning No satisfactory framework yet to deal with too-big-to-fail institutions and systemic events of distress in the financial system

(Cunliffe, BoE), (Dombret, BuBa), (Haldane, BoE), (Trichet, ECB), (Geithner, Fed), (Yellen, Fed)

Since the beginning of Great Recession

 Regulators warning No satisfactory framework yet to deal with too-big-to-fail institutions and systemic events of distress in the financial system

(Cunliffe, BoE), (Dombret, BuBa), (Haldane, BoE), (Trichet, ECB), (Geithner, Fed), (Yellen, Fed)

- Need to account for the multi-type dependencies:
 - 1. balance sheet interlocks (e.g. credit, repo, derivatives, etc.)
 - 2. indirectly via exposures to common assets

Since the beginning of Great Recession

 Regulators warning No satisfactory framework yet to deal with too-big-to-fail institutions and systemic events of distress in the financial system

(Cunliffe, BoE), (Dombret, BuBa), (Haldane, BoE), (Trichet, ECB), (Geithner, Fed), (Yellen, Fed)

- Need to account for the multi-type dependencies:
 - 1. balance sheet interlocks (e.g. credit, repo, derivatives, etc.)
 - 2. indirectly via exposures to common assets

Challenge

Default Probability of one institution in a networked system.

(Greenwald, 2003), (Stiglitz, 2009), (Gai and Kapadia, 2010), (Cont et al., 2012), (Battiston et al., 2012),

(Gourieroux et al., 2013), (Ota, 2014).

This work

- Contribution of this work
 - 1. Develop methodology to compute the default probabilities **ex-ante**
 - 2. Show conditions for **systemic risk uncertainty** in an interconnected financial systems
 - 3. Quantify the effects of **network structure**, **correlations**, **cyclicality**, **leverage** and **volatility**

This work

- Contribution of this work
 - 1. Develop methodology to compute the default probabilities **ex-ante**
 - 2. Show conditions for **systemic risk uncertainty** in an interconnected financial systems
 - 3. Quantify the effects of **network structure**, **correlations**, **cyclicality**, **leverage** and **volatility**
- Policy Implications

Large Uncertainty on Estimation of Systemic Risk

- 1. Market structure
- 2. Activity supervision and data collection
- 3. Regulator intervention

The Model

- Builds on method à la (Eisenberg and Noe, 2001), (Cifuentes et al., 2005)
- ► Generic Approach (Gai et al., 2011), (Beale et al., 2011), (Arinaminpathy et al, 2012)
- ► Focus on Default Probability (Gourieroux et al., 2013), (Ota, 2014)

The Model

Time 1 Banks allocate assets and liabilities

Time 2 Shocks hit external assets, some banks may default and this affects counterparties

The Model

Time 1 Banks allocate assets and liabilities

Time 2 Shocks hit external assets, some banks may default and this affects counterparties

Balance Sheet

Collateral

- Interbank Market
- External Markets

Interbank Credit Market

13 / 37

Model set-up

External assets at time 2

•
$$a_i^E(2) = a_i^E(1) \sum_k E_{ik} x_k^E(2) = a_i^E(1)(1 + \mu + \sigma u_i)$$

- o μ_i : expected return
- o σ_i : standard deviation
- o u_i : a r.v. with mean 0 and variance 1
- o $p(u_1, ..., u_n)$: joint probability distribution of shocks

Model set-up

External assets at time 2

•
$$a_i^E(2) = a_i^E(1) \sum_k E_{ik} x_k^E(2) = a_i^E(1)(1 + \mu + \sigma u_i)$$

Interbank assets at time 2

• x_j^B : unitary value of j's interbank liability

$$x_j^{\mathcal{B}}(1) = 1 orall j$$
 and $x_j^{\mathcal{B}}(2) = egin{cases} R ext{ if bank j default} \ 1 ext{ else} \end{cases}$

Model set-up

External assets at time 2

•
$$a_i^E(2) = a_i^E(1) \sum_k E_{ik} x_k^E(2) = a_i^E(1)(1 + \mu + \sigma u_i)$$

