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Abstract

Financial networks could become fragile during periods of economic and financial distress, since inter-
connectedness among participating firms could transmit and amplify adverse shocks. Relying on balance
sheet data, complemented with information on interbank exposures, this paper analyzes interconnected-
ness in an advanced emerging market economy, using two complementary approaches. The first approach
focuses on the financial network topology, and finds that the financial system resembles a highly clustered
small world network, with in and out-degree, connectivity, and exposures exhibiting a (double) heavy tail
behavior, which favors the formation of strong community structure and preferential attachment in the
network. The second approach focuses on how the network topology contributes to the transmission of
shocks modeling default contagion, using balance-sheet network analysis. It finds that direct counterparty
credit exposure poses less risk to the banking system than fire-sale losses triggered by liquidity shocks.
Both approaches, either using a topological or induced system losses perspective, identify systemically
important financial institutions (SIFIs) consistently by accounting for both macro and microprudential
risk dimensions.
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1 Financial Crisis and Interconnectedness Risk

Financial crises, unfortunately, tend to occur more frequently than expected and seemingly without prior
warning. During the post-second world war period, the global economy has been shaken by several financial
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crises, including but not limited to the debt crisis in Latin America in the 1980s, the breakdown of the
European Monetary System and the collapse of the Scandinavian banking system in the early 1990s, the
Asian crisis in 1997, followed by the Russian debt default in 1998. The later contributed to the demise of
Long Term Capital Management (LTCM), a relative value hedge fund, prompting its bailout by its major
private sector counter-parties. The bailout, organized by the Federal Reserve Bank of New York, aimed
at assuaging concerns about the negative spillovers from a disorderly unwinding of LTCM’s highly levered
positions and its contagion on related counter-parties, through losses arising from direct exposures, and also
on unrelated counter-parties, from the downward pressure on funding liquidity affecting the market value of
securities holdings and the ability to roll over short-term funding (Brunermeier and Pedersen, 2009 [14]).

The demise of LTCM was a prelude to the global financial crisis in 2007-8, which highlighted dramatically
the dangers of interconnectedness risk poses to the financial system. The origins of the crisis could be traced
back to a surge of defaults in the subprime mortgage market in the United States, following a decline in house
prices in major urban areas. Given the relatively small size of the market, the policy making community
believed that problems were likely to be contained in the area, as Chairman Bernanke suggested in his
testimony to the U.S. Congress in 2007. With the benefit of hindsight, this sanguine assessment ignored
several factors, all of them linked to interconnectedness in the financial system, that amplify the initial shocks
and led to a major crisis which ultimately engulfed all major financial institutions. These factors include:.

1. Increased cross-border linkages, which facilitated major international shock spillovers. Haldane (2009)
[33], documents a fourteen-fold increase in cross-border stocks of external assets and liabilities in
eighteen advanced economies, measured relative to GDP, from 1985 to 2005.

2. Heavy reliance on complex financial instrument, which contributed to higher leverage in the financial
system and the amplification of default losses. In the run-up to the global recession, the prevailing
low rate environment encouraged market participants to boost the profitability of their investment
strategies through the use of collateralized lending including repurchase agreement (REPO) and reverse
REPO operations, collateralized debt obligations (CDO), mortgage-backed securities (MBS), and asset-
backed securities (ABS). This trend, in turn, led to heightened complexity in financial markets, making
it more difficult for regulators to assess the extent of exposures and embedded leverage both at the
system or macro-level, and at the firm or micro-level.

3. Heightened homogeneity, driven by the adoption of similar investment strategies as market participants
searched for yield and further encouraged by regulatory requirements inducing similar risk management
practices across institutions. In the face of an adverse shock, homogeneous firms react similarly. The
ensuing herd behavior could lead to a disorderly unwinding of exposures, and the fire-sale of assets
would amplify the initial shock, therefore affect market and funding liquidity adversely.

4. Inadequate understanding of the interaction between credit risk, market risk and funding risk, which
prevented market participants and authorities from assessing adequately default contagion and its
impact on liquidity and funding conditions. The situation was aggravated by the complexity of the
instruments being used, and no prior similar historical experience.

The linkage between financial crises and interconnectedness risk motivates this paper, which analyzes it
in the context of an advanced emerging market economy. We approach the analysis from two different
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perspectives. The first perspective emphasizes the topological properties of the financial network in the
economy; the second perspective uses a simulation approach to analyze default contagion based on balance-
sheet network analysis.. Before delving into the analysis it is necessary to frame interconnectedness risk and
its measurement within the broader concept of systemic risk, which we do in the next section.

