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Relevant literature

1 Clustering when groups of investors trade in the same stocks,
while only traded by these investors (i.e. homogeneous trading of
groups of investors). Disequilibrium because:

Order deluge due to group behaviour
(Stein (2009); Braun-Munzinger et al. (2016))
Thin supply due to the homogeneity of the investor pool
(Weber and Rosenow (2006))

2 Literature discusses:
overlapping portfolio’s (Anton and Polk (2014))
similarities in performance dynamics (Pojarliev and Levich (2011))
number of owners per stock (Hong and Jiang (2013); Yan (2013))

3 We contribute to the market microstructure literature (Madhavan (2000))
where prices deviate from fundamentals due to:

Liquidity fluctuations (Chordia et al. (2001); Weber and Rosenow (2006); Acharya et al. (2013))
Aggressive or crowded trading in fire sales situations (Coval and Stafford

(2007); Thurner et al. (2012); Aymanns and Farmer (2015))
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What data do we use?

1 Markets in Financial Instruments Directive (MiFID)
Financial firms: banks and investment firms
Agent or Principal

2 January 2009 - April 2015
3 976 equities

Available for full period
Abstracting from short run dynamics and bond heterogeneity

4 Around 50 reporters per month
5 Bloomberg for price time-series
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How do we measure clustering?

We want to compare the observed and the expected value based
on the null model

The null model preserves the degree distribution of both firms
and securities

Market clustering of security s in month t:

ms,t =
Ms,t

〈Ms,t〉∗
−1, (1)

Ms,t is the observed market clustering
〈Ms,t〉∗ is the expected value based on the null model.

The range is [-1,∞〉
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How do we measure clustering?

The market clustering observation is defined as the number of
shared securities, summed over all pairs of investors. For each
pair of firms, we first establish if they both trade in the security. If
this is the case, we count the number of securities which these
two firms are also trading simultaneously.

Ms,t =
nF,t

∑
f

nF,t

∑
f ′> f

(
as f ,tas f ′,t

nS,t

∑
s′ 6=s

as′ f ,tas′ f ′,t

)
. (2)
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How to compute clustering?

Firms

Securities

Trades

Firms

Securities

Trades

4 4 2 0 0 0 1 1 2Mi,t
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How to compute clustering?

Firms

Securities

Trades

3 3 2 1 1 2 2 2 3Security degree ds,t

5 3 5 3 3Firm degree d f ,t

p13,t = 0.74Probabilities ps f ,t

p11,t p12,t p21,t p22,t = 0.13 p11,t p12,t p31,t p32,t = 0.06

Firms

Securities

5.3 5.3 2.8 0.8 0.9 2.8 2.8 2.8 5.3〈Ms,t〉∗

4 4 2 0 0 0 1 1 2Ms,t

-0.24 -0.24 -0.28 -1 -1 -1 -0.64 -0.64 -0.62ms,t (Equation (1))
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Are low and high market clustering different?
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Crowded trades by peers trading similarly cause fat tails

2009 2010 2011 2012 2013 2014
KS MWW KS MWW KS MWW KS MWW KS MWW KS MWW

MAD = = = = = = = = = = + +
Variance + = = + + + = = + + + +

Skewness + = + + + + = = + + + +
Kurtosis + + + + + + + + + + + +

KS = Kolmogorov-Smirnov, MWW = Mann-Whitney-Wilcoxon
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More liquidity in normal times, fatter tails

2009 2010 2011 2012 2013 2014
Outliers neg. 6== == == == == 6==
Outliers pos. 6=+ 6=+ 6=+ == 6=+ 6=+

χ = Chi-square test, MWW = Mann-Whitney-Wilcoxon

2009 2010 2011 2012 2013 2014
Hill index neg. −= == =− == == ==
Hill index pos. −− −− −− == −− −−
KS = Kolmogorov-Smirnov, MWW = Mann-Whitney-Wilcoxon
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Sensitivity tests

Results

hold for wide range of time windows

don’t hold for stocks mainly traded abroad

hold for wider definition of what high vs low means

hold when log returns are normalized by the time-varying volatility
(GARCH)



Introduction Background Data Methodology Results Conclusions References

Sensitivity tests

Results

hold for wide range of time windows

don’t hold for stocks mainly traded abroad

hold for wider definition of what high vs low means

hold when log returns are normalized by the time-varying volatility
(GARCH)



Introduction Background Data Methodology Results Conclusions References

Sensitivity tests

Results

hold for wide range of time windows

don’t hold for stocks mainly traded abroad

hold for wider definition of what high vs low means

hold when log returns are normalized by the time-varying volatility
(GARCH)



Introduction Background Data Methodology Results Conclusions References

Sensitivity tests

Results

hold for wide range of time windows

don’t hold for stocks mainly traded abroad

hold for wider definition of what high vs low means

hold when log returns are normalized by the time-varying volatility
(GARCH)



Introduction Background Data Methodology Results Conclusions References

Conclusions

Crowded trading with peer group trading leads to price instability
(i.e. fat tails)

Seems to mainly affect the positive tail

Depending on the composition of the portfolio of your peers, the
VaR will be under- or overestimate risk

With data on the holdings of participants in the system a adjusted
Value at Risk can be computed
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