Dissecting the Financial Cycle with Dynamic Factor Models
Christian Menden & Christian R. Proaño
University of Bamberg
christian.menden@uni-bamberg.de

Abstract
The analysis of the financial cycle and its interaction with the macroeconomy has become a central issue for the design of macroprudential policy since the 2007-08 financial crisis. So far, the great majority of studies (see e.g., Cherchoum et al. (2011, 2012), Dedehman et al. (2012) and Strebulaev et al. (2015)) has assumed that the financial cycle can be parsimoniously represented by a small set of financial indicators related to the credit, housing and equity markets chosen in an ad hoc manner. Alternatively, this paper proposes the construction of financial cycle measures based on large data sets of macroeconomic and financial variables for the US. More specifically, we estimate three synthetic financial cycle components that account for the majority of the variation in the data set using a dynamic factor model. We investigate whether these financial cycle components have significant predictive power for economic activity, inflation and short-term interest rates by means of Granger causality tests in a factor-augmented VAR setup. Further, we analyze if the estimated financial cycle components have significant forecasting power for the prediction of economic recessions using dynamic probit models.

Keywords: Financial cycle, dynamic factor model, Granger causality, recession forecasting, dynamic probit models.
JEL Classification System: C19, C18, E32, E44, E47

Introduction

• Financial cycle (FC) has played only a minor role in mainstream macroeconomics so far.
• It is vaguely defined as the underlying ebbing and flowing of general risk sentiment that is embodied in the positive correlation of many systemic risk indicators.

⇒ Central question: Which variables represent the financial cycle?

Main Objectives
1. Estimation and interpretation of synthetic factors representing the FC.
2. Test for Granger causality to GDP growth, inflation and short-term interest rate.
3. Estimation of recession probabilities to assess early-warning indicator properties.

Econometric Methodology

Observation Equation

\[y_t = \Phi z_t + \epsilon_t \] (1)

State Equation

\[z_t = \Psi z_{t-1} + \eta_t \] (2)

⇒ Estimation via the EM-algorithm including the Kalman filter and smoother.

Empirical Application

Econometric Methodology

Observation Equation

\[y_t = \Phi z_t + \epsilon_t \] (1)

State Equation

\[z_t = \Psi z_{t-1} + \eta_t \] (2)

⇒ Estimation via the EM-algorithm including the Kalman filter and smoother.

Factor Interpretation

• Factor One = Effect of the business cycle on the term structure of interest rates.
• Factor Two = Financial accelerator dynamics.
• Factor Three = Excess financial cycle dynamics resulting from over- speculation or the inherent uncertainty of financial markets.

Conclusions

Three synthetic factors can represent the majority of the variation of 32 financial and macroeconomic variables.

• Factor One = Effect of the business cycle on the term structure of interest rates.
• Factor Two = Financial accelerator dynamics.
• Factor Three = Excess financial cycle.

All factors contain valuable information to forecast GDP, inflation and interest rates.

Inclusion of financial cycle components significantly improves the forecast accuracy of recessions.

The third financial cycle component serves as an early-warning indicator of recessions.

References