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Abstract

This paper proposes a novel framework identifying sovereign systemic risk zones. We first

explore the cross-dynamics of sovereign CDS in terms of time-changing contagion mea-

sures based on copulas. The approach is based on reversible jump MCMC sampling and

the daily estimated dependencies are expressed with Bayesian model-averaging estimates

of Kendall’s τ . These measures are then assembled together with country-specific funda-

mentals through recursive partitioning, thereby producing important leading indicators

and identification of main sovereign systemic risk regimes expressed as regions in CDS

spreads. Using data for Greece, Ireland, Italy, Portugal, Spain, France, Germany over

the period 2008-2013, we identify three main systemic risk zones (safe, risky, high risky)

also assigning specific risk thresholds to the selected leading indicators (unemployment

rate, Debt/GDP, inflation, GDP growth, copula-based CDS dependencies).
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1. Introduction

Sovereign credit default swap spreads (CDS) were gradually narrowing from April to

September 2009 in response to the taxpayer bailout that subsidised the risk. Yet, the

deterioration of bank debts resulted in higher levels of sovereign risk from November

2009, shortly after the election of the new Greek government and the revision that more

than doubled Greek public sector deficit. On April 26, 2010, three days after the Greek

prime minister asked European Union and the International Monetary Fund for financial

help, the Greek 5-yr sovereign CDS spread reached the 700 bps and its trading status

changed to up front1, as the protection buyer had to pay a portion of the notional amount

insured besides the coupon, implying that the sellers of default protection are demanding

a deposit at the inception of the trade to cover the country’s deteriorating credit risk.

The CDS spread of Italy, Spain, Portugal and Ireland behaved similarly to that of Greece.

On August 2010, when the risk of Irish debt was very high, there was also a rising trend

in the CDS spread of Greece, Italy, Spain and Portugal. At the end of 2011 and the

start of 2012, the CDS spreads of GIIPS soared, with the Greek CDS spread reaching

sky high levels before Greece’s restructuring in March 2012.

During that period, academics, bankers, regulators and policymakers considered sys-

temic sovereign risk as a novel risk entity. It is now broadly believed that what previously

appeared as a homogeneous and safe macro area in terms of sovereign risks, seems in

fact to generate regime shifts in credit spreads, with large changes in the eco-financial

systems and severe impacts on economies.

1According to O’ Kane (2008) the trading status of CDS changes then reaching 1000 bps. In the

case of the Greek CDS various trading desks changed its status at the 700 bps
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Detecting sovereign systemic risk zones is of fundamental financial importance from a

public policy perspective. The early detection and causal identification of such phenom-

ena may provide valuable early warning signals to countries moving towards dangerous

risk paths. Moreover, it is of primary interest to provide effective risk mapping in which

country-specific fundamentals are united with contagion-based measures, thereby assem-

bling a series of leading indicators that could signal impending sovereign systemic risk

abnormalities.

The purpose of our study is to identify these regime shifts and provide a sovereign

risk stratification that can be identified by country fundamentals and sovereign conta-

gion measures. We explore the relationship between systemic sovereign credit risk for

Greece, Ireland, Italy, Portugal and Spain (hereafter GIIPS), France and Germany. We

use daily quotes of the 5-yr sovereign CDS spreads and leading macroeconomic country-

specific indicators. Additionally we use US sovereign credit risk to examine its impact,

as the recent literature indicates the US financial channel as a global source of risk

(Longstaff et al. (2011), Augustin and Tedongap (2014)). We complement the literature

on sovereign systemic risk through the following modelling scenario: firstly, we explore

the cross-dynamics of sovereign CDS spreads in terms of time-changing contagion mea-

sures based on copulas. We then assemble these measures together with country-specific

fundamentals producing important leading indicators and leading to identification of the

main sovereign systemic risk regimes expressed as regions in CDS spreads.

The novelty of our perspective is that we examine whether contagion, expressed as a

dependence measure via Kendall’s τ , after controlling with specific fundamentals, affects

CDS spreads. Such an approach, using a proxy of dependence as a predictor, has never

been investigated in the financial literature.
3



A key aspect of our analysis is that we employ nonparametric statistical modelling

tools with inferential procedures based on ensemble learning. Nonparametric modelling is

needed when highly complex stochastic systems are analysed, as parametric models fail to

deal adequately with the high dimensional nonlinearities presented in the data. Moreover,

our statistical inferences are based on ensemble learning, expressed via either Bayesian

model averaging or bootstrap aggregating (bagging). We therefore adopt this modern,

popular methodology to strengthen inferences by combining a number of statistical mod-

els, rather than just one. We measure the contagion between CDS spreads by employing

a rich Bayesian model averaging strategy in which various copula specifications that are

allowed to change in time produce a nonlinear dependency measurement expressed as

a posterior mean of Kendall’s τ . The time changing process of copula specifications is

based on thresholds which have unknown locations and a-priori unknown numbers. The

resulting measures are therefore highly nonlinear, as they are produced as averages across

models with different copulas, a different number of thresholds and different threshold

locations. Inference is achieved through a population-based, reversible-jump MCMC

algorithm. In a second stage, we employ regression trees to detect the most important

leading indicators for each country and identify the main sovereign systemic risk regimes.

The procedure approximates the sovereign risk dynamics as a union of piecewise linear

functions, where observations are grouped through multidimensional data splits. Infer-

ence is based on random forests, a bootstrap aggregating ensemble meta-algorithm which

has turned out to be a very valuable inference method in regression trees literature when

the size of the tree is large.

The statistical analysis provides evidence for three systemic risk zones.The safe zone

is characterised by a low unemployment rate and moderate Debt/GDP ratio, the risky
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zone has a high unemployment rate or high Debt/GDP ratio, and the high risky zone

is characterised by a high unemployment rate, high Debt/GDP ratio and significant

sovereign dependency. The novelty of these findings is that for each leading indicator

we provide a corresponding risk threshold, also allowing non-linear interactions among

them with potentially relevant policy implications. Indeed, an unemployment rate up to

11.75 per cent together with a Debt/GDP ratio up to 119.6 per cent should maintain

sovereign spreads within a safe zone. On the other hands, when unemployment rate

exceeds 11.75 per cent or Debt/GDP ratio is crossing 119.6 per cent, the sovereign risk

can move towards risky or very high risky zone based on interactions with inflation rate

and copula-based contagion measures. To our knowledge, we are the first to provide a

variable selection among potential predictors for sovereign risk, also assigning specific

risk thresholds for the selected key indicators at which the vulnerability of sovereigns

becomes systemically relevant.

The rest of the paper proceeds as follows. Section 2 describes our data. Section 3

provides detailed information on our statistical procedures, the results and our inference

methodology. We present our results in Section 4 and conclude with a brief discussion

in Section 5.

2. Literature Review

According to the IMF, G-10 Report on Financial Sector Consolidation (2001), the

systemic risk is the: “. . . risk that an event will trigger a loss of confidence measure of

systemic risk”. Embracing this definition, many papers focused on the identification of

large and highly interconnected financial institutions (e.g. Bilio et al. (2012)), and

how the failure of an institution can have a disastrous impact on the entire financial
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system and economic activity (see Adrian and Brunnermeier (2011), Allen and Gale

(2007) and Acharya et al. (2012), among others). Some other papers examine factors

driving the systemic risk both in sovereign and corporate CDS data. Acharya et al.

(2011) concentrate on the financial sector bailouts and, using a broad panel of bank

and sovereign CDS data, show that bank and sovereign credit risk are intimately linked

and conclude the latest banking and sovereign bailouts in Europe suggest that sovereign

default risk has become closer and closer to that of their domestic banks.

Another strand of the literature explored comovements in financial markets. Among

others, Christoffersen et al. (2012) apply a time varying copula model to capture nonlinear

dependence among a large number of stock market indices, Lucas et al. (2014) conceive

spillovers across countries through an increase in conditional default probabilities, Oh

and Patton (2015) investigate systemic risk among a collection of corporate CDS spreads

and Meine et al. (2016) measure the tail beta of a bank’s CDS spread.

