Interconnectedness as a Source of Uncertainty for Systemic Risk*

Tarik Roukny

Université Libre de Bruxelles F.R.S - FNRS

Currently @ ESRB, Frankfurt
Systemic Risk Analytics Conference
RiskLab, ESRB, Bank of Finland
September 24, 2015

[^0]
Today

- Methodology to compute the Probability of Systemic Default
- Network context
- Contracts and holdings
- External Assets
- Collateralized Loans

Today

- Methodology to compute the Probability of Systemic Default
- Network context
o Contracts and holdings
- External Assets
- Collateralized Loans
- Capacity of regulator to assess Systemic Risk in an interconnected system
- Multiple Equilibria arise due to specific connectivity patterns
- Uncertainty on
- Probability of Systemic Default
- Expected Losses

Motivation

Since the beginning of Great Recession

Motivation

Since the beginning of Great Recession

- Regulators warning

No satisfactory framework yet to deal with too-big-to-fail institutions and systemic events of distress in the financial system
(Cunliffe, BoE), (Dombret, BuBa), (Haldane, BoE), (Trichet, ECB), (Geithner, Fed), (Yellen, Fed)

Motivation

Since the beginning of Great Recession

- Regulators warning

No satisfactory framework yet to deal with too-big-to-fail institutions and systemic events of distress in the financial system
(Cunliffe, BoE), (Dombret, BuBa), (Haldane, BoE), (Trichet, ECB), (Geithner, Fed), (Yellen, Fed)

- Need to account for the multi-type dependencies:

1. balance sheet interlocks (e.g. credit, repo, derivatives, etc.)
2. indirectly via exposures to common assets

Motivation

Since the beginning of Great Recession

- Regulators warning

No satisfactory framework yet to deal with too-big-to-fail institutions and systemic events of distress in the financial system
(Cunliffe, BoE), (Dombret, BuBa), (Haldane, BoE), (Trichet, ECB), (Geithner, Fed), (Yellen, Fed)

- Need to account for the multi-type dependencies:

1. balance sheet interlocks (e.g. credit, repo, derivatives, etc.)
2. indirectly via exposures to common assets

Challenge

Default Probability of one institution in a networked system.
(Greenwald, 2003), (Stiglitz, 2009), (Gai and Kapadia, 2010), (Cont et al., 2012), (Battiston et al., 2012),
(Gourieroux et al., 2013), (Ota, 2014).

This work

- Contribution of this work

1. Develop methodology to compute the default probabilities ex-ante
2. Show conditions for systemic risk uncertainty in an interconnected financial systems
3. Quantify the effects of network structure, correlations, cyclicality, leverage and volatility

This work

- Contribution of this work

1. Develop methodology to compute the default probabilities ex-ante
2. Show conditions for systemic risk uncertainty in an interconnected financial systems
3. Quantify the effects of network structure, correlations, cyclicality, leverage and volatility

- Policy Implications

Large Uncertainty on Estimation of Systemic Risk

1. Market structure
2. Activity supervision and data collection
3. Regulator intervention

The Model

- Builds on method à la (Eisenberg and Noe, 2001), (Cifuentes et al., 2005)
- Generic Approach (Gai et al., 2011), (Beale et al., 2011), (Arinaminpathy et al, 2012)
- Focus on Default Probability (Gourieroux et al., 2013), (Ota, 2014)

The Model

Time 1 Banks allocate assets and liabilities
Time 2 Shocks hit external assets, some banks may default and this affects counterparties

The Model

Time 1 Banks allocate assets and liabilities
Time 2 Shocks hit external assets, some banks may default and this affects counterparties
Balance Sheet

- Collateral
- Interbank Market
- External Markets

Interbank Credit Market

Model set-up

External assets at time 2

- $a_{i}^{E}(2)=a_{i}^{E}(1) \sum_{k} E_{i k} x_{k}^{E}(2)=a_{i}^{E}(1)\left(1+\mu+\sigma u_{i}\right)$
- μ_{i} : expected return
- σ_{i} : standard deviation
- u_{i} : a r.v. with mean 0 and variance 1
- $p\left(u_{1}, \ldots, u_{n}\right)$: joint probability distribution of shocks

Model set-up

External assets at time 2

- $a_{i}^{E}(2)=a_{i}^{E}(1) \sum_{k} E_{i k} x_{k}^{E}(2)=a_{i}^{E}(1)\left(1+\mu+\sigma u_{i}\right)$

Interbank assets at time 2

- $a_{i}^{B}(2)=a_{i}^{B}(1) \sum_{j} B_{i j} x_{j}^{B}(2)$
- $B_{i j}$: fraction of i 's interbank assets invested at time 1 in the liability of j
- x_{j}^{B} : unitary value of j 's interbank liability

$$
x_{j}^{B}(1)=1 \forall j \quad \text { and } \quad x_{j}^{B}(2)=\left\{\begin{array}{l}
R \text { if bank } j \text { default } \\
1 \text { else }
\end{array}\right.
$$