Interbank assets at time 2

$$\bullet a_i^B(2) = a_i^B(1) \sum_j B_{ij} x_j^B(2)$$

Collateralised assets at time 2 (risk-free assets)

•
$$a_i^C(2) = a_i^C(1) = \sum_j R_{ij} I_{ij}^B$$

o R_{ij} : fraction interbank liability I_{ij}^B secured by the collateral

Default condition

Negative Equity

$$e_i(2) = a_i(2) - \ell_i < 0$$

= $a_i^E(1)(1 + \mu + \sigma u_i) + a_i^B(1) \sum_j B_{ij} x_j^B(2) + a_i^C(1) - \ell_i < 0$

Default condition

Negative Equity

$$e_i(2) = a_i(2) - \ell_i < 0$$

= $a_i^E(1)(1 + \mu + \sigma u_i) + a_i^B(1) \sum_j B_{ij} x_j^B(2) + a_i^C(1) - \ell_i < 0$

Rewrite in relative terms: $e_i(2) < 0$ if $\frac{e_i(2)}{e_i(1)} < 0$

$$\varepsilon_i(1 + \mu + \sigma u_i) + \beta_i \sum_j B_{ij} x_j^{\mathcal{B}}(2) + \gamma_i - \lambda_i < 0$$

where

- o ε leverage over external assets
- o β leverage over (unsecured) interbank assets
- o γ leverage over collateralised assets
- o λ leverage (debt/equity), $\lambda_i = \varepsilon_i + \beta_i + \gamma_i 1$

Default condition

Express default as a function of the external shock

$$u_i < \theta_i \equiv \frac{1}{\varepsilon_i \sigma} (-\varepsilon_i \mu + \beta_i (1 - \sum_j B_{ij} x_j^B(\chi_j) - 1))$$

where:

o χ_j is a default indicator

$$\chi_j = \begin{cases} 1 \text{ if bank } j \text{ default} \\ 0 \text{ else} \end{cases}$$

Extreme cases

- 1. Case no bank defaults $\theta_i = \theta_i^- = -\frac{1}{\varepsilon_i \sigma} (\varepsilon_i \mu + 1)$
- 2. Case all banks default $\theta_i = \theta_i^+ = -\frac{1}{\varepsilon_i \sigma} (\varepsilon_i \mu \beta_i (1-R) + 1)$

Equation System

For a given combination of shocks $u = \{u_1, ..., u_n\}$

$$\forall i \quad \chi_i = \Theta(\theta_i(\chi_1, ..., \chi_n) - u_i),$$

where

o Θ is a Heaviside function (step function)

A solution of the system above is denoted as χ^* (**Equilibrium**)

Default Probability

Individual Default Probability of bank i, Pi

$$orall i \quad {\mathcal P}_i = \int \chi_i^*(u) \, {\mathcal p}(u) \, du$$

Default Probability

Individual Default Probability of bank i, Pi

$$orall i \quad {\mathcal P}_i = \int \chi_i^*(u) \, {\mathcal p}(u) \, du$$

Systemic default probability P^{sys}

$$egin{aligned} \mathcal{P}^{ extsf{sys}} &= \int \chi^{ extsf{sys}}(u) \, p(u) \, du \ &= \int \Pi_i \chi^*_i(u) \, p(u) \, du \ & extsf{(Example)} \end{aligned}$$

with p(u) joint density function of shocks

Simple Example

System of 2 banks lending and borrowing form each other

2-Dimensional State Space

Proposition: Multiple Equilibria

Consider the case of N banks, with: recovery rate $R_i < 1$; interbank leverage $\beta_i > 0$; external leverage ε_i and shock variance σ_i positive and finite; shock mean μ finite.

Multiple equilibria exist if and only if:

- 1. there exists a **cycle** C_k of credit contracts along $k \ge 2$ banks
- 2. for each bank *i* and its borrowing counterparty i + 1 along the cycle C_k , it holds $\hat{\theta}_i(\chi_{i+1} = 0) \neq \hat{\theta}_i(\chi_{i+1} = 1)$

where
$$\hat{ heta}_i = min\{max\{ heta_i, -1\}, 1\}$$

24 / 37

Figure: Example of network structures

<ロ> <同> <同> < 回> < 回> 25 / 37

Corollary

An interbank market where banks only act as **borrowers** or **lenders** always lead to a **unique equilibrium** for the default state.