1.1 Systemic Risk and Interconnectedness

The concept of systemic risk is largely associated with the fallout of financial crises, with the latter closely
associated with banking panics and the resulting drying up of liquidity in the banking system, and its
ultimate impact on real economic activity (Friedman and Schwartz, 1963 [29]). Gorton (2010) [31] offered a
more recent iteration, accounting for the interaction between the banking system and the shadow banking
system. Along this line of reasoning, Franklin and Mishkin (1995) [23] defined a financial crisis as “(an event
that) involves sharp declines in asset prices, failures of large financial and non-financial firms, deflation or
disinflation, disruptions in foreign exchange markets.” This idea feeds naturally in the definition of systemic
risk, advanced in Mishkin (1994) [40]) and Bank of International Settlements (BIS, 1994 [9]), as the risk of
potential disruptions to the funding channel and/or to the payment system in the event of a financial crisis
triggered by the default or failure of a market participant to honor its obligations. This definition highlights
interconnectedness as a source of systemic risk. Along this perspective, the U.S. Commodity Futures Trading
Commission defines systemic risk as “the risk that a default by one market participant will have repercussions
on other participants due to the interlocking nature of financial markets. Similarly, Kaufman (1995) [36]
defined systemic risk as the “chain reaction of falling interconnected dominoes.” Finally, the U.S. Federal
Reserve relates systemic risk to the disruption of payments system: “... an institution participating on a
private large-dollar payments network were unable or unwilling to settle its net debt position ... Serious
repercussions could, ... spread to other participants ... , to other depository institutions not participating in
the network, and (Board of Governors of the Federal Reserve System (2001) [11]).

But more generally, at least among macroeconomists, disruptions to payment systems or to the financial
system may not represent systemic risk, as long as the real economy continues functioning normally. Short-
lived stock market crashes such as the one experienced in the United States in October 1987 (Black Monday),
or the trillion dollar Flash Crash in May 2010, attributed to high frequency trading (Kirilenko et al, 2014
[37]), did not constitute systemic risk events. Accounting for the impact on the real sector, the Group of
Ten (2001) [32] defines systemic risk as “... the event will trigger a loss of economic value ... have significant
adverse effects on the real economy.” The European Central Bank (ECB), likewise, defines systemic risk
as a financial instability risk that is “so widespread that it impairs the functioning of a financial system
to the point where economic growth and welfare suffer materially (ECB, 2010 [22]). Billio et al. (2010)
[8] define systemic events as “any set of circumstances that threatens the stability of or public confidence
in the financial system” while the G-20 defines systemic risk as “disruptions to financial services... could
affect the real economy.” We conclude this discussion by noting that under a systemic risk perspective,
financial regulation and supervision needs to adopt a macro-prudential approach aimed at reducing risks to
the financial system as a whole, instead of the traditional micro-prudential approach aimed at mitigating
the risks of individual institutions on a stand-alone basis (see Brunnermeier et al, 2009a).

Once we settle on a definition of systemic risk, the next challenge is to measure it. Bisias et al. (2012)[10]
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documented more than 30 different ways to measure systemic risk. They can be roughly classified into two
categories depending on the nature of the shocks and/or factors affecting the financial system:

1. Type I systemic risk measures assume that financial instability arises endogenously, and can be cap-
tured ex-ante by analyzing the interaction and feedback between economic and financial factors. In
principle, these measures could help finding early warning signals based on the identification of behav-
ioral patterns in the financial system, including price and trading volume dynamics, that characterizes
the build-up of systemic risk.

2. Type II systemic risk measures assume that the failure of single firm or a group of firms generates
financial instability though knock-off effects on other firms, due to direct and indirect exposures. Since
defaults are typically considered unpredictable events, the measurement of systemic risk in this category
relies on what-if scenario analysis attempting to capture the impact of the default of a firm on others.

Within the Type II measures, there are two categories that are of interest from a regulatory standpoint. The
first one is the category of Too-Big-to-Fail (TBTF) measures, which evaluate a firm’s size relative to the
domestic and/or global financial market where it operates, focusing on its market share and substitutability,
i.e. whether other firms could provide similar services at a similar price if the firm were to cease operations.
TBTF measures