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Abstract

We propose a novel observation-driven dynamic finite mixture model for the study

of banking data. The model accommodates time-varying component means and co-

variance matrices, normal and t-distributed mixtures, and economic determinants of

time-varying parameters. Monte Carlo experiments suggest that banks can be classi-

fied reliably into distinct components in a variety of settings. In an empirical study

of 233 European banks between 2008Q1–2015Q2, we demonstrate that past crises had

a differential impact on banks with different business models. In addition, changes in

long-term interest rates predict features of banks’ business models.
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1 Introduction

Banks are highly heterogenous, differing widely in terms of size, complexity, organization,

activities, funding choices, and geographical reach. Understanding this diversity is of key

importance, for example, for the study of risks originating from or acting upon the finan-

cial sector, impact assessments of newly proposed regulations and unconventional monetary

policies, as well as the benchmarking of banks to appropriate peer groups for supervisory

prudential purposes.1 Ideally, the analysis of banks’ business models provides insight into

the overall diversity of business models, as well as the strategies adopted by individual in-

stitutions.

This paper proposes a novel observation-driven dynamic finite mixture model for the anal-

ysis of high-dimensional banking data. We first present a simple baseline dynamic mixture

model for normally distributed data with time-varying component means, and subsequently

consider relevant extensions to t-distributed mixture distributions, time-varying covariance

matrices, and economic predictors of time-varying parameters. We then apply our modeling

framework to a multivariate panel of N = 233 European banks between 2008Q1–2015Q2,

T = 30, considering D = 10 bank-level indicator variables for J groups of similar banks. We

thus track banking sector data through the 2008–2009 global financial crisis, the 2010–2012

euro area sovereign debt crisis, as well as the relatively calmer post-crises period between

2013–2015.

In our dynamic finite mixture model, all time-varying parameters are driven by the score

of the mixture predictive log-likelihood. So-called Generalized Autoregressive Score (GAS)

models were developed in their full generality in Creal, Koopman, and Lucas (2013); see

also Harvey (2013) for a textbook treatment. In this setting, the time-varying parameters

are perfectly predictable one step ahead. This feature makes the model observation-driven

in the terminology of Cox (1981). The likelihood is known in closed-form through a stan-

dard prediction error decomposition, facilitating parameter estimation via likelihood-based

1For example, the assessment of the viability and the sustainability of a bank’s business model plays a
pronounced role in the European Central Bank’s new Supervisory Review and Examination Process (SREP)
for Significant Institutions within its Single Supervisory Mechanism; see SSM (2016).
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expectation-maximization procedures.

Extensive Monte Carlo experiments suggest that our model is able to reliably classify

a data set into distinct mixture components, as well as to infer the relevant component-

specific time-varying parameters. In our simulations, the cluster classification is perfect for

sufficiently large distances between the time-varying parameters and sufficiently informa-

tive signals relative to the variance of the noise terms.2 This holds under correct model

specification as well as under some degree of model misspecification. As the time-varying

parameters become less informative, and the time-varying parameters become less distant,

the share of correct classifications decreases, but generally remains high. Estimation fit, as

well as the share of correct classifications, decrease further if we wrongly assume a Gaussian

mixture specification when the data are generated from a mixture of fat-tailed Student’s

t distributions. As a result, robust models are appropriate if bank accounting ratios are

fat-tailed.

We apply our model to classify European banks into six distinct business model compo-

nents. We distinguish A) diversified cross-border lenders, B) small domestic lenders, C) small

retail lenders, D) diversified lenders, E) wholesale/corporate lenders, and F) large universal

banks. The similarities and differences between these components are discussed in detail in

the main text. Based on our component mean estimates and business model classification,

we confirm that the global financial crisis between 2008–2009 had a differential impact on

banks with different business models, as argued in, for example, Altunbas, Manganelli, and

Marques-Ibanez (2011), Beltratti and Stulz (2012), and Chiorazzo et al. (2016). We also

observe such differences across business model components during the more recent euro area

sovereign debt crisis between 2010–2012 for our sample of European banks. In particular,

smaller domestic lenders and retail banks were relatively less affected.

Finally, we relate banks’ business models to yield curve factors, specifically level and

slope. The factors are extracted from AAA-rated euro area sovereign bonds based on a

Svensson (1994) model. We find that, as long-term interest rates decrease, banks on average

grow larger, fund themselves less with customer deposits, and hold more derivatives. Each of

2We use the terms ‘mixture component’ and ‘cluster’ interchangeably.
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these effects – increased size, increased complexity through larger derivatives books, and less

stable funding through customer deposits – are intuitive, but also potentially problematic

from a financial stability perspective. In addition, we find that banks’ share of net interest

income to total income increases as long-term interest rates fall. Two opposing effects are

at work here. First, banks funding cost also decrease, and typically do so at a faster rate

than loan rates, supporting net interest income.3 In addition, banks’ long-term loans and

bond holdings are worth more at lower rates. Such mark-to-market gains may be eventually

realized. On the other hand, low long term interest rates squeeze net interest margins for new

loans and bond holdings. The former effect dominates the latter in our sample. These short-

term benefits, however, likely come at the expense of the long-term viability of established

bank business models, and are in line with the pro’s and con’s of ‘stealth recapitalization’

as discussed in Brunnermeier and Sannikov (2015).

Allowing the level-factor impact on bank variables to differ across business model com-

ponents increases the log-likelihood fit significantly, and provides additional insights. Inter-

estingly, the response of bank size is largest for the smallest banks in our sample. Small

domestic lenders (B) and small retail lenders (C) increase the size of their respective balance

sheet by approximately 3% for every -100 basis points (bps) decrease in long term yields.

This effect is intuitive: Small domestic banks and retail lenders are the most geographically

constrained in extending new loans, implying an incentive to do more business at squeezed

rates, potentially at declining underwriting standards. In addition, these lenders are highly

customer deposit-funded. This feature is particularly painful at zero or negative short-term

interest rates, as such rates often cannot be passed on to retail customers, for example owing

to competitive pressure. Finally, small banks may currently not be as constrained by equity

considerations, as such institutions were remarkably stable during the previous two crises

(as argued above), and recent regulations as well as European single supervision, arguably,

focus on too-individually-systemic-to-fail banks.

The two papers that are most closely related to ours are Ayadi and Groen (2015) and

Catania (2016). Ayadi and Groen (2015) use cluster analysis to identify bank business

3Bank liabilities are typically of shorter duration than banks’ interest-bearing assets.

3



models. Conditional on the identified clusters, the authors discuss bank profitability trends

over time, study banking sector risks and their mitigation, and consider changes in banks’

business models in response to new regulation. Our statistical approach is different in that

our components are not identified based on single (static) cross-sections of year-end data.