Model set-up

External assets at time 2

- $a_{i}^{E}(2)=a_{i}^{E}(1) \sum_{k} E_{i k} x_{k}^{E}(2)=a_{i}^{E}(1)\left(1+\mu+\sigma u_{i}\right)$

Interbank assets at time 2

- $a_{i}^{B}(2)=a_{i}^{B}(1) \sum_{j} B_{i j} x_{j}^{B}(2)$

Collateralised assets at time 2 (risk-free assets)

- $a_{i}^{C}(2)=a_{i}^{C}(1)=\sum_{j} R_{i j} l_{i j}^{B}$
- $R_{i j}$: fraction interbank liability $I_{i j}^{B}$ secured by the collateral

Default condition

Negative Equity

$$
\begin{aligned}
e_{i}(2) & =a_{i}(2)-\ell_{i}<0 \\
& =a_{i}^{E}(1)\left(1+\mu+\sigma u_{i}\right)+a_{i}^{B}(1) \sum_{j} B_{i j} x_{j}^{B}(2)+a_{i}^{C}(1)-\ell_{i}<0
\end{aligned}
$$

Default condition

Negative Equity

$$
\begin{aligned}
e_{i}(2) & =a_{i}(2)-\ell_{i}<0 \\
& =a_{i}^{E}(1)\left(1+\mu+\sigma u_{i}\right)+a_{i}^{B}(1) \sum_{j} B_{i j} x_{j}^{B}(2)+a_{i}^{C}(1)-\ell_{i}<0
\end{aligned}
$$

Rewrite in relative terms: $e_{i}(2)<0$ if $\frac{e_{i}(2)}{e_{i}(1)}<0$

$$
\varepsilon_{i}\left(1+\mu+\sigma u_{i}\right)+\beta_{i} \sum_{j} B_{i j} x_{j}^{B}(2)+\gamma_{i}-\lambda_{i}<0
$$

where

- ε leverage over external assets
- β leverage over (unsecured) interbank assets
o γ leverage over collateralised assets
- λ leverage (debt/equity), $\lambda_{i}=\varepsilon_{i}+\beta_{i}+\gamma_{i}-1$

Default condition

Express default as a function of the external shock

$$
u_{i}<\theta_{i} \equiv \frac{1}{\varepsilon_{i} \sigma}\left(-\varepsilon_{i} \mu+\beta_{i}\left(1-\sum_{j} B_{i j} x_{j}^{B}\left(\chi_{j}\right)-1\right)\right)
$$

where:

- χ_{j} is a default indicator

$$
\chi_{j}=\left\{\begin{array}{l}
1 \text { if bank } j \text { default } \\
0 \text { else }
\end{array}\right.
$$

Extreme cases

1. Case no bank defaults $\theta_{i}=\theta_{i}^{-}=-\frac{1}{\varepsilon_{i} \sigma}\left(\varepsilon_{i} \mu+1\right)$
2. Case all banks default $\theta_{i}=\theta_{i}^{+}=-\frac{1}{\varepsilon_{i} \sigma}\left(\varepsilon_{i} \mu-\beta_{i}(1-R)+1\right)$

Equation System

For a given combination of shocks $u=\left\{u_{1}, \ldots, u_{n}\right\}$

$$
\forall i \quad \chi_{i}=\Theta\left(\theta_{i}\left(\chi_{1}, \ldots, \chi_{n}\right)-u_{i}\right)
$$

where

- Θ is a Heaviside function (step function)

A solution of the system above is denoted as χ^{*} (Equilibrium)

Default Probability

Individual Default Probability of bank i, P_{i}

$$
\forall i \quad P_{i}=\int \chi_{i}^{*}(u) p(u) d u
$$

Default Probability

Individual Default Probability of bank i, P_{i}

$$
\forall i \quad P_{i}=\int \chi_{i}^{*}(u) p(u) d u
$$

Systemic default probability $P^{\text {sys }}$

$$
\begin{aligned}
P^{\text {sys }} & =\int \chi^{\text {sys }}(u) p(u) d u \\
& =\int \Pi_{i} \chi_{i}^{*}(u) p(u) d u \quad \text { (Example) }
\end{aligned}
$$

with $p(u)$ joint density function of shocks

Simple Example

System of 2 banks lending and borrowing form each other

2-Dimensional State Space

$\theta_{i}= \begin{cases}\theta_{i}^{-} & \text {when } j \text { does not default } \\ \theta_{i}^{+} & \text {when } j \text { defaults }\end{cases}$

Results: Multiple Equilibria

Proposition: Multiple Equilibria

Consider the case of N banks, with: recovery rate $R_{i}<1$; interbank leverage $\beta_{i}>0$; external leverage ε_{i} and shock variance σ_{i} positive and finite; shock mean μ finite.

Multiple equilibria exist if and only if:

1. there exists a cycle C_{k} of credit contracts along $k \geq 2$ banks
2. for each bank i and its borrowing counterparty $i+1$ along the cycle C_{k}, it holds $\hat{\theta}_{i}\left(\chi_{i+1}=0\right) \neq \hat{\theta}_{i}\left(\chi_{i+1}=1\right)$

$$
\text { where } \hat{\theta}_{i}=\min \left\{\max \left\{\theta_{i},-1\right\}, 1\right\}
$$

Results: Multiple Equilibria

Figure: Example of network structures

Results: Multiple Equilibria

Figure: Example of network structures

Corollary
An interbank market where banks only act as borrowers or lenders always lead to a unique equilibrium for the default state.

Results: Multiple Equilibria

Figure: Example of network structures

Corollary
An interbank market where banks only act as borrowers or lenders always lead to a unique equilibrium for the default state.
Note: Many real world financial networks exhibits many cycles (e.g. core-periphery structures (Craig and von Peter, 2014))

Case Study: Ring Market

Proposition: Uncertainty along one Cycle

$$
\Delta P=\Pi_{i}^{\eta}\left(\frac{\beta_{i}\left(1-R_{i}\right)}{2 \varepsilon_{i} \sigma_{i}}\right)
$$

- \uparrow with interbank leverage
- \downarrow with fraction of collateral
- \downarrow with external asset leverage
- \downarrow with variance on ext. shocks
- \downarrow with length

Discussion

- Mathematically: default state condition lead to multiple solutions
- Economically:
- We can think they refer to different beliefs in the default of others and assume a prior
- There is no way ex-ante to select a solution without introducing further assumptions.

Examples:

- 2012 Draghi's statement: "We will do whatever it takes"
- Moral hazard debate

Conclusions

- Investigate effect of network structure on capacity of regulator to assess systemic risk
- New methodology to compute analytically the default probabilities of n banks in a network of contracts
- Multiple equilibria arise even with only "mechanistic" properties
- Uncertainty on systemic risk level due to network properties: cycles
- Show the interplay between uncertainty and leverage, volatility, correlations and network properties
- Implications for analysis quality and intervention decisions

Thank You!

Uncertainty Probability of Systemic Risk

Multiple Equilibria imply multiple solutions for $P^{\text {sys }}$
\rightarrow multiple vectors $\left\{\chi_{1}^{*}, \chi_{2}^{*}, . ., \chi_{n}^{*}\right\}$

Let us focus on the extreme cases:

Uncertainty Probability of Systemic Risk

Multiple Equilibria imply multiple solutions for $P^{s y s}$

$$
\rightarrow \text { multiple vectors }\left\{\chi_{1}^{*}, \chi_{2}^{*}, . ., \chi_{n}^{*}\right\}
$$

Let us focus on the extreme cases:

- $P^{+}=\int \chi_{\text {sys }}^{+}(u) p(u) d(u) \quad \rightarrow$ Under optimistic scenario

Uncertainty Probability of Systemic Risk

Multiple Equilibria imply multiple solutions for $P^{\text {sys }}$

$$
\rightarrow \text { multiple vectors }\left\{\chi_{1}^{*}, \chi_{2}^{*}, \ldots, \chi_{n}^{*}\right\}
$$

Let us focus on the extreme cases:

- $P^{+}=\int \chi_{s y s}^{+}(u) p(u) d(u) \quad \rightarrow$ Under optimistic scenario
- $P^{-}=\int \chi_{\text {sys }}^{-}(u) p(u) d(u) \quad \rightarrow$ Under pessimistic scenario

Uncertainty Probability of Systemic Risk

Multiple Equilibria imply multiple solutions for $P^{\text {sys }}$
\rightarrow multiple vectors $\left\{\chi_{1}^{*}, \chi_{2}^{*}, . ., \chi_{n}^{*}\right\}$

Let us focus on the extreme cases:

- $P^{+}=\int \chi_{s y s}^{+}(u) p(u) d(u) \quad \rightarrow$ Under optimistic scenario
- $P^{-}=\int \chi_{\text {sys }}^{-}(u) p(u) d(u) \quad \rightarrow$ Under pessimistic scenario
- $\Delta P=P^{+}-P^{-} \quad \rightarrow$ Maximum deviation

We can now quantify the total level of uncertainty in the Probability of Systemic Default: ΔP

Case Study: Ring Market

Proposition: Uncertainty along one Cycle

$$
\Delta P=\Pi_{i}^{\eta}\left(\frac{\beta_{i}\left(1-R_{i}\right)}{2 \varepsilon_{i} \sigma_{i}}\right)
$$

- \uparrow with interbank leverage
- \downarrow with fraction of collateral
- \downarrow with external asset leverage
- \downarrow with variance on ext. shocks
- \downarrow with length

Other Results

o Comparative statics between different structures: Ring vs Star

- $\Delta_{\text {ring }} P<\Delta_{\text {star }} P$
- Increase of cycles
o Effect of correlation on uncertainty: Non-monotonous role
- Homogenous case: correlation increases uncertainty
- Heterogenous case: correlation both increases and decreases uncertainty
- Express in terms of expected losses

$$
E_{\text {loss }}^{\text {sys }}=\int \sum_{i} \omega_{i}\left(\varepsilon_{i}+\beta_{i}-\gamma_{i}-1\right) \chi_{i}^{*}(u) p(u) d u
$$

[^0]: * Joint work with Stefano Battiston (UZH) and Joseph Stiglitz (Columbia)