Corollary

An interbank market where banks only act as **borrowers** or **lenders** always lead to a **unique equilibrium** for the default state. **Note:** Many real world financial networks exhibits many cycles (e.g. core-periphery structures (Craig and von Peter, 2014))

Case Study: Ring Market

Proposition: Uncertainty along one Cycle

$$\Delta P = \Pi_i^n (\frac{\beta_i (1-R_i)}{2\varepsilon_i \sigma_i})$$

- o \uparrow with interbank leverage
- o \downarrow with fraction of collateral
- o \downarrow with external asset leverage
- o \downarrow with variance on ext. shocks
- o \downarrow with length

Discussion

- Mathematically: default state condition lead to multiple solutions
- Economically:
 - We can think they refer to different beliefs in the default of others and assume a prior
 - There is no way ex-ante to select a solution without introducing further assumptions.

Examples:

- 2012 Draghi's statement: "We will do whatever it takes"
- Moral hazard debate

Conclusions

- Investigate effect of network structure on capacity of regulator to assess systemic risk
- New methodology to compute analytically the default probabilities of *n* banks in a network of contracts
- Multiple equilibria arise even with only "mechanistic" properties
- Uncertainty on systemic risk level due to network properties: cycles
- Show the interplay between uncertainty and leverage, volatility, correlations and network properties
- Implications for analysis quality and intervention decisions

Thank You!

Multiple Equilibria imply multiple solutions for P^{sys}

 \rightarrow multiple vectors $\{\chi_1^*, \chi_2^*, .., \chi_n^*\}$

Let us focus on the extreme cases:

Multiple Equilibria imply multiple solutions for P^{sys}

 \rightarrow multiple vectors $\{\chi_1^*, \chi_2^*, .., \chi_n^*\}$

Let us focus on the extreme cases:

o $P^+ = \int \chi^+_{sys}(u) p(u) d(u) \rightarrow \text{Under optimistic scenario}$

Multiple Equilibria imply multiple solutions for P^{sys}

 \rightarrow multiple vectors $\{\chi_1^*, \chi_2^*, .., \chi_n^*\}$

Let us focus on the extreme cases:

- o $P^+ = \int \chi^+_{sys}(u) p(u) d(u) \rightarrow \text{Under optimistic scenario}$
- o $P^- = \int \chi^-_{sys}(u) p(u) d(u) \rightarrow \text{Under pessimistic scenario}$

Multiple Equilibria imply multiple solutions for P^{sys}

 \rightarrow multiple vectors $\{\chi_1^*, \chi_2^*, .., \chi_n^*\}$

Let us focus on the extreme cases:

• $P^+ = \int \chi^+_{sys}(u)p(u)d(u) \rightarrow \text{Under optimistic scenario}$ • $P^- = \int \chi^-_{sys}(u)p(u)d(u) \rightarrow \text{Under pessimistic scenario}$ • $\Delta P = P^+ - P^- \rightarrow \text{Maximum deviation}$

We can now **quantify** the total level of uncertainty in the Probability of Systemic Default: ΔP

Case Study: Ring Market

Proposition: Uncertainty along one Cycle

$$\Delta P = \Pi_i^n (\frac{\beta_i (1-R_i)}{2\varepsilon_i \sigma_i})$$

- o \uparrow with interbank leverage
- o \downarrow with fraction of collateral
- o \downarrow with external asset leverage
- o \downarrow with variance on ext. shocks
- o \downarrow with length

Other Results

- **Comparative statics** between different structures: Ring vs Star
 - $\Delta_{ring} P < \Delta_{star} P$
 - Increase of cycles
- o Effect of correlation on uncertainty: Non-monotonous role
 - Homogenous case: correlation increases uncertainty
 - Heterogenous case: correlation both increases and decreases uncertainty
- o Express in terms of expected losses

$$E_{loss}^{sys} = \int \sum_{i} \omega_{i} (\varepsilon_{i} + \beta_{i} - \gamma_{i} - 1) \chi_{i}^{*}(u) p(u) du$$