Strictly focused on the European sovereign debt crisis, much of the literature ex-

plored co-movements and major drivers in: (a) bond spreads (De Santis (2014), Beetsma

et al. (2013), Favero (2013)); (b) sovereign credit default swaps (Longstaff et al. (2011),

Kalbaskaa and Gatkowski (2012), Aizenman et al. (2013)); (c) spillover effects and feed-

back loop between European debt crisis and the financial sector (Acharya et al. (2010),

Alter and Schuler (2012), DeBruyckerea et al. (2013); (d) sovereign risk contagion among

Eurozone countries (Arezki et al. (2011), Beirne and Fratzscher (2013), Broto and Perez-

Quiros (2015), Caporin et al. (2014), Mink and de Haan (2013) 2).

2Early work on contagion is found by Allen and Gale (2000) who consider contagion arising from

interbank cross holdings of deposits and Forbes and Rigobon (2002) who introduce a new definition of

contagion between international assets after a crisis event.
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Only recently, few studies examined the sovereign systemic risk in the Eurozone.

Reboredo and Ugolini (2015) study systemic risk in European sovereign debt markets

before and after the onset of the Greek debt crisis, using the conditional value-at-risk

measure. Their results provide evidence that while the systemic impact of the Greek

debt crisis is not so severe for non-crisis countries, systemic risk instead increases for

countries in crisis. Ang and Longstaff (2013) explore systemic sovereign credit risk in

the US and Europe using a multifactor affine framework. Their findings indicate strong

heterogeneity among US and European issuers in their sensitivity to systemic risk and

considerable evidence on the key role assumed by financial market variables. Manzo

and Picca (2015) point out that while sovereign systemic risk has a large and persistent

impact on the banking systemic risk, systemic banking risk has a smaller, transitory

impact on systemic sovereign risk.

Finally, another strand of the literature which is more related to our study is con-

cerned with changes in regimes occurring in the CDS dynamics. Caceres et al. (2010)

analyse the reasons underlying the rising spreads during European crisis and argue that

while during the early period of the crisis the main cause was risk aversion, in the later

stages country-specific factors such as public debt and budget deficit played a primary

role in the sharp rise in sovereign spreads. Arghyrou and Kontonikas (2012) find evidence

confirming changes in regime for sovereign debt pricing with a dominant role assumed by

country-specific macro-fundamentals during the crisis. Ait-Sahalia et al. (2014) propose

a model to capture the dependencies among the risk of the different Eurozone countries

and conclude that Eurozone CDS spreads, and hence default intensities, exhibit clusters

in time and in space.
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3. Data

The CDS is a typical example of an unfunded credit derivative that isolates and

transfers credit risk only, hence its value reflects only the credit quality of the reference

entity. The sovereign CDS are insurance-like contracts used to protect investors against

losses on sovereign debt and are typically more liquid than the corresponding sovereign

bonds (Longstaff et al. (2011)). We measure pairwise sovereign risk using 1505 daily

quotes, over the period from 1 January 2008 to 7 October 2013, of the 5-yr sovereign

CDS spreads for GIIPS, France, Germany and US. For the Greek CDS spread only 1414

quotes are available (Table 1). Since the end of 2009 and the start of 2010, the Greek CDS

spread traded at extraordinary levels, even compared to its “alter-ego”, the Portuguese

CDS spread. On April 22, 2010, the Greek CDS spread reached the 700bps and afterwards

the Greek CDS contracts have been converted to up front, as the protection seller had to

pay up front a premium to the protection buyer, as the elevated Greek CDS basis mapped

the sentiment of the market participants that the situation would be unsustainable in

the long term. In the mean time, the volume of dealers quoting Greek CDS was not

sufficient for the key providers of derivative pricing information to determine an official

live price.

The proxies for estimating interconnections between each Euro sovereign CDS and

financial intermediaries are the US Banks 5-yr CDS index, the Euro Other Financials

5-yr CDS index and US Other Financials 5-yr CDS index. Following Augustin et al.

(2014), we consider macroeconomic factors in order to investigate their influence on

sovereign CDS spreads. These are the Debt/GDP ratio, exports/GDP ratio, GDP growth

rate, industrial production, inflation and the unemployment rate, chosen for each of the
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countries in our dataset. Since their frequency is different from that of the CDS data, we

repeat the same value until their new release. The sovereign CDS data are collected from

Markit, the CDS indices from Thomson Reuters Datastream and the macroeconomic data

from Eurostat. A full description of the identification of the indices and macroeconomic

variables can be found in the Online Supplementary Material 3

Table 1 summarizes the descriptive statistics of the daily CDS spreads. We verify

the stylized facts addressed by Meine et al. (2016) and Augustin (2014). There is a

substantial variability of the CDS spreads taking into account the values of the mean,

minimum and maximum and the significant level of volatility. Fig.1 depicts the daily

mean, minimum and maximum of the CDS spreads excluding Greece as the extreme

high values of the Greek CDS spread would shade the properties of the rest of the series.

The CDS spreads remained low at the outset of the crisis showing an upward trend

from September 2008. Furthermore, the CDS spreads exhibit positive skewness (Fig.2)

reflecting change in the risk appetite of the market participants. The high values of the

first-order autocorrelation ACF(1) suggest strong autocorrelation and persistence.

4. Models

4.1. A flexible copula model for dependency

Arakelian and Dellaportas (2012) propose a flexible threshold model estimating bi-

variate copulas that change over time. Their work is based on the assumption that in

different time periods, separated by thresholds, different volatilities and copula formula-

tions can adequately explain the dependency between two financial assets. By assuming

3https://dl.dropboxusercontent.com/u/109367329/ADSV_OnlineSupplementaryMaterial.pdf.
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Table 1: Daily sovereign CDS spreads and CDS indices from 1/1/2008 - 10/7/2013.

Observations Mean StDev Kurtosis Skewness Min Max ACF(1)

France 1505 80.65 57.09 3.05 0.91 6.15 247.31 0.9972

Germany 1505 43.67 26.08 2.89 0.72 5.01 115.67 0.9961

Greece 1419 2651.21 4124.95 7.10 2.08 20.66 25422.81 0.9879

Ireland 1505 327.06 258.31 2.47 0.77 14.69 1263.41 0.9979

Italy 1505 212.53 142.43 2.73 0.78 20.55 590.62 0.9967

Portugal 1505 427.50 393.30 2.78 0.94 17.41 1656.67 0.9983

Spain 1505 221.83 144.83 2.55 0.52 19.70 633.49 0.9967

US 1505 34.76 16.27 3.93 0.49 5.70 100.25 0.9888

Euro Banks 5-yr CDS index 1505 261.37 110.37 2.66 0.53 53.57 552.18 0.9961

Euro Other Financials 5-yr CDS index 1505 290.85 125.40 6.54 1.96 124.73 780.21 0.9956

US Banks 5-yr CDS index 1505 170.15 71.61 6.50 1.70 84.09 512.13 0.9870

US Other Financials 5-yr CDS index 1505 402.63 62.07 5.22 1.54 159.34 1099.70 0.9898

that the number and location of thresholds are unknown and need to be estimated, they

create a model formulation consisting of all models with different volatilities, copula

functions, number of thresholds and threshold locations. A reversible-jump MCMC al-

gorithm is proposed which obtains samples from the posterior density of these models,

and a Bayesian model-averaging estimation approach constructs a posterior density of

Kendall’s τ (Kendall (1938), Joe (1997), Nelsen (1999)), marginalised over all models

and parameters within each model. Arakelian and Dellaportas (2012) propose the use of

the posterior mean of this density as a measure of the dependency of two assets. Their

empirical study explains interesting contagion effects in the Asian and Mexican crises.

We adopt the same model formulation and influential procedure here to provide a

measurement of dependency between Euro sovereign CDS. There is only one difference

from the implementation proposed by Arakelian and Dellaportas (2012), which it will

be now described in detail. When we apply the reversible-jump MCMC algorithm to

some CDS pairs, we notice that the mixing of the Markov chain over the product space

of models and parameters was not satisfactory. We therefore adopt the population-
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based simulation suggested by Jasra et al. (2007). This method generates L parallel-

sampled auxiliary Markov chains with target densities πl ∝ πζl , where π denotes the

posterior density from which we need to obtain samples and ζl are ordered parameters

0 < ζl < ζl−1 < . . . < ζ1 < 1. The densities πl serve as independent Metropolis-

Hasting proposal densities for the main chain with target density π. At each iteration,

one auxiliary density πl is chosen at random and used together with the current sampled

point of l at the usual acceptance ratio of the main chain. In the terminology of Jasra

et al. (2007), this is an exchange move in the population reversible-jump algorithm. We

use the strategy proposed by Jasra et al. (2007), whereby five auxiliary chains are chosen

with values of ζl being updated as a linear function of their past value and the acceptance

rate of the process calculated within the burn-in period. We develop a MATLAB code

to implement the method. The MCMC is computationally intensive as it takes 96 hours

to converge when run on an Intel core i7, 8GB RAM computer. Convergence plots and

specific details of the copulas used and the MCMC algorithm can be found in the Online

Supplementary Material4

4.2. Regression Trees and Random Forest

Regression trees are nonparametric models constructed by recursively partitioning

a data set with the values of its predictor variables with the objective of optimally

predicting a response variable which can be continuous. Regression trees uncover forms

of nonlinearity and identify multiple data regimes from a set of predictor variables. This

approach is applied in the context of financial crisis studies (for example, see Manasse

and Roubini (2009), Savona and Vezzoli (2015)) to study the complex and nonlinear

4https://dl.dropboxusercontent.com/u/109367329/ADSV_OnlineSupplementaryMaterial.pdf.
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nature of financial crises as well as to create an early warning system with the aim of

signalling impending crises when preselected leading economic indicators exceed specific

thresholds.

Mathematically, having data consisting of R inputs and a continuous response, Y , for

each of N observations, the algorithm needs to decide on the splitting variables, the split

points, and the topology (shape) of the tree. To do this, the algorithm partitions the

input space S, namely the set of all possible values of X (X ∈ S), into disjoint regions Tk

with k = 1, 2, · · · ,K, so that S ⊆
⋃K
k=1 Tk. The underlying response-predictor structure

f(X) is represented by the piecewise constant functions gk fitted over the input subspace:

f(X) =

K∑
k=1

gkI(X ∈ Tk). (1)

The sum of squares
∑

(Y − f(X))2 is used as the criterion of minimization (Hastie

et al. (2009)), thus obtaining a mapping of the response variable which is optimal for

the number of final clusters, the best predictors and corresponding thresholds, and the

predictions for the Y variable.

Regression trees are conceived with the aim of improving out-of-sample predictabil-

ity. To achieve this, they are estimated through a cross-validation estimation procedure

whereby the sample is partitioned into subsets, so that the analysis is initially performed

on a single subset (the training sets), whereas the other subsets are retained for sub-

sequent use in confirming and validating the initial analysis (the validation or testing

sets). We adopt an ensemble learning inference procedure to strengthen our inferences:

the random forest. This algorithm is a collection of regression trees using different com-

binations of variables and samples, so that predictions are more stable and less prone to
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estimation errors. Details of the implementation of the random forest algorithm can be

found in Breiman (2001). In summary, the idea is that the random forest algorithm com-

bines regression trees built using bootstrap samples. Instead of splitting each node by

using the best split among all variables, the random forest splits each node by picking out

the best from a subset of predictors randomly chosen at that node, see Breiman (2001),

Breiman (2003). The R software’s package “tree” is used to implement the regression

trees.

5. Results

5.1. Copula-based dependencies

We apply our threshold copula model to compute pairwise correlations in the form

of Kendall’s τ dependencies to daily differences in Euro sovereign CDS and CDS indices.

The Markov chain is initiated with a model with zero breaks and, after a burn-in period

of 106 iterations, a Markov chain output is obtained by collecting the next of 2.5 × 105

samples. Fig.3 reports the model-averaged posterior mean of Kendall’s τ for all pair-

wise dependencies of the seven Euro sovereign CDS. Some of the preliminary findings

are particularly interesting. In all the sub-figures of Fig.3, it is clear that a first jump

in Kendall’s τ occurred in mid-2008 little after the collapse of Bear Stearns, followed

by a structural change in the dependence structures around the end of the same year

with the collapse of Lehman Brothers. The period from 2009 to the first quarter of 2011

was characterised by strong contagion, with Kendall’s τ around 0.6 in median, with low

dispersion across all pairwise dependencies. After that, the overall Euro sovereign con-

tagion seemed to decrease, as shown by the cross-dispersion, which increased until the

end of the period, when the median Kendall’s τ is around 0.4, close to the same values
13



exhibited early in 2008 but with higher cross dispersion. Fig.4 summarises such dy-

namics, depicting the cross-median, the minimum, the maximum and the cross-standard

deviation. Fig.5 shows trends in US sovereign dependencies that are similar to those in

Fig.3, however with very low values starting from the end of 2011. Interconnections with

CDS indices show cyclical tendencies with significant spikes in dependencies with the

banking sector both in Europe and the US (Fig.6) occurring in 2008, 2009 and 2010, and

a rebound in 2012. For the Euro Other Financials 5-yr CDS index (Fig.6), the patterns

are quite similar to sovereign-banking dependencies, while the US Other Financials 5-yr

CDS index shows a downward trend from the peak in 2008 to the end of the period, with

the exception of Greece, which presents very high values from 2011 onwards.

5.2. Sovereign risk and CDS dependencies

We first inspect how the level of each sovereign CDS is affected by each pair of

Kendall’s τ dynamics, in order to understand which of the pairwise dependencies exert

the higher impact on sovereign risk dynamics. To avoid reverse causality among all

pairwise Kendall’s τ to be used as covariates, we exclude those dependencies that involve

countries whose sovereign CDS dynamics are investigated. We run the random forest

algorithm computationally and obtain the relative importance measures attributed to all

single Kendall’s τ by all countries. These measures are provided by the random forest

algorithm as a natural way of ranking the importance of the variables in a regression

tree setup; for details, see Breiman (2001), Breiman (2003). Fig.7 depicts the box plots

of the variable importance measure (VIM), expressed on a scale 1-100, of each pairwise

dependence. The dependencies between Italy and France, Spain and Portugal and Spain

and Italy seem important in all CDS spreads, implying that they are key elements of
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systemic risk in the Eurozone.

When considering the sovereign CDS spreads dynamics as a whole, the results are in

line with the recent findings of Gonzlez-Hermosillo and Johnson (2014), in that Spain and

Italy show considerable co-dependence in explaining each other’s volatility, while Greece

assumes a scant role as primary contagion channel. Our results indeed indicate that

on average, the contribution of Greece only appears when considering co-evolution with

Germany, although its importance is modest when compared with other dependencies

(see Fig.7). As discussed by Gonzlez-Hermosillo and Johnson (2014), the mechanisms

underlying the contagion propagation can follow very complex channels that are not re-

lated only to pure sovereign risk interconnections. Contagion can arise because of adverse

market price dynamics, adverse cycles of worsening liquidity problems and connections

with the financial sector (banks and other financial intermediaries). The challenging issue

separating all these central factors and then understanding all possible risk patterns and

corresponding triggers. This is exactly the theme of the next section, which is devoted

to detecting systemic sovereign risk zones, shedding light on their deep-rooted causes,

dynamics and risk signals.

5.3. Risk mapping

It is of particular interest to look over all the data simultaneously in a panel-data re-

gression tree approach. Our response variable is all the European sovereign CDS spreads

stacked together on a 10444×1 dimensions response, variable Y, and all Kendall’s τ esti-

mates are used as covariates, taking care again to avoid reverse causality. The dimension

of the predictor matrix is 10444 × 21. We therefore stratify the systemic sovereign risk

using country-specific fundamentals and contagion-based measures and attributed the
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time-varying importance to all variables, thereby ranking all indicators over time. The

final regression tree, which we assemble using the entire panel data, allows a clear un-

derstanding of the different risk regimes which are endogenously detected by the same

algorithm. Note that no a-priori knowledge about the timing of the shifts is assumed.

The concept of regime and connected changes is used here as a spatio-temporal risk

stratification, leading to a number of final risk zones that include important insights in

terms of their time-varying composition and the values assumed by the leading variables

selected by the algorithm. To give an overview of the distributions taken on by all vari-

ables within each final node and not only of those selected by the regression tree, we

hierarchically cluster the standardised values assigned to each variable within each final

node and arrange them in ascending form, based on their ranking obtained through their

arithmetic mean; see Fig.8.

Next, the analysis involves regression trees and random forest by using the level of the

daily CDS for all seven Euro countries as dependent variables and the contagion-based

measures and country-specific fundamentals selected based on the more relevant aca-

demic studies on this subject as covariates; see Section 1. Specifically, the set of possible

leading indicators contains fourteen variables distinguishing between contagion-based

and fundamental-based measures, as follows. The contagion-based measures, namely

nonparametric daily pairwise dependencies are computed through Kendall’s τ for each

of the seven sovereign CDS: the Kendall’s τ between France and Germany (τFr,Ger)

representing the strength and the direction of association that exists between core coun-

tries; the Kendall’s τ between all the pairs of GIIPS (τGIIPS), capturing the strength

and direction of association between the peripheral countries; the Kendall’s τ between

a single and the rest of the group of European countries (τEuroSvgn,EuroSvgn) represent-
16



ing a synthesis of the European dependencies from the perspective of a single country;

the Kendall’s τ between a single sovereign CDS and the Euro Banks 5-yr CDS index

(τsvgn,EUBanks) assessing the sovereign and European banking system loop dynamics;

the Kendall’s τ between a single sovereign CDS and the Euro Other Financials 5-yr

CDS index (τsvgn,EUOther), the Kendall’s τ between a single sovereign CDS and the

sovereign US 5-yr CDS (τsvgn,US) assessing the connections with the US sovereign risk

dynamics; the Kendall’s τ between a single sovereign CDS and the US Banks 5-yr CDS

index (τsvgn,USBanks) assessing the sovereign-US banking system loop dynamics; the

Kendall’s τ between a single sovereign CDS and the US Other Financials 5-yr CDS

index (τsvgn,USOther). The country-specific fundamentals are the Debt/GDP ratio, ex-

ports/GDP ratio, GDP growth, industrial production, inflation and the unemployment

rate.

5.3.1. Inside the risk zones

Fig.8 shows the resulting regression tree computed using the overall panel data as

a whole. The final model is based on eight variables out of fourteen potential lead-

ing indicators (eight contagion-based variables and six country-specific fundamentals):

the Kendall’s τ between the single sovereign CDS and GIIPS’s CDS (τsvgn,GIIPS); the

Kendall’s τ between the single sovereign CDS and the rest of the Euro sovereign CDS

(τsvgn,EuroSvgn); the Kendall’s τ between the single sovereign CDS and the Euro Other

Financials 5-yr CDS index (τsvgn,EUOthFin); the Kendall’s τ between the single sovereign

CDS and the sovereign US 5-yr CDS (τsvgn,US); the Debt/GDP ratio, GDP growth, in-

flation and, the unemployment rate.

Hence, the overall sovereign systemic risk in the Eurozone can be stratified using four
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contagion-based variables and four country-specific fundamentals. There are seventeen

final nodes, although the corresponding mean values of the expected CDS spreads allow

us to make some grouping based on specific risk levels, from low to very high, as explained

below. We inspect each of the seventeen risk regimes from a number of perspectives, such

as in terms of the expected CDS spread, the threshold values computed by the algorithms

and the time-varying country composition of each node, looking primarily at the values

assumed both by leading covariates and those that are potentially informative, to come

up with a complete “genetic” mapping of each risk zone. With the objective of inspecting

the anatomy of each final node, we follow a visual mining philosophy thereby reducing

data interpretation complexity through visualization. Specifically, we refer to heatmaps,

commonly used to emphasize data that are above or below a threshold as “hot” or “cold”

colors, respectively. The heatmaps are widely used in biology for gene representation

which is similar to our aim in representing the inner (say, genetic) mapping of final nodes

in terms of how the selected predictors of sovereign risk are expressed, moving from low

values (cold colors) to high values (hot colors). Predictor values are standardized to avoid

different scale orders, and depicted by a rectangular tiling of different colors within the

data matrix. In our analysis, low values (cold colors) are in blue, high values (hot colors)

are in red, while values around the mean (warm colors) are in yellow. Heatmaps also

compute two hierarchical cluster analyses: one is being implemented on the contagion-

based variables and country-specific fundamentals and the other one on the observations

(more precisely, on the countries in correspondence to different years), thereby realizing

two dendrograms appended on the x- and y-axes, respectively (Ling (1973)). In doing

this, the columns and the rows of the data matrix are permuted based on column and row

means. In this way, similar values are placed near each other according to the clustering
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algorithm used in the analysis (Sneath (1957)).

Based on this thorough analysis, we develop a comprehensive sovereign systemic risk

regimes mapping. There is a simple way of reading the risk paths shown in the regression

tree: by starting from the top node (in our case τGIIPS) and using the corresponding

splitting rule (≤ or >), we check if the value of the variable within the node agrees with

the splitting rule: if “yes”, the move is to the left, otherwise, it is to the right. Once the

next node is reached, based on a new variable and a new splitting rule, the move is to

the left or to the right. This process leads to the final nodes, where the expected value

of the dependent variable are given.

A notable result we obtain is the discrimination performed by the regression tree

between two main macro-regions through the τGIIPS indicator (the Kendall’s τ with

GIIPS’s CDS),which is placed at the top of the tree with a threshold value of 0.3167.

The two macro-regions detected based upon the value assumed by such indicator are:

(a) a macro area, called Greek Only Area, corresponding to values of the τGIIPS which

is placed at the top of the tree with a threshold value of 0.3167, leading on the right of

the tree towards extremely high risk levels, where the values of expected CDS in each

final node range from 1515 bps to 24706 bps; and (b) a macro area, called Euro Systemic

Sovereign Risk Area corresponding to values of the τGIIPS indicator greater than 0.3167,

leading to different risk zones spanning from low (76 bps) to high risk levels (1217 bps).

5.3.2. The Greek Only Area

(a) High sovereign dependency with moderate financial contagion: Unlike the previous

risk zone, here high Kendall’s τ with all Euro sovereign CDS (τEuroSvgn,EuroSvgn)

greater than 0.5209 moves together with Kendall’s of sovereign CDS with the Euro
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Other Financials 5-yr CDS index (τsvgn,EUOthFin) less than 0.4606, and inflation

rate less than 1.9%: following this risk path, the expected CDS spread is dramat-

ically high and equal to 24706 bps. The expected sovereign risk tends to be less

pervasive when inflation is greater than the selected threshold, and it currently

reaches the level of 7726 bps. Looking at the corresponding heatmaps reported in

Fig.9, we note that for both final nodes the Kendall’s τ with US Banks 5-yr CDS

index is high for both final nodes, in addition to high values for the unemployment

rate and Debt/GDP ratio.

(b) High sovereign dependency with high financial contagion: Unlike the previous risk

zone, here high Kendall’s τ with the Euro sovereign CDS (τEuroSvgn,EuroSvgn)

moves in tandem with high Kendall’s τ of sovereign CDS with the Euro Other

Financials 5-yr CDS index (τsvgn,EUOthFin) and GDP growth with inflation lead

to different sovereign risk values: when GDP growth is higher than 6.85%, the

expected CDS is 14888 bps; instead when the GDP growth is below 6.85%, an

upward moving inflation (more than 2.95%) leads to 2156 bps against 9328 bps,

which is the expected CDS value when inflation is low (and less than 2.95%).

Heatmaps for the three final nodes (see Fig.9) confirm the high financial contagion

by showing high values for dependencies with US and Euro Other Financials 5-yr

CDS index as well as US Banks 5-yr CDS index.

(c) Contained sovereign dependency: in this risk zone is the Kendall’s τ of the Euro

sovereign CDS spread less than 0.5209. The final nodes ultimately depend on

inflation, for which deflation states seem to contain CDS turbulence, as the expected

CDS spread is 1515 bps when inflation is less than -0.25%, whereas having inflation
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that is greater than the selected threshold leads to a slightly higher level of sovereign

risk. The corresponding heatmap highlights high values for unemployment rate and

Debt/GDP ratio.

5.3.3. The Euro systemic sovereign risk area

This macro area includes many risk regimes that together well stratify the Euro

systemic sovereign risk area for all the seven countries over the entire period, but clearly

with the exception of Greece during the period from June 2011 to October 2013. As

discussed above, this macro area is identified by values of the median Kendall’s τ with

GIIPS greater than 0.3167. Next, based on other leading indicators selected by the

regression tree, the splits that follow lead to 10 final nodes that can be grouped into

three main risk zones.

(a) Safe Zone: This regime exhibits low unemployment rate (less than 11.75%) and

moderate public indebtedness relative to GDP (Debt/GDP ratio< 119.6%), and

expected CDS spread is 76 bps. This is the lower value among all the final nodes and

some very interesting insights can be gained by inspecting the time-varying country

composition, which completely changed as the crisis began to unfold. Fig.10 reports

the country composition and the heatmap. The country composition is identified

by observing the CDS values with corresponding country names for each node on

a monthly basis.

For this safe zone regime, we observe that all seven countries are included in

this cluster from January 2008, and only starting from September 2008, when

the Lehman Brothers collapsed, did non-safe countries begin to leave this regime.

The first country moved to other regimes was Spain in September 2008, followed
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by Greece in April 2009, Ireland in May 2009, Portugal in May 2010, and Italy in

September 2010. Starting from 2011, only France and Germany remained in the

safe zone until the end of the period. These findings confirm the “wake-up call”

phenomenon in the Eurozone (Goldstein (1998), Goldstein et al. (2000)), since

markets ignored deteriorating fundamentals during times of non-crisis and became

highly sensitive upon onset of crisis. The novelty of our results is twofold. Firstly,

markets became highly sensitive to Debt/GDP ratio together with unemployment

rate, and secondly, related to the first point, the values signalling an impending

change in regime out of the safe zone are known for such indicators, namely an un-

employment rate greater than 11.75% or a Debt/GDP ratio greater than 119.6%.

In both scenarios, a move towards risky or high-risk zones is expected.

(b) Risky Zone: this risk regime is characterised by a low unemployment rate with high

Debt/GDP ratio or with a high unemployment rate and includes the following sub-

zones: the low unemployment rate with high Debt/GDP ratio scenario and the

high unemployment rate scenario. In the first scenario, inflation enters the risk

stratification process by splitting between low (less than 3.15%) and moderate

(greater than 3.15%) inflation, leading to an expected CDS spread of 219 bps and

445 bps respectively. The time-varying country compositions (Fig.12) of the two

final nodes and the heatmaps (Fig.13) highlight some further interesting differences

in more depth.

The first node, showing an expected CDS value of 219 bps, includes Greece from

March 2009 to March 2010, and Italy from September 2010 to September 2011

(excluding January and February 2011) and October 2012 to January 2013. The
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corresponding heatmap shows low values for exports/GDP ratio with high values for

contagion-based measures, specifically the Kendall’s τ with France and Germany

and with GIIPS. The second node, showing an expected CDS value of 445 bps,

again includes Greece, from April to May 2010, and Italy, from September 2011 to

October 2012. Looking at the corresponding heatmaps, we note high values for the

Kendall’s τ with France and Germany on the one hand, and on the other, low values

for Kendall’s τ with of the Euro sovereign CDS with US Other Financials 5-yr CDS

index (τEuroSvgn,USOthFin). In other words, it seems that the form of contagion

that really matters concerns dependency with the core countries of the Eurozone -

France and Germany - together with high Debt/GDP ratio and moderate inflation.

If we consider these findings together, it is of particular interest that the first effects

on the re-pricing of sovereign risk in Greece, occurring at the end of 2009 and

continuing with the spike of the CDS from April to May 2010 when Greece applied

for financial support, were the same in terms of their underlying contagion-based

and fundamental-based triggers as those for Italy from September 2010 to January

2013. The second scenario includes three final nodes which modulate between

low (less than 66.45%) and moderate (between 66.45% and 93.65%) Debt/GDP

ratio, and also point to high Debt/GDP ratio with low dependency with other

Eurozone sovereign risks dynamics. In the first sub-scenario, the corresponding

heatmaps display for both nodes (with expected CDS spread 160 bps and 370 bps,

respectively) high values for Euro sovereign contagion (Kendall’s τ with GIIPS

and France and Germany) and Euro banking contagion (Kendall’s τ of sovereign

CDS with the Euro Banks 5-yr CDS index, τsvgn,EUBanks). By observing the

country composition over time, we note that Spain and Ireland were in both nodes,
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while Portugal was in the final node only, with moderate Debt/GDP ratio. In

the second sub-scenario, corresponding to the final node with 285 bps as expected

sovereign risk level, the heatmap displays low values for US financial contagion

and industrial production, thereby mixing contagion-based and fundamental-based

indicators. This was the case for Portugal and Italy over the November 2012-

October 2013 period (see Fig.12) which saw high values for Debt/GDP ratio and

unemployment rate moving with low contagion. This explains why the sovereign

risk was slightly lower than it was for Ireland, Spain, and Portugal, clustered within

the node with 370 bps as expected CDS spread: in such a case, moderate public

indebtedness was associated with significant sovereign and banking contagion.

(c) High Risk Zone: the main features of this very dangerous zone (see Fig.14), which

leads towards very high sovereign risk levels, are high unemployment rate (greater

than 11.75%), together with high Debt/GDP ratio (greater than 93.65%) and signif-

icant sovereign contagion (Kendall’s τ of Euro sovereign CDS greater than 0.4872).

Taken together, these indicators with corresponding red flags signal extreme risk

sensitivity, which is reflected into expected CDS spreads spanning from 575 bps to

1217 bps covering four final nodes. We identified the following two sub-zones based

on such a final risk partition:

(1) The GIIPS contagion scenario: In this scenario the median Kendall’s τ

between GIIPS is greater than 0.4924 and leads towards two final nodes. The

first denotes high dependency with Euro Other Financials 5-yr CDS index and

low GDP growth; see Fig.15. Discontinuously, Greece (May-June 2010), Portugal
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(January-May 20115 and September-October 2012), Spain (November 2011-Octo-

ber 2012) populated this node which exhibit 575 bps as expected risk level. The

second node which denotes higher risk, and specifically 842 bps, is similar to the

previous one but differs because of its low dependency with Euro Other Financials

5-yr CDS index (see Fig.15). This was the case for Greece (from July 2010 to

March 2011), Ireland (from April 20116 to October 2011), and Portugal (from May

to June 2011), as depicted in Fig.14 showing the country composition over time.

(2) The low US-based sovereign dependency : Here, the two final nodes show signifi-

cant risk level shift, since the first exhibits 717 bps and the second 1217 bps. While

both nodes are characterised by extremely low (first node) or low (second node)

Kendall’s τ towards the sovereign US 5-yr CDS spread dynamics, looking at the

corresponding heatmaps (Fig.15), we observe that what probably reflects higher

risk is the Kendall’s τ of sovereign CDS with the US Other Financial 5-yr CDS

index (τsvgn,USOthFin). Indeed, the second node includes high values for Kendall’s

τ of sovereign CDS with the with US Other Financials 5-yr CDS index, in par-

ticular for some parts of the final partition (as it is discussed below corresponding

to Greece), while the first node shows low values for this indicator. In fact, this

different dependency towards US Other Financials 5-yr CDS index dynamics arises

when observing the country composition of the two final nodes with corresponding

time series of such a variable. Portugal and Ireland are placed within the node with

expected CDS spread at 717 bps, from June to October 2012. During this period

both countries exhibited extremely low values of Kendall’s τ of sovereign CDS with

5Portugal applied for financial support in April 2011.
6Ireland is already in financial support program since November 2010.
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the US Other Financials 5-yr CDS index (τsvgn,USOthFin) around 0.03. On the

other hand, Greece and Portugal are within the node with 1217 bps as expected

CDS spread for the period from March 2011 to June 2012 (Greece: March-June

2011; Portugal: July 2011-June 2012). During this period, the values of Kendall’s

τ of sovereign CDS with the US Other Financials 5-yr CDS index (τsvgn,USOthFin)

were on average around 0.16 with a big difference between Greece, that shown an

average value of 0.46, and Portugal that shown an average of 0.09.

5.3.4. Risk Indicators and their Importance

The risk stratification performed by means of the regression trees analysis give us

the indicators with their thresholds computed over the entire period of January 2008-

October 2013, throughout which the different risk zones are identified. To get a more

clear understanding of the importance assumed by all the fourteen indicators, we run

the random forest algorithm on a monthly basis and compute the VIM for each variable,

thereby obtaining a distribution of the corresponding scores, as we report in Fig.16

and 17. In this way, we better explore the role assumed by all variables in terms of

their impact on systemic sovereign risk dynamics and examine how contagion-based and

country-specific indicators exerted different impacts over time.

Debt/GDP, inflation and GDP growth rate have the highest median among the

country-specific fundamentals, although inflation demonstrates great variability in terms

of upper-lower quartile range as we also observe with their time series, which presents

a substantial drop during the sub-period from June 2011 to March 2012. Unemploy-

ment rate seems to be the less influential indicator both in terms of median, and upper-

lower quartiles, which are lower than other fundamentals looking at the box plot and
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the relative median value. However, the corresponding time series further highlights

the behaviour of the importance of the variable over time, since in November 2009,

November-December 2010, and from September 2012 until the end of the period, the

indicator appears to be an extremely important variable, presenting near maximum val-

ues. This finding also details the results of the final regression tree, in which the variable

assumed great importance in detecting some of the main systemic sovereign risk zones.

Indeed, the VIM analysis provides evidence of the fact that the unemployment rate is

only relevant in specific time periods. With this analysis, we are able to explain the

complex and nonlinear nature of the systemic sovereign risk, together with Debt/GDP,

inflation and sovereign contagion dependencies. The ranking of the contagion-based indi-

cators highlights the great importance assumed by US Other Financials 5-yr CDS index

(τsvgn,USOther) and Euro Other Financials 5-yr CDS index (τsvgn,EUOther), while Euro

Banks 5-yr CDS index (τsvgn,EUBanks) and US Banks 5-yr CDS index (τsvgn,EUBanks)

dependency appear to have a low impact on systemic sovereign risk dynamics. However,

the box plot for Euro Banks 5-yr CDS index dependency highlights some outliers posi-

tioned at the top of the scale, thus demonstrating great impact in some specific periods.

This was clearly the case from March to May 2008 (collapse of Bear Stearns) when the

variable assumed the highest VIM value, and from December 2011 to May 2012 (the

ECB suspended use of Greek bonds as collateral in February 2012, and Greece defaulted

in March 2012), with values around and equal to the maximum (see Fig.17). Sovereign

dependency shows increasing importance over time for GIIPS and core countries (France

and Germany) as well as for the US, as we can see in the corresponding time series,

which indicates very high VIM values starting from 2010, namely when the Euro debt

crisis erupted with Greek CDS spikes, followed by those of other GIIPS countries. To
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examine the importance assumed by the variables clustered according to contagion and

macro fundamental types, we extract the first principal component (pc) from the VIM of

the first subgroup (pc-contagion) of the eight contagion-based variables, τFr,Ger, τGIIPS ,

τEuroSvgn,EuroSvgn, τsvgn,EUBanks, τsvgn,EUOther, τsvgn,US , τsvgn,USBanks, τsvgn,USOther,

and from the VIM of the second subgroup (pc-macro) of the six country-specific macro

fundamentals, Debt/GDP, exports/GDP ratio, GDP growth, industrial production, in-

flation, unemployment rate. The two principal components are reported in Fig.18 and

show interesting patterns over time. Specifically, we observe that contagion-based vari-

ables, summarized by pc-contagion, assumed an increasing importance starting from the

third quarter of 2008 (the Lehman Brothers collapse) until the first quarter of 2011.

In such a period, fundamental-based variables, summarized by pc-macro, assumed

an opposite tendency, with a drop in importance during 2008 (around the collapse of

Bears Stearns) with moderate importance throughout the end of 2009. Afterwards,

and specifically starting from 2010, importance grew progressively with a peak at the

end of 2011, before next showing a large drop in the second quarter of 2012, but quickly

returned to high values, moving in tandem with contagion-based variables until the end of

the year. After that, both importance metrics showed a downtrend towards their median

at the end of the period. These results therefore confirm a time-varying importance

assumed by fundamentals, which became relevant with the Greek crisis and contagion-

based factors: (1) which assumed a key importance with the Lehman Brothers collapse,

(2) that achieved new emphasis with the Euro debt crisis erupted in 2010, (3) that

exhibited a temporary setback during 2011, but, (4) that became relevant again with

the same impact of fundamental variables starting from 2012 and and (5) finally flexing

towards a median reverting level at the end of the period together with fundamental-based
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variables.

6. Conclusions

Since the start of the financial crisis of 2008 and thereafter in the European debt

crisis, the sovereign credit default swaps (CDS) have played an important role as they

have acted as measures of sovereign default risk by the participants of the financial

markets. The variability of CDS spreads among countries and the tendency of some of

them to move together, raised fears of contagion and questions as to the existence of

systemic risk among them.

We propose a novel framework identifying sovereign systemic risk zones. In a first

step, we explore the cross-dynamics of sovereign CDS in terms of time-changing conta-

gion measures based on copulas. In a second step, these measures are assembled together

with country-specific fundamentals, thereby identifying the leading indicators with cor-

responding red flags, which are valuable in stratifying sovereign systemic risk in different

risk regimes. Using data on Greek, Irish, Italian, Portuguese, Spanish, French and Ger-

man sovereign CDS over the period 2008-2013, our empirical analysis provided important

findings on the origin and dynamics of sovereign systemic risk.

First of all, we find that Greece is a “world apart” from July 2011 to the end of the

period, when the country started showing very low dependencies with other peripheral

Euro countries with very high levels of CDS spreads mapped onto extremely high values

for unemployment rate and Debt/GDP ratio. Secondly, we identify three main systemic

risk zones based on contagion and country-specific fundamentals: (1) a safe zone, charac-

terised by low unemployment rate (less than 11.75%) and moderate public indebtedness

relative to GDP (Debt/GDP ratio < 119.6%), (2) a risky zone with high unemployment
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rate, or with low unemployment rate coupled with high Debt/GDP ratio and (3) a high

risk zone, where high unemployment rate (greater than 11.75%) moves together with high

Debt/GDP ratio (greater than 93.65%) and significant sovereign dependency. Thirdly,

we provide evidence on time-varying importance of fundamentals, which captured atten-

tion during the Greek crisis. Instead, contagion-based factors became critical close to

the collapse of Lehman Brothers, accomplishing another accentuation due to the Euro

debt crisis which erupted in 2010, and finally demonstrating the same importance as the

fundamental-based variables.

These results have important policy implications for early detection and the causal

identification of sovereign systemic risk. Indeed, providing valuable early warning signals

may be extremely valuable for taking the right measures of prevention and intervention

for countries that may move towards dangerous risk paths.
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pairwise dependence. The VIM are obtained by running the random forest over the single Euro
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Fig. 9: Greek Only Area Heatmaps. The variables in the heatmaps are the following: 1: τGIIPS , 2: τFr,Ger, 3: inflation, 4: industrial pro-

duction, 5: τEuroSvgn,EuroSvgn, 6: exports/GDP, 7: τsvgn,EUBanks, 8: τsvgn,USBanks, 9: GDP growth, 10: τsvgn,US , 11: τsvgn,EUOthFin, 12:
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Fig. 11: Safe Zone Heatmap. The variables in the heatmap are the following: 1: τGIIPS , 2: τFr,Ger, 3: inflation, 4: industrial produc-

tion, 5: τEuroSvgn,EuroSvgn, 6: exports/GDP, 7: τsvgn,EUBanks, 8: τsvgn,USBanks, 9: GDP growth, 10: τsvgn,US , 11: τsvgn,EUOthFin, 12:
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around the mean (warm colors) are in yellow.
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Fig. 16: Time-varying importance of risk indicators: Single time series of all variable importance measure

(VIM) obtained by running the random forest over the seven Euro sovereign CDS spreads in monthly fre-

quency, using the fourteen potential leading indicators (eight contagion-based variables and six country-

specific fundamentals) as covariates. Beginning from the top left and moving to the right: Debt/GDP,

Exports/GDP, GDP growth, industrial production, inflation, unemployment rate, τFr,Ger, τGIIPS ,

τEuroSvgn,EuroSvgn, τsvgn,US , τsvgn,EUBanks, τsvgn,USBanks, τsvgn,EUOthFin, τEuroSvgn,USOthFin.
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Fig. 17: Risk indicators and their importance: Box plots of the variable importance measure (VIM)

obtained as described in Fig.16. Beginning from the top left and moving to the right: Debt/GDP,

Exports/GDP, GDP growth, industrial production, inflation, unemployment rate, τFr,Ger, τGIIPS ,

τEuroSvgn,EuroSvgn, τsvgn,US , τsvgn,EUBanks, τsvgn,USBanks, τsvgn,EUOthFin, τEuroSvgn,USOthFin
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Online Supplementary Material for “European Sovereign Systemic Risk Zones”

This appendix complements the paper in a number of ways. Section I gives details

of the data sources used. Section II describes the family of copulas used in our model

framework and Section III analyzes the MCMC technical details. Section IV is a short

guide of the codes used to implement the paper and Section V provides an artificial

example. In the last section, we provide the results from our MCMC model for the pair

of Germany and France.
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I. Data sources and ticker identification

Table A.1: CDS data sources and ticker identification

Country Ticker Reference Entity Source

France FRTR French Republic Markit

Germany DBR Federal Republic of Germany Markit

Greece GREECE Hellenic Republic Markit

Ireland IRELND Ireland Markit

Italy ITALY Republic of Italy Markit

Portugal PORTUG Portuguese Republic Markit

Spain SPAIN Kingdom of Spain Markit

US USGB United States of America Markit

EU BANKS 5Y Index DSEBK5E DS Europe Banks 5 Year Credit Default Swap Index in euro Datastream

EU Other Financial 5Y Index DSEOF5E DS European Union Other Financial 5 Year Credit Default Swap Index in euro Datastream

US BANKS 5Y Index DSNBK5$ DS North America Banks 5 Year Credit Default Swap Index in US dollar Datastream

US Other Financial 5Y Index DSNOF5$ DS North America Other Financial 5 Year Credit Default Swap Index in US dollar Datastream

50



Table A.2: Macroeconomic data source and ticker identification

Mnemonic Series Description Source

prc hicp manr All-items HICP (2005 = 100) - monthly data (annual rate of change) EUROSTAT

sts inpr m Production in industry - monthly data (2010 = 100) EUROSTAT

ei lmhr m harmonised unemployment rate (LFS) - monthly data EUROSTAT

gov 10q ggdebt General government gross debt - quarterly data - % on GDP EUROSTAT

namq gdp c Exports Current prices, Not seasonally adjusted data - Million euro - quarterly data EUROSTAT

namq gdp c GDP current prices, Not seasonally adjusted data - Million euro - quarterly data EUROSTAT

namq gdp k GDP volumes, Not seasonally adjusted and adjusted data by working days - Per-

centage change over previous period - quarterly data

EUROSTAT
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II. Copulas

Assume that the financial series Xt and Yt, t = 1, . . . T, are normally distributed

with zero means and standard deviations σX and σY , and that a bivariate copula func-

tion Ct:[0, 1]2 → [0, 1], is chosen to model the joint distribution function of the random

variables X and Y , H(X,Y ),

H(X,Y ) = P (εXt ≤ x, εYt ≤ y) = Ct(Φ(εXt ),Φ(εYt ); θ), (2)

where εXt = Xt/σX , εYt = Yt/σY and Φ denotes the standard Normal distribution func-

tion. In our analysis we use the following copulas:

1. Frank’s copula: CFθ (u, ν) = −1

θ
ln(1 +

(e−θu − 1)(e−θν − 1)

e−θ − 1
), θ 6= 0

2. Clayton’s copula: CCα (u, ν) = [u−α + ν−α − 1]−1/α, α > 0

3. Gumbel’s copula: CGβ (u, ν) = exp{−[(−lnu)β + (−lnν)β ]1/β}, β ≥ 1

where the transformations θ = logα and θ = log(β − 1) allow the parameters of the

Clayton’s and Gumbel’s copulas to lie in the (−∞,∞) interval. Frank’s copula (Frank

(1979)) was chosen for its nice symmetrical properties, whereas Clayton’s (Clayton, 1978)

and Hougaard - Gumbel’s (Gumbel, 1960, Hougaard, 1986) copulas are somehow com-

plementary, since they exhibit opposite upper and lower tail dependence properties.

We generalize (2) by indexing the copula function C by a parameter θ that lies in

(−∞,∞) (if θ lies in another interval we just perform a simple transformation) and by

introducing disjoint sets Ij , j = 1, . . . , J, so that

Ct(u, v) =

J∑
j=1

Ij(t)Cθj (uj , vj) (3)
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where [0, T ] =
⋃
j Ij , Ij(t) = 1 if t ∈ Ij , and in each interval Ij the parameter of the

copula is θj and the corresponding samples xj and yj . The copula parameters are also

indexed by the interval they belong, indicating that the parameters µX , µY , σX and

σY may be different in each interval Ij . A further generalization of (3) is achieved by

employing a collection of copula functions {Ciθ, i = 1, . . . , `} so that

Ct(u, v) =

J∑
j=1

Ij(t)
∑̀
i=1

wijC
i
θj (uj , vj) (4)

where Ciθj denotes the copula function Ciθ with θ = θj and wij denotes the probability

of having the copula i in the interval Ij , so
∑`
i=1 wij = 1 for all j. Thus, our general

model (4) allows both the functional form of the copula and the parameters to change

within each interval Ij . Note that copula functions model dependence in the tails of

the joint distribution, so small sample sizes are not adequate for gathering tail-behavior

information and we restrict the length of the each interval to be larger than 15 points.

The dependence between the random variables X and Y is calculated using Kendall’s

τ , a common alternative to Pearson’s correlation measure of association. For complete-

ness we present below the Kendall’s τ of the families of copulas used in this paper:

1. Frank’s copula: τF =
1− 4(1−D1(θ))

θ
, τF ∈ (−1, 1) , whereDk(x) is the Debye

function, Dk(x) =
k

xk

∫ x

0

tk

et − 1
dt, k ∈ N.

2. Clayton’s copula: τC =
θ

θ + 2
, τC ∈ [0, 1).

3. Gumbel’s copula: τG = 1− 1

θ
, τG ∈ [0, 1).
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III. MCMC Technical Details

III.a. Prior Elicitation

We place non-informative prior model probabilities f(m) = |M |−1 and Gamma(1,1)

densities for σX and σY and for θ a zero-mean Normal prior with variance given by

(γj−γj−1)|H(θ̂)|−1, where H(θ̂) is the Hessian matrix of the likelihood function evaluated

at θ̂.

III.b. Posterior Distribution

Suppose that we have data y that are considered to have been generated by a model

m, one of the set M of the competing models. Each model specifies a joint distribution of

Y , f(y|m, θm), conditional on the parameter vector θm. A Bayesian model determination

approach requires the specification of the prior model probability of m, f(m), and con-

ditional prior densities f(θm|m) for each m ∈ M . Then the posterior model probability

is given by

f(m|y) =
f(m)f(y|m)∑

m∈M f(m)f(y|m)
,m ∈M (5)

where

f(y|m) =

∫
f(y|m, θm)f(θm|m)dθm

is the marginal probability of model m. By calculating f(m|y), we have all required

information to express our uncertainty about a collection of models M.

III.c. Laplace Approximation

Searching in both model and parameter space is possible via reversible jump algorithm

of Green (1995). To facilitate the search, we integrate out the parameter uncertainty
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within each model by approximating the marginal likelihood byO

f̂(y|m) = (2π)
d/2|Σ̂m|1/2f(y|θ̂m,m)f(θ̂m|m) (6)

where dim(θm) = d, θ̂m is the maximum likelihood estimate and Σ is the inverse of the

Hessian matrix evaluated at θ̂m. In our case θm is a three-dimensional parameter vector

θm = (θ, σX , σY ), so we first appropriately transform each parameter to near-normality

and then maximize the likelihood function. By performing this approximation for every

model m, we are left with the task to sample in the space of (discrete) density function

specified by (5) with f(y|m) replaced by (6).

III.d. MCMC Moves

Assume that the maximum number of thresholds is K. The proposal density q(m
′ |m),

which proposes a new model m
′
, when the current model is m, is constructed as follows.

Assume that model m has k thresholds. Then the possible proposal moves are formed as

• ‘Birth’ : Propose adding a new threshold.

• ‘Death’ : Propose removing one of the k current thresholds if the copula is the same

in both sides of the threshold.

• ‘Move’ : Propose a reallocation of one of the k current thresholds.

• ‘Change’ : Propose a change of a functional form of a copula within two current

thresholds.

Denote by bk,dk,mk and ck the probabilities of ‘Birth’,‘Death’,‘Move’ and ‘Change’ moves

respectively. Then the proposal densities, for the model m with k thresholds, are formed
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as:

q(m
′ |m) =



bk
T − k

, if ‘Birth′

dk
k
, if ‘Death′

mk

k
, if ‘Move′

ck
k
, if ‘Change′

A sensible choice is bk=dk=mk=ck=
1

4
, k = 1, . . . ,K − 1; bK=d0=m0 = 0, b0=c0=

1

2
,

dK=mK=cK=
1

3
. For the ‘Move’ proposal density we chose a discrete uniform, which

takes equidistant values around the current threshold, and we noticed that a length 15

time points, provides a reasonable density spread that achieves a good mixing behavior.

We have noticed that some combinations of the four basic moves offer great flexibility in

our samplers so the algorithm suggests also the following moves:

• ‘Birth-Change’: Propose adding a new threshold and changing the copula function

in one of the two resulting intervals.

• ‘Death-Change’: Propose removing one of the current k thresholds when the copula

functions are different in each side of the threshold and propose one of the two

functions as a candidate for the new interval.

The way we incorporated these extra moves in our sampler is just split all bk and dk

probabilities to half and thus allow equal proposal probabilities for the ‘Birth-Change’

and ‘Death-Change’ moves. The acceptance probability for moving from model m to

model m
′

is given by

α = min{1, f̂(y|m′
)

f̂(y|m)
× R}

where f̂ is the product of all estimated marginal likelihoods in each interval of [0, T ]

calculated via (6), and R is given by
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dk+1

bk
,
bk−1

dk
, 1,1

for ‘Birth’, ‘Death’, ‘Move’ and ‘Change’ moves respectively.

We note here that the Metropolis-Hastings moves above resemble the usual reversible

jump moves of Denison et al. (2002), but our Laplace approximation (6) essentially

removes all the parameter dimension difference between models resulting to a simple

acceptance probability without the usual Jacobian terms.

IV. Matlab Code for MCMC

allclayton.m: Calculates the MLE estimator of the Clayton copula association pa-

rameter and the marginal likelihood of the old and the new model.

allfrank.m: Calculates the MLE estimator of the Frank copula association parameter

and the marginal likelihood of the old and the new model.

allgumbel.m: Calculates the MLE estimator of the Gumbel copula association parame-

ter and the marginal likelihood of the old and the new model.

allnorm.m: Calculates the MLE estimators of the marginal densities volatilities.

bayes birth clay.m: Proposes a new threshold in an interval where the Clayton copula

joins the variables.

bayes birth frank.m: Proposes a new threshold in an interval where the Frank copula

joins the variables.

bayes birth gumbel.m: Proposes a new threshold in an interval where the Gumbel cop-

ula joins the variables.

bayes birth only clay.m: Proposes a threshold in an interval where no other threshold

exists and the Clayton copula joins the variables.
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bayes birth only frank.m: Proposes a threshold in an interval where no other thresh-

old exists and the Frank copula joins the variables.

bayes birth only gumbel.m: Proposes a threshold in an interval where no other thresh-

old exists and the Gumbel copula joins the variables.

bayes change.m: Proposes the change of copula’s functional form in a randomly chosen

interval.

bayes kill clay.m: Proposes to kill a threshold in an interval where the Clayton copula

joins the variables.

bayes kill frank.m: Proposes to kill a threshold in an interval where the Frank copula

joins the variables.

bayes kill gumbel.m: Proposes to kill a threshold in an interval where the Gumbel

copula joins the variables.

bayes kill max clay.m: Proposes to kill the only threshold in an interval where the

Clayton copula joins the variables.

bayes kill max frank.m: Proposes to kill the only threshold in an interval where the

Frank copula joins the variables.

bayes kill max gumbel.m: Proposes to kill the only threshold in an interval where the

Gumbel copula joins the variables.

bayes move clay.m: Proposes to move a threshold which belongs in an interval where

the Clayton copula joins the variables.

bayes move frank.m: Proposes to move a threshold which belongs in an interval where

the Frank copula joins the variables.

bayes move gumbel.m: Proposes to move a threshold which belongs in an interval where

the Gumbel copula joins the variables.
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laplace.m: Proposes a new model by choosing among the MCMC moves.

V. Simulation Study

We simulate an example according to the following features:

Subsample Copula Marginal probabilities of X and Y variables

1-100 Clayton N(µX=0, σX = 0.2), N(µY =0, σY = 1.5)

101-400 Frank N(µX=0,σX = 2), N(µY =0, σY = 3)

401-900 Gumbel N(µX=0, σX = 1), N(µY =0, σY = 1)

901-1400 Clayton N(µX=0, σX = 0.2), N(µY =0, σY = 1.5)

We initiated our Markov chain to a model with zero breaks and after a burn-in period

of 10 × 104 iterations we obtained our Markov chain output by collecting the next of

20× 104 samples. In Fig.A.1 - A.4 we can find the posterior probability of the threshold

number, the model averaged Kendall’s τ, the model averaged volatilities of the marginal

distributions of the variables and the posterior probability of the copula model.

VI. MCMC Results

We present the results of the MCMC algorithm for the pair France - Germany. We

initiated our Markov chain to a model with zero breaks and after a burn-in period of

106 iterations we obtained our Markov chain output by collecting the next of 3 × 105

samples. In Fig.A.5 - A.6 we report the model-averaged posterior mean of Kendall’s τ

for all pairwise dependencies among the seven Euro sovereign CDS. All the others are

available upon request from the authors.
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Fig. A.1: Posterior probability of threshold number, k.
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Fig. A.2: Model averaged Kendall’s tau.
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Fig. A.3: Model averaged volatilities of marginal distributions of X and Y variables.
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Fig. A.4: Posterior probabilities of copula models.
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Fig. A.5: Posterior probability of number of threshold, k, for the pair Germany-France.
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Fig. A.6: Model averaged volatilities of marginal distributions of Germany and France.
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Fig. A.7: Posterior copula probabilities.
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