Instead, we consider a dynamic framework for a multivariate panel of N banks with D

variables each, over T > 1. Catania (2016) proposes a score-driven dynamic mixture model

which is similar to ours. His modeling framework is different in that the main focus is

on the time series dimension, rather than on classifying a large cross-section. In addition,

parameter estimation in Catania (2016) is not based on an EM algorithm, but instead relies

on score-driven updates for all parameters. The advantage of our approach is that it is more

likely to work well if the time dimension is short. In addition, it remains tractable when

many components are considered.

We proceed as follows. Section 2 presents a baseline static and a score-driven dynamic

finite mixture model. We then propose extensions to t-distributed mixture distributions,

time-varying covariance matrices, and additional explanatory covariates. Section 3 discusses

the outcomes of a variety of Monte Carlo simulation experiments. Section 4 applies the model

to classify European financial institutions. Section 5 studies to which extent banks’ business

models adapt to an environment of exceptionally low interest rates. Section 6 concludes.

The appendix provides further technical results.

2 Statistical model

2.1 Static finite mixture model and EM estimation

We consider multivariate panel data yit, for firms i = 1, ..., N , at time t = 1, ..., T . The

data yit are assumed to be a D-dimensional independent draw from a common mixture

density f(yit) with J components. It is useful to view the data as incomplete; see, for

example, McLachlan and Peel (2000). This view allows us to estimate all model parameters

by maximum likelihood and a suitable expectation maximization (EM) algorithm. The
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complete data for each observation is

ycit = (y′it, z
′
i)
′ (1)

where zi is a time-invariant J-dimensional selection vector that has a unit entry at position

j if firm i belongs to component j and zeros elsewhere. The component indicator zij is 1 if

firm i belongs to component j and zero otherwise.

The conditional probability that i belongs to component j given the data is

τij : = P (unit i belongs to component j |yi1, ...,yiT )

= P(zij = 1|yi1, ...,yiT )

= πjfj(Yi)/f(Yi), (2)

where the scalar πj denotes the mixing proportion of component j (or, alternatively, the

unconditional probability that observation i belongs to component j), Yi denotes the (T×D)-

matrix of observations on unit i at all time points, and the last line follows from Bayes’

theorem P(A|B) = P(A) · P(B|A)/P(B) for events A and B.

If the components fj belong to a parametric family, the mixture density can be written

as

f(Yi; Ψ) =
J∑
j=1

πjfj(Yi;θj) (3)

with Ψ = (π1, ..., πP−1, ξ
′)′, where ξ contains the distinct parameters in θj, j = 1, ..., J . For

example, in case of normal mixture components ξ contains the component means µj and the

distinct parameters of the covariance matrices Σj. Because the data are independently and

identically distributed, we can express the joint density in (3) as fj(Yi;θj) =
∏T

t=1 fj(yit;θj).

A direct approach to estimating the unknown parameters would be to maximize the log

likelihood function of the observed data

logL(Ψ) =
N∑
i=1

log

[
J∑
j=1

πjfj(Yi;θj)

]
(4)
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with respect to πj, j = 1, ..., J and ξ. This is numerically infeasible in many relevant

cases. Fortunately, it is admissible to approximate the likelihood function by its conditional

expectation, see Dempster, Laird, and Rubin (1977). Convergence of the conditionally

expected likelihood to the complete likelihood is ensured when the parameters are updated

via the EM algorithm. In addition, the conditionally expected likelihood forms a tight lower

bound at the optimum.

If the component indicator variables zij were known, the likelihood function would be

given by

logLc(Ψ) =
J∑
j=1

N∑
i=1

zij [log πj + log fj(Yi;θj)] . (5)

As the zij are unobserved, however, the complete data likelihood (5) is approximated by its

conditional expectation, given the observed data and some initial or previously determined

value Ψ(k−1) for Ψ,

Q(Ψ; Ψ(k−1)) = E
[
logLc(Ψ)|y; Ψ = Ψ(k−1)

]
= E

[
J∑
j=1

N∑
i=1

zij [log πj + log fj(Yi;θj)] |Y1, ...,Yn; Ψ = Ψ(k−1)

]

=
J∑
j=1

N∑
i=1

P[zij = 1|Y1, ...,Yn,Ψ = Ψ(k−1)]
[
log π

(k−1)
j + log fj(Yi;θ

(k−1)
j )

]
.

(6)

The conditionally expected likelihood (6) can be optimized iteratively by alternately up-

dating the conditional expectation of the component indicators (‘E-Step’) and maximizing

the remaining part of the function (‘M-Step’). Starting values are required for the density

parameters θ
(0)
j and the mixture probabilities π

(0)
j , j = 1, ..., J .
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E-Step

The conditional component indicator probabilities are updated using (2),

τ
(k)
ij := P[zij = 1|Y1, ...,Yn,Ψ = Ψ(k−1)]

=
π

(k−1)
j fj(Yi;θ

(k−1))

f(Yi; Ψ(k−1))

=
π

(k−1)
j fj(Yi;θ

(k−1))∑g
h=1 π

(k−1)
h fh(Yi;θ

(k−1)
h )

. (7)

Once τ
(k)
ij , i = 1, ..., N , j = 1, ..., J , are updated, we move to the M-Step.

M-Step

The M-Step maximizes Q(Ψ; Ψ(k)) with respect to Ψ, conditional on τ
(k)
ij . The updated

estimates of the mixture probabilities πj are given by

π
(k)
j =

1

N

N∑
i=1

τ
(k)
ij , (8)

for j = 1, ..., J . The parameters contained in ξ are updated by maximizing the remaining

part of the conditional likelihood function. Sometimes, closed from solutions are available, as

in the case of the normal finite mixture model. Otherwise, numerical maximization methods

can be used. The E- and M-step are iterated until the difference L(Ψ(k+1)) − L(Ψ(k)) has

converged.

2.2 Dynamic finite mixture model

This section considers a dynamic finite mixture model for panel data yit, for firms i = 1, ..., N ,

at time t = 1, ..., T . We here assume that the density is a mixed normal with time-varying

D-dimensional component means µjt, j = 1, ..., J , and fixed covariance matrices Σj. The

component means are updated using using the scaled score of the predictive log density of

yit; see Creal, Koopman, and Lucas (2013), Harvey (2013), and Creal et al. (2014). For
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simplicity, we consider the integrated score-driven dynamics as in Lucas and Zhang (2015),

µj,t+1 = A1Sµjt∇µjt + µjt, (9)

whereA1 is an unknown diagonal matrix to be estimated, and the innovation term Sµjt∇µjt =:

sµjt is the (scaled) first derivative of the conditional log-likelihood at time t with respect to

µjt.

Within the k-th EM iteration step, conditional on the component indicator probabilities

τij, the score has the form

∇µjt =
∂Q(Ψ; Ψ(k))

∂µjt
=

∂

∂µjt

(
N∑
i=1

J∑
j=1

τij [log πj + log φ(yit;µjt,Σj)]

)

=
∂

∂µjt

(
N∑
i=1

J∑
j=1

τij

[
log πj + (c− 1

2
(yit − µjt)′Σ−1

j (yit − µjt))
])

= Σ−1
j

N∑
i=1

τij (yit − µjt) , (10)

where φ denotes the multivariate normal density, and c = −D
2

ln(2π)− 1
2

ln(|Σj|).

The inverse conditional Fisher information matrix is an appropriate choice for Sµjt in (9),

see Creal et al. (2013). Consequently, we compute the expectation of the matrix of second

derivatives of the objective function with respect to µjt,

Sµjt = I−1 = −E
(
∂Q(Ψ; Ψ(k))

∂µjtµ′jt

)−1

=

(
N∑
i=1

τij

)−1

Σj. (11)

This expression yields an explicit updating scheme for the time-varying component means,

µj,t+1 = A1Sµjt∇µjt + µjt

= A1 ·
∑N

i=1 τij(yit − µjt)∑N
i=1 τij

+ µjt. (12)

All model parameters can be estimated by a suitable EM algorithm. The E-Step is
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performed, as above, by calculating the conditional component indicator probabilities,

τ
(k)
ij =

π
(k−1)
j φj

(
Yi;A

(k−1)
m , µ

(k−1)
j0 ,Σ

(k−1)
j

)
∑g

h=1 π
(k−1)
h φh

(
Yi;A

(k−1)
1 , µ

(k−1)
h0 ,Σ

(k−1)
h

) , (13)

where

φj

(
Yi;A

(k−1)
1 , µ

(k−1)
j0 ,Σ

(k−1)
j

)
=

T∏
t=1

φj

(
yit;A

(k−1)
1 , µ

(k−1)
j0 ,Σ

(k−1)
j

)
,

and initial means µ
(k−1)
j0 . The M-Step maximizes the conditional likelihood given τ

(k)
ij ,

A
(k)
1 , µ

(k)
0,1, ..., µ

(k)
0,J ,Σ

(k)
0,1, ...,Σ

(k)
0,J = argmaxA1,µ0,1,...,µ0,J ,Σ0,1,...,Σ0,J(

T∑
t=1

N∑
i=1

P∑
j=1

τ
(k)
ij

[
−D

2
ln(2π)− 1

2
ln(|Σj|)−

1

2
(yit − µjt)′Σ−1

j (yit − µjt)
])

, (14)

where µjt has the recursive structure (12). Again, the E-step and M-step are iterated until

convergence.

2.3 Extensions

2.3.1 t-distributed mixture

This section robustifies the dynamic finite mixture model by considering panel data that

are generated by mixtures of multivariate t-distributions.4 Assuming a multivariate normal

mixture is not always appropriate. For example, extreme tail observations can easily occur in

the analysis of accounting ratios when the denominator is close to zero, implying pronounced

changes from negative to positive values.

To robustly infer all model parameters, we use the fact that the probability density

function (pdf) of a t-distributed random variable Y with ν degrees of freedom can be rep-

resented equivalently as the pdf of a random variable Y = µ + U−
1
2X, where X ∼ N(0,Σ)

is a D-dimensional Gaussian random vector, and where U follows a Gamma distribution

4For a textbook treatment of the static finite mixture model of multivariate t-distributions; see McLachlan
and Peel (2000) Chapter 7. For an EM algorithm for the estimation of models with time-varying volatilities
and correlations for one-component elliptical distributions, see also McNeil, Frey, and Embrechts (2005) and
Zhang, Creal, Koopman, and Lucas (2011).
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U ∼ Gam(ν
2
, ν

2
) with pdf (ν/2)ν/2

Γ(ν/2)
exp(−ν

2
u) where Γ denotes the Gamma function; see, for in-

stance, Rao (2001) and McNeil et al. (2005). As a result, the finite mixture of t-distributions

with time-varying component means and scale matrices

f(Yi; Ψ) =
J∑
j=1

πjf(Yi;µj1, ..., µjT ,Σj1, ...,ΣjT , νj),

can be written in terms of unobserved time-invariant cluster indicators zij, and a second set

of unobserved data u1t, ..., uNt for t = 1, ..., T from the conditional distribution

Uit|zij = 1
iid∼ Gam

(νj
2
,
νj
2

)
, (15)

where i = 1, ..., N , j = 1, ..., J .

If both u1t, ..., uNt and zij were known for all t, the complete data log-likelihood function

would consist of three parts

logLc = logL1c + logL2c + logL3c, (16)

where

L1c =
N∑
i=1

J∑
j=1

zij[log πj]

L2c =
T∑
t=1

N∑
i=1

J∑
j=1

zij

[
− log Γ

(νj
2

)
+
νj
2

log
(νj

2

)
− log uit +

νj
2

(log uit − uit)
]

L3c =
T∑
t=1

N∑
i=1

J∑
j=1

zij

[
−D

2
log(2π)− 1

2
log |Σjt|+

D

2
log uit −

1

2
uit(yit − µjt)′Σ−1

jt (yit − µjt)
]
.

We do not observe uit and zij in practice, however. Consequently, we again approximate the

complete data likelihood by its conditional expectation. An EM algorithm can be used to

estimate this model as well. Appendix A provides the respective detailed expressions.
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The scaled score function for the GAS update of component mean j becomes

sµjt =

∑N
i=1 τ

(k)
ij u

(k)
ijt (yit − µjt)∑N

i=1 τ
(k)
ij u

(k)
ijt

, (17)

where the additional scaling parameter corresponds to the conditional expectation of Uit

given the data, Ψ = Ψ(k−1), and zij = 1, and is given by

u
(k)
ijt =

1 +D/ν
(k−1)
j

1 +
∑T

t=1(yit − µ(k−1)
jt )′(Σ

(k−1)
jt )−1(yit − µ(k−1)

jt )/ν
(k−1)
j

. (18)

If the data are fat tailed, i.e. when ν is low, then u
(k)
ijt takes lower values as well. Equation

(17) suggests that this implies less volatile parameter updates over time, as outliers are

automatically downweighted. On the other hand, for ν → ∞, uijt converge to one, and we

recover the expressions for the Gaussian mixture model. The robustly scaled score for the

component-specific scale matrices is given by

sΣjt =
1∑N

i=1 τ
(k)
ij

(
N∑
i=1

τ
(k)
ij

(
u

(k)
ijt (yit − µjt)(yit − µjt)′ − Σjt

))
. (19)

2.3.2 Time-varying component covariance matrices

This section derives the scaled score updates for time-varying component covariance matrices

Σjt. These matrices are also assumed to follow integrated GAS dynamics, and evolve over

time as

Σj,t+1 = A2SΣjt · ∇Σjt + Σjt, (20)

where the scaled score SΣjt · ∇Σjt =: sΣjt is again defined as the first derivative of the

expected likelihood function with respect to Σjt, scaled by the inverse of the conditional

Fisher information matrix. In this case, the scaled score for a given component covariance

matrix is given by

sΣjt = SΣjt · ∇Σjt =
1∑N
i=1 τij

·
N∑
i=1

τij [(yit − µjt)(yit − µjt)′ − Σjt] . (21)
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The estimation of the model can be carried out using the EM algorithm as above, replacing

Σj by Σjt in equations (13) – (14).

2.3.3 Explanatory covariates

This section extends the score-driven dynamics for the time-varying mean to include con-

temporaneous or lagged variables of economic variables as additional conditioning variables.

For example, a particularly low interest rate environment may push financial institutions to

grow larger and take riskier bets. Additional term structure factors as conditioning variables,

for example, allow us to quantify such effects for different groups of banks.

A score-driven updating scheme with additional explanatory covariates builds on (12)

and evolves over time as

µj,t+1 = µjt + A1 ·
∑N

i=1 τij(yit − µjt)∑N
i=1 τij

+B1 ·Wt, (22)

where B1 is a matrix of unknown coefficients to be estimated, and Wt contains economic

covariates of interest. We consider the extended specification (22) in Section 5. The score-

driven dynamics for time-varying component covariance matrices could be extended along

similar lines.

3 Simulation study

3.1 Simulation design

This section investigates the ability of our dynamic mixture GAS model to i) correctly classify

a data set into distinct components, and ii) recover the dynamic cluster means over time.

We pay particular attention to the sensitivity of the EM algorithm to the number of units

per cluster, the distinctiveness of the clusters, and the impact of model misspecification.

We simulate from a mixture of dynamic bivariate densities. These densities are composed

of sinusoid mean functions, as well as i.i.d. disturbance terms that are drawn from a bivariate

Gaussian distribution or a bivariate Student’s t-distribution with five degrees of freedom.
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The covariance matrices are chosen to be time-invariant identity matrices. The smoothing

parameter A1 is common to both clusters.

Visually, the simulated processes correspond to two data clouds. Each data cloud moves

in circles according to their respective time-varying mean. To investigate the strengths and

potential weaknesses of our method, we alter the characteristics of these circles. In total, we

consider simulations from 16 different data generating processes.

The sample sizes are chosen to resemble our empirical application in Section 4. We thus

keep the number of time points fixed at T = 30, and set the number of cross-sectional units

equal to N = 100 or to N = 400. In our baseline setting, the two circles do not overlap. In

addition, the data have a fairly large signal-to-noise ratios, in the sense that the radius is

large relative to the variance of the error terms.

In other, more challenging settings, the circles overlap completely. In this setting the

circles have the same center, and only differ in the orientation of the component means

over time (clockwise vs. counterclockwise). Again, we decrease the radii of the circles while

leaving the variance of the error terms unchanged. Finally, we investigate the impact of a

particular type of model mis-specification by assuming a Gaussian mixture in the estimation

procedure, although the data were generated from a mixture of Student’s t-densities with

five degrees of freedom.

Figure 1 illustrates our simulation setup with two examples. The data generating pro-

cesses are plotted as a solid black line, together with the pointwise median of the estimated

paths (over simulation runs, solid red line), and the filtered mean estimates across simulation

runs (green triangles).

3.2 Simulation results

This section discusses our main simulation outcomes. Using our methodology, we estimate

the component parameters from the simulated data. Parameters to be estimated include

the initial values for the component mean processes, the distinct entries of the covariance

matrices, and the smoothing parameter A1.

We rely on mean squared error (MSE) statistics as our main measure of estimation fit.

13



−5 0 5 10

−
4

−
2

0
2

4

−2 0 2 4 6 8 10

−
2

−
1

0
1

2

Figure 1: True mean processes (black) together with median filtered means over 100 simula-
tion runs (red) and the filtered means (green triangles). Both panels correspond to simulation
setups under correct specification with circle centers that are 8 units apart. The upper panel
corresponds to the simulation setup with radius 4, while the lower panel depicts the mean
circles with radius 1.

MSE statistics for time-varying component means are computed as the squared deviation of

the estimated means from their true counterparts, averaged over time and simulation runs.

The top panel of Table 1 contains MSE statistics for eight simulation settings. Each of

these settings considers N = 100 units per component. The bottom panel of Table 1 presents

the same information for N = 400 units per component. In each case, we also report the

proportion of correctly classified data points, averaged across simulation runs.

Not surprisingly, the performance of our estimation methodology depends on the simula-

tion settings. For a high signal to-noise ratio, and a large distance between the unconditional

means, the cluster classification is perfect both under correct specification and model mis-
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Table 1: Simulation outcomes
Mean squared error (MSE) and average percentage of correct classification (%) across simulation runs. The

top panel considers N = 100, while the bottom table corresponds to N = 400. Radius refers to the radius

of the true mean circles and is a measure of the signal-to-noise ratio. Distance is the distance between circle

centers and measures the distinctness of clusters.

correct specification
cluster 1 cluster 2

radius distance MSE % MSE %
4 8 0.21 100 0.21 100
4 0 0.2 100 0.21 100
1 8 0.04 100 0.04 100
1 0 0.04 99.97 0.04 99.96

misspecification
cluster 1 cluster 2

radius distance MSE % MSE %
4 8 0.25 100 0.25 100
4 0 0.25 100 0.25 100
1 8 0.05 100 0.05 100
1 0 0.06 98.56 0.06 97.51

correct specification
cluster 1 cluster 2

radius distance MSE % MSE %
4 8 0.14 100 0.14 100
4 0 0.12 100 0.12 100
1 8 0.02 100 0.02 100
1 0 0.02 100 0.02 99.99

misspecification
cluster 1 cluster 2

radius distance MSE % MSE %
4 8 0.16 100 0.16 100
4 0 0.16 100 0.16 100
1 8 0.03 100 0.03 100
1 0 0.05 97.94 0.05 96.33
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specification. As the distance between means and the circle radii decrease, the share of

correct classifications decreases as well. Estimation fit and the share of correct classification

decrease further if we (wrongly) assume a Gaussian mixture although the data are generated

from a mixture of fat-tailed Student’s t distributions. Interestingly, in the case of large radii,

the distance between circles is irrelevant for estimation fit and classification ability.

4 Bank business models at low interest rates

4.1 Data

The sample under study consists of N = 233 European banks, for which we consider quar-

terly bank-level accounting data from SNL Financial between 2008Q1 – 2015Q2. This implies

T = 30. We assume that differences in bank business models can be characterized along six

dimensions: size, complexity, activities, geographical reach, funding structure, and owner-

ship. We select a parsimonious set of D = 10 indicators from these six categories. Table 2

lists the respective indicators.

Our panel data is unbalanced. As a result, missing values need to be taken into account.

Missing values routinely occur because some banks are reporting at a quarterly frequency,

while others report at an annual or semi-annual frequency. We remove such missing values

by substituting the most recently available observation for that variable (backfilling). If

variables are missing in the beginning of the sample, we use the most adjacent future value.5

In the cross-section, we require a complete set of indicators for each bank; see Table 2.

We consider banks at their highest level of consolidation. In addition, we include large

subsidiaries of bank holding groups in our analysis provided that a complete set of data

is available in the cross-section. Most banks are located in the euro area (55%) and the

European Union (EU, 66%). European non-EU banks are located in Switzerland (12%),

Norway (10%), and other countries (12%).

5We experimented with different approaches to the treatment of missing values in our array of panel data,
including using the EM algorithm of Stock and Watson (2002) to infer missing data at the indicator level.
However, advanced econometric approaches to the treatment of missing values do not work robustly in our
setting of T = 30, of which typically only a subset are observed.
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Table 2: Indicator variables
Bank-level panel data variables for the empirical analysis. We consider J=10 indicator variables covering six

different categories. The third column explains which transformation is applied to each indicator before the

statistical analysis. Φ−1 (·) denotes the inverse Probit transform.

Category Variable Transformation
Size 1. Total assets ln Total Assets

Complexity 2. Net loans to assets Φ−1
(
Loans
Assets

)
3. Risk mix ln

(
Market Risk+Operational Risk

Credit Risk

)
4. Derivatives held for trading ln (1+DHT)

Activities 5. Share of net interest income Net interest income
Operating revenue

6. Share of net fees & commission income Net fees and commissions
Operating income

7. Share of trading income Trading income
Operating income

Geography 8. Domestic loans ratio Φ−1
(
Domestic loans

Loans

)
Funding 9. Loan-to-deposits ratio Loans

Deposits

Ownership 10. Ownership categorial

Note: Total Assets are all assets owned by the company (SNL id 131929). Net loans to assets are loans and

finance leases, net of loan-loss reserves, as a percentage of all assets owned by the bank (226933). Risk mix

is a function of Market Risk, Operational Risk, and Credit Risk (248881, 248882, 248880, respectively), and

are as reported by the company. Derivatives held for trading are derivatives with positive replacement values

not identified as hedging or embedded derivatives (224997). P&L variables are expressed as percentages of

operating revenue (248959) or operating income (248961, 249289). Domestic loans are in percent of total

loans by geography (226960). The loans-to-deposits ratio are loans held for investment, before reserves, as

a percent of total deposits, the latter comprising both retail and commercial deposits (248919). Ownership

combines information on ownership structure (131266) with information on whether a bank is listed at a

stock exchange (255389). Ownership structure distinguishes stock corporations, mutual banks, co-op banks,

and government ownership. Stock corporations can be listed or non-listed.
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Table 2 also report the data transformation used in the applied modeling. For example,

some ratios take values within the unit interval. We map these into approximately normally

distributed variables by mapping them through an inverse Probit transform. In addition, we

take natural logarithms of large numbers such as total assets and derivatives held for trading.

The variable ‘ownership’ combines information on ownership structure with information

on whether a bank is listed at a stock exchange. Ownership structure distinguishes stock

corporations, mutual banks, co-op banks, and government ownership. Stock corporations

can be listed or non-listed. We add a standard deviation of noise to the resulting categorical

variable to make it continuous.

4.2 Model selection

This section motivates the model specification employed in our empirical analysis. We first

discuss our choice of number of clusters. We then determine the parametric distribution,

pooling restrictions, and choice of covariance matrix dynamics.

Table 3 presents likelihood-based information criteria as well as non-parametric cluster

validation indexes for different values of J = 2, . . . , 10. Different criteria point towards

different numbers of relevant components. Interestingly, almost any choice J ≤ 6 can be

supported by some criterion. We therefore turn to additional considerations. First, ex-

perts consider up to eleven different bank business models in practise; see, for example,

Bankscope (2012). Second, the degree of homogeneity in the resulting peer groups may be

more important than model parsimony if the model is used for benchmarking purposes that

are not related to forecasting future banking sector trends. The latter argument suggests

putting particular emphasis on the within-cluster sum of squared errors (SSE) as scaled by

the Hardigan index (HDG). For these considerations in mind, and to be conservative, we

select J = 6 components for our subsequent empirical analysis.

In addition, we chose to work with a t-distributed dynamic finite mixture model instead

of a Gaussian one; see Section 2.3.1). We also adopt dynamic cluster-specific covariance

matrices Σjt, as specified in Section 2.3.2. Finally, we restrict A1 = a1 · ID, where a1 is a

single parameter and ID is the D-dimensional identity matrix.
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Table 3: Information criteria
We report (likelihood-based) information criteria and (non-parametric) cluster validation indexes for different

values of J = 2, . . . , 10. The top panel refers to a model specification with time-invariant component variance

matrices Σj with ν estimated as a free parameter. The bottom panel refers to a specification with dynamic

Σjt, with ν fixed at five. loglik is the maximum value of the log-likelihood. AICc is the likelihood-based AIC

criterion, corrected by a finite sample adjustment; see Hurvich and Tsai (1989). AICk is a non-parametric

AIC as suggested for k-means clustering; see Peel and McLachlan (2000). BNg1 and BNg2 are panel

information criteria as derived for approximate dynamic factor models; see Bai and Ng (2002). CHI, Silh.,

and DBI refer to the Calinski-Harabasz index, average Silhouette, and Davies-Boulder index, respectively.

SSE is the sum over within-component sum of squared errors. HGN is the Hardigan index which scales the

increments in SSE by an adjustment term; see Peel and McLachlan (2000).

Σj static, estimated df.
J loglik AICc AICk BNg1 BNg2 CHI Silh. DBI SSE HGN
2 -49098.2 98468.9 5887.3 1.001 1.011 159.5 0.32 0.98 4955.3 83.6
3 -43811.6 88035.1 5032.3 0.815 0.828 170.7 0.24 1.21 3634.3 30.4
4 -39829.4 80211.7 5072.2 0.814 0.832 135.3 0.16 1.54 3208.2 12.1
5 -36849.3 74395.9 5377.1 0.885 0.908 107.0 0.16 1.64 3047.1 -6.9
6 -34712.7 70725.9 5938.4 1.040 1.067 81.9 0.09 1.83 3142.4 4.7
7 -33264.9 67523.9 6340.0 1.142 1.174 67.5 0.09 2.16 3078.0 16.1
8 -31412.9 63973.2 6600.1 1.196 1.233 64.7 0.07 2.25 2872.1 12.1
9 -30059.1 61421.4 6918.7 1.267 1.308 60.0 0.03 2.31 2724.7 -1.5
10 -28751.2 58965.1 7403.5 1.398 1.443 54.0 0.03 2.40 2743.5 -

Σjt dynamic, ν = 5
J loglik AICc AICk BNg1 BNg2 CHI Silh. DBI SSE HGN
2 -40840.0 81951.9 5650.2 0.952 0.962 176.4 0.34 1.02 4718.2 41.8
3 -35388.0 71187.9 5390.5 0.909 0.922 135.6 0.22 1.28 3992.5 38.1
4 -30642.1 61837.1 5287.2 0.878 0.897 127.2 0.16 1.69 3423.2 10.8
5 -26773.7 54244.7 5598.0 0.955 0.978 99.8 0.10 1.98 3268.0 8.1
6 -23854.6 48553.5 5952.0 1.044 1.071 83.7 0.09 2.18 3156.0 -16.8
7 -20700.0 -87919.7 6671.0 1.244 1.276 61.5 0.06 2.66 3409.0 22.4
8 -18199.3 -109682.0 6828.8 1.273 1.310 60.7 0.02 2.75 3100.8 1.4
9 -13699.1 -162654.7 7276.2 1.390 1.431 51.9 0.01 2.56 3082.2 -5.6
10 -6782.8 -195931.4 7821.5 1.539 1.585 46.2 -0.01 2.78 3161.5 -
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Table 4: Model specification
We report log-likelihoods and differences in log-likelihoods for a set of different model specifications. The

estimates are based on J = 6.

Density ν value A1 Σj/Σjt loglik d(loglik)
N - ∞ scalar static -36290.1
t fixed 10 scalar static -34952.2 -1337.9
t fixed 5 scalar static -34726.9 -1563.2
t fixed 5 vector static -34723.6 -3.3
t est 6.8 scalar static -34712.7 -10.9
t est 6.8 vector static -34709.6 -3.1
N - ∞ scalar dynamic -30549.5 -4160.1
t fixed 10 scalar dynamic -23854.6 -6694.9
t fixed 5 scalar dynamic -23577.3 -277.3
t est 5.9 scalar dynamic -23574.4 -2.9

Table 4 supports these empirical choices. Commencing from the top row to the bottom,

the log-likelihood improves significantly as we move from the Gaussian to a t-distributed

finite mixture model specification, while keeping Σj static. The data appears to favor a

t-distributed model with low degrees of freedom, even after conditioning on component

membership. Pooling the diagonal elements of A1 into a single parameter decreases the

likelihood fit only insignificantly. We therefore adopt this restriction, saving nine parameters

to be estimated. The adoption of dynamic covariance matrices Σjt leads to further large

improvements in log-likelihood fit.

4.3 Component analysis

This section studies the different business models implied by the J = 6 different component

densities.

Figure 2 plots the filtered mean estimates for each business model component and in-

dicator variable. Visually, the six component means differ frequently and substantially, for

each indicator. For example, banks are impacted differently by the global financial crisis

between 2008–2009. At that time, component means for the share of trading income to

operating income are negative for approximately half of the components, positive for the

other components, and in all cases are substantially different from their respective historical
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Figure 2: Time-varying component means
Filtered component means for nine indicator variables; see Table 2. The ownership variable is omitted since

it is time-invariant. Mean estimates are based on a t-mixture model with J = 6 components and dynamic
component covariance matrices Σjt. We fixed ν = 5 to achieve outlier-robust results. We distinguish
diversified x-border lenders (black solid line), small domestic lenders (red solid line), small retail lenders
(blue solid line), diversified lenders (black crossed line), wholesale/corporate lenders (red crossed line), and
large universal banks (blue crossed line).

averages. Large universal banks are most affected. By contrast, small domestic lenders and

retail lenders experience less fluctuation, particularly in the share of income sources.

We assign labels to the identified components for ease of later reference. The assignment

of these labels is based on Figure 2 and 3, as well as the identity of the firms in each

component. The labeling is approximately in line with business models as listed in SSM

(2016).

(A) diversified cross-border lender (black solid line)

(B) small domestic lender (red solid line)

(C) small retail lender (blue solid line)
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Figure 3: Box plots for indicator variables
We report box plots for nine indicator variables, for six business model components; see Table 2 for the

description. Each variable refers the time series average over T = 30 quarters. In each panel, we distinguish
(from left to right): diversified x-border lenders, small domestic lenders, small retail lenders, diversified
lenders, wholesale/corporate lenders, and large universal banks.

(D) diversified lender (black crossed line)

(E) wholesale/corporate lender (red crossed line)

(F) large universal bank (blue crossed line)

Large universal banks stand out in Figures 2 and 3. These banks are the largest firms

(with up to approximately e2.5 trn in total assets per firm), the most international in terms

of cross-border lending, with significant shares of trading as well as net fees & commission

income, and large derivative positions. Wholesale/corporate lenders are the second-largest

group in terms of total assets. These lenders are mostly non-deposit (wholesale) funded,

obtain approximately two-thirds of their income from interest-bearing assets, hold a medium-
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sized derivatives book, and are second in terms of cross-border activities.

Diversified cross-border lenders (black solid line) are the third-largest group. They differ

from diversified lenders (black crossed line) in that the latter are purely domestic in terms

of their geographical orientation. The latter also tend to hold more loans (as a share of total

assets), and tend to be slightly more deposit funded.

Small retail lenders and small domestic lenders are the smallest group of banks in terms

of total assets. They are, however, numerous. Both types of banks are approximately similar

in terms of size, absence of derivative holdings, and income composition. They differ in terms

of size (the domestic lenders are somewhat larger), propensity to give loans (particularly the

loans-to-assets ratio), and their tendency to be funded by customer deposits. Small domestic

lenders are entirely local in terms of geographical orientation, while retail lenders have some

cross-border exposures.

Figure 4 reports the filtered time-varying standard deviations around these time-varying

means. The standard deviations are approximately stable over time, with the possible ex-

ceptions of ‘derivatives held for trading’ and size (ln total assets). Despite these stable

second moments, allowing for time-varying component covariance matrices still results in

significant increases in log-likelihood; see Table 4. This increase in fit suggests that higher-

order moments may play a role. In addition, the off-diagonal elements of Σjt are mildly

time-varying.

5 Term structure factors as explanatory covariates

This section studies to which extent banks’ business models adapt to an environment of

exceptionally low interest rates. To this purpose we consider the extended model as discussed

in Section 2.3.3, adding two term structure factors, level and slope, as additional economic

covariates. The extended specification allows us to quantify whether term structure factors

contribute to explaining banks’ business models.

Level and slope factors refer to the yield curve of AAA-rated euro area government bonds

from 2008Q1 to 2015Q2. The factor estimates are based on a Svensson (1994) model, and are
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Figure 4: Time-varying standard deviations
Filtered time-varying standard deviations around time-varying means as graphed in Figure 2. Each panel

refers to a component j = 1, . . . , 6, and contains D = 10 standard deviation estimates over time. Mean and
standard deviation estimates are based on a t-mixture model with six components and dynamic covariance
matrices Σjt. We fixed ν = 5 to achieve outlier-robust results.
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Figure 5: Yield curve factors and estimates
The left panel plots the level factor from a Svensson (1994) model, along with the model-implied short rate

as given by the sum of level and slope. Yield curve factors refer to AAA-rated euro area government bonds
from 2008Q1 to 2015Q2. The right panel plots two fitted yield curves on two dates, in mid-2008Q1 and mid
2015Q2, based on all factors.
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publicly available from the ECB’s website. We take these euro area yields as representative

of low-risk European yields more generally.6 The left panel of Figure 5 plots the level factor,

and the short rate as implied by the sum of level and slope. The slope factor fluctuates

relatively steadily around a value of -2 in our sample, and is not plotted. The right panel

of Figure 5 plots two yield curves on two dates, in mid-2008Q1 and mid 2015Q2, as implied

by all four factors. AAA-rated government bond yields dropped sharply in late 2008, from

approximately 5% to below 1%. Long-term yields rose again during the euro area sovereign

debt crisis, up to a peak of 4% between 2010–2012, and steady declined to close to zero

between 2012–2015.

Table 5 presents the parameter estimates of two GAS-X specifications. We set A1 =

A2 = 1. As a result, only the term structure factors predict the component means.

We focus on the level factor specification first. All signs are fairly intuitive. First, as

long-term interest rates decrease, banks on average grow larger. This is in line with an

incentive to extend the balance sheet to offset squeezed net interest margins for new loans

and investments. Second, banks fund themselves less with customer deposits (a negative

coefficient on the loans-to-deposits ratio), as deposit rates do not drop as much as long term

rates, and do not go negative. Third, banks appear to hold more derivatives. We conjecture

that most ‘derivatives held for trading’ are interest rate swaps, and are either traded on behalf

of the bank or its clients to hedge against future moves in the term structure of interest rates.

Each of these effects - increased size, increased complexity through larger derivatives books,

and less stable funding through customer deposits – are potentially problematic and need to

be assessed from a financial stability perspective.

In addition, declining long-term interest rates predict a declining share of net fees & com-

mission income to total operating income in the next quarter. This is, again, intuitive. The

drop in long term interest rates is in part a consequence of the global and euro area economic

malaise during a large part of our sample. Such an environment is not conducive to charging

high asset management fees, obtaining commissions from equity and bond placements, or

6The evolution of low-risk euro area yields are directly relevant for the euro area subset of banks in our
sample. In addition, European sovereign bond yields are highly correlated across borders, and may in part
reflect global developments as well; see, for instance, ECB (2013) and Lucas et al. (2014).
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Table 5: GAS-X parameter estimates
We report parameter estimates for model specification (22), where term structure factors serve as additional

conditioning variables. Standard errors are obtained from the numerical second derivative of the likelihood

function.

GAS-X
par t-val par t-val

A1 1.00 - 1.00 -
A2 1.00 - 1.00 -
B1 level ln(TA) -2.27 -3.42 -0.94 -1.05

L2Assets -0.24 -1.69 -0.16 -0.80
L2Deposits -0.71 -5.42 -0.31 -1.62
Domestic 0.48 1.36 0.00 0.00
NII -0.36 -5.71 -0.24 -2.79
F&CI 0.22 5.24 0.17 2.98
TI 0.07 1.53 0.05 0.70
Risk Mix 0.16 0.75 -0.06 -0.21
Derivatives -3.31 -2.80 -0.52 -0.32
Ownership 0.00 -0.20 -0.06 -0.84

B1 slope ln(TA) 0.02 0.25
L2Assets 0.00 0.01
L2Deposits 0.02 1.38
Domestic -0.02 -0.35
NII 0.01 1.06
F&CI 0.00 -0.65
TI 0.00 -0.58
Risk Mix -0.03 -1.00
Derivatives 0.15 0.89
Ownership 0.00 0.13

mlik -23319.2 -23198.0
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providing advisory services.

Finally, as long-term interest rates fall, banks’ share of net interest income increases.

Two effects may be at work here. First, banks’ long-term loans and bond holdings are worth

more at lower rates. This may lead to mark-to-market gains, which are eventually realized.

In addition, banks funding cost also decrease, and at a faster rate than long-term loan rates.

On the other hand, low long term interest rates squeeze net interest margins for new loans

and bond holdings. Our results suggest that the former effect dominates the latter in our

sample. These short-term benefits (in line with a ‘stealth recapitalization’ of the banking

sector) may, however, come at the expense of the long-term viability of established business

models; see Brunnermeier and Sannikov (2015).

The right hand column of Table 5 presents parameter estimates associated with both

level and slope factors. The signs of the significant level factor coefficients remain unchanged

when the slope factor is included. However, the slope factor does not appear to contribute

much explanatory power for banks’ business models. The respective coefficient t-values are

insignificant. This is not too surprising. Short-term rates are low and close to zero during

most of our sample. A one (level) factor specification for the term structure appears to be

sufficient to capture both the decline in long term rates as well as the overall flattening of

the curve.

Table 6 presents component-specific level factor GAS-X coefficients. We focus on three

findings. First, allowing the level-factor impacts to be different across business model com-

ponents increases the log-likelihood fit significantly, despite adding 5 × 9 = 45 coefficients.

On the other hand, it also implies less precise estimates and diminished statistical power.

Most coefficients now have t-values below 1.64 in absolute value. The significant entries are

in line with the estimates reported in Table 5: As long-term interest rates fall, the share of

net interest income to total income increases, across all business model components. Sim-

ilarly, the share of fees & commission income falls if long-term rates decline, again in line

with our previous findings.

Second, the response of bank size (total assets) is largest for the smallest banks. Small

small domestic lenders (B) and retail lenders (C) increase the size of their balance sheet by
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Table 6: Component-specific GAS-X estimates
We report parameter estimates for model specification (22), where the level factor serves as an additional

conditioning variable. Level factor sensitivities are component-specific. The ownership variable is time-

invariant, and therefore does not have a coefficient. Parameters with t-values larger than 1.64 are in bold.

Standard errors are obtained from the numerical second derivative of the likelihood function.

GAS-X, component-specific impact
par t-val par t-val

ln(TA) A -0.82 -0.39 D -1.59 -0.85
L2Assets 0.09 0.37 -0.47 -1.15
L2Deposits 0.05 0.15 0.07 0.26
Domestic -0.04 -0.04 -0.83 -0.54
NII -0.05 -0.32 -0.36 -2.46
F&CI 0.02 0.17 0.24 1.78
TI -0.02 -0.18 -0.02 -0.46
Risk Mix 0.31 0.70 0.62 1.16
Derivatives -0.69 -0.23 0.57 0.13
Ownership - - - -
ln(TA) B -3.30 -1.45 E -1.23 -0.67
L2Assets -0.20 -0.42 -0.32 -0.43
L2Deposits -0.72 -1.56 0.23 0.26
Domestic -0.71 -0.63 0.18 0.14
NII -0.56 -2.45 -0.09 -0.25
F&CI 0.36 3.38 0.04 0.26
TI 0.07 0.46 -0.08 -0.32
Risk Mix 0.12 0.17 -1.08 -1.13
Derivatives 4.09 0.48 -2.12 -0.70
Ownership - - - -
ln(TA) C -2.83 -0.94 F -2.49 -0.92
L2Assets 0.49 0.97 0.15 0.21
L2Deposits 0.25 0.48 0.03 0.04
Domestic -1.93 -0.55 -0.56 -0.47
NII -0.16 -0.83 -0.02 -0.08
F&CI 0.02 0.17 0.02 0.09
TI 0.07 0.49 0.02 0.17
Risk Mix -0.79 -0.85 -0.35 -0.37
Derivatives 3.10 0.42 -3.55 -0.87
Ownership - - - -
mlik -22727,50
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approximately 3% for every -100 basis points (bps) drop in long term yields. Small domestic

lenders are the most geographically constrained in terms of lending, and are highly deposit-

funded; see Figure 2. In addition, small domestic lenders may not be as strictly supervised,

as such institutions were remarkably stable during the previous crises between 2008–2009

and 2010–2012.

Finally, the largest banks tend to increase their derivatives positions as long-term rates

fall. The point estimates for wholesale/corporate lenders (E) and large universal banks (F)

suggest that a -100 bps decrease in rates increases the size of their derivatives book by 2–4%.

This increase likely reflects an incentive by either the bank or its customers to hedge against

sharply rising future rates. It is also consistent with a smaller size response of these firms

compared to the smaller lenders (B) and (C) which may be hedged to a lesser extent.

6 Conclusion

We proposed a novel score-driven dynamic finite mixture model for the study of banking

data, accommodating time-varying component means and covariance matrices, normal and

t-distributed mixtures, and term structure factors as economic determinants of time-varying

parameters. In an empirical study of European banks, we classified numerous institutions

into distinct business model components. Our results suggest that the global financial crisis

and the euro area sovereign debt crisis had a differential impact on banks with different

business models. In addition, banks’ business models adapt over time to changes in long-

term interest rates.

Appendix: EM algorithm for t-distributed panel data

This appendix discusses parameter estimation in the context of a dynamic finite mixture panel data

model with t-distributed data. We build on Chapter 7 of Peel and McLachlan (2000) who consider

the case of constant component mean and variance parameters.
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E-Step

Taking the conditional expectation of the complete data likelihood (16) requires calculating

E[Zij |Y1, ...,YT ,Ψ = Ψ(k)] =: τ
(k−1)
ij ,

E[Uit|Y1, ...,YT , zij = 1,Ψ = Ψ(k−1)] =: u
(k)
ijt , and

E[logUit|Y1, ...,YT , zij = 1,Ψ = Ψ(k−1)],

where i = 1, ..., N , and Ψ = (π1, ..., πJ−1, A1, A2,θ
′
10, ...,θ

′
J0, ν1, ..., νJ)′, as well as θj0, j = 1, ..., J

collect the initial mean and covariance matrix parameters.

We provide closed-form solutions for the above three expectations. The cluster probabilities

can be updated using Bayes’ rule,

τ
(k)
ij =

π
(k−1)
j fj

(
Yi;A

(k−1)
1 , µ

(k−1)
j0 ,Σ

(k−1)
j0 , ν

(k−1)
j

)
∑J

h=1 π
(k−1)
h fh

(
Yi;A

(k−1)
1 , µ

(k−1)
h0 ,Σ

(k−1)
h0 , ν

(k−1)
h

) , (A1)

where

fj

(
Yi;A

(k−1)
1 , µ

(k−1)
j0 ,Σ

(k−1)
0j , ν

(k−1)
j

)
=

T∏
t=1

fj

(
yit;A

(k−1)
1 , µ

(k−1)
j0 ,Σ

(k−1)
0j , ν

(k−1)
j

)
.

The conditional expectation of Uit is given in equation (18). The conditional expectation of the

logarithm of Uit is

E[logUit|Y1, ...,YT , zij = 1,Ψ = Ψ(k−1)] = log u
(k)
ijt +

[
ψ

(
ν

(k−1)
j +D

2

)
− log

(
ν

(k−1)
j +D

2

)]
,

(A2)

where ψ denotes the digamma function; see Peel and McLachlan (2000).

Combining (A1) – (A2), we obtain the conditionally expected log likelihood function in three

parts

Q(Ψ; Ψ(k−1)) = Q1(π1, ..., πJ ; Ψ(k−1)) +Q2(ν1, ..., νJ ; Ψ(k−1)) +Q3(A1, A2,θ10, ...,θJ0; Ψ(k−1)),
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where

Q1(π1, ..., πJ ; Ψ(k−1)) =

N∑
i=1

J∑
j=1

τ
(k)
ij log πj ,

Q2(ν1, ..., νJ ; Ψ(k−1)) =
N∑
i=1

J∑
j=1

τ
(k)
ij Q2i(νj ; Ψ

(k−1)),

Q3(A1, A2,θ10, ...,θJ0; Ψ(k−1)) =
N∑
i=1

J∑
j=1

τ
(k)
ij Q3i(A1, A2,θj0; Ψ(k−1)),

with

Q2i(νj ; Ψ
(k−1)) =− T log Γ

(νj
2

)
+
Tνj

2
log
(νj

2

)
−

T∑
t=1

[
log u

(k)
ijt + ψ

(
ν

(k−1)
j +D

2

)
− log

(
ν

(k−1)
j +D

2

)]

+
νj
2

[
T∑
t=1

(
log u

(k)
ijt − u

(k)
ijt

)
+ ψ

(
ν

(k−1)
j +D

2

)
− log

(
ν

(k−1)
j +D

2

)]
(A3)

and

Q3i(A1, A2,θj0; Ψ(k−1)) =
T∑
t=1

−1

2
D log(2π)−1

2
log |Σjt|+

1

2
D log u

(k)
ijt−

1

2
u

(k)
ijt (yit−µjt)

′Σ−1
jt (yit−µjt)

(A4)

M-Step

The mixing probabilities continue to updated as the average of the component membership prob-

abilities, π
(k)
j = 1

N

∑N
i=1 τ

(k)
ij . The dynamics for µjt and Σjt change to account for the fat tails.

Taking derivatives of (A4) with respect to µjt and Σjt, we obtain (17) and (19).

Parameters A1, A2 and θj0, j = 1, . . . , J can be obtained by numerically maximizing (A4), in

combination with (12), (20), (17) and (19). The degrees of freedom parameters are estimated by

maximizing (A3) with respect to ν1, ..., νJ . As before, the E-step and M-step are iterated until

convergence.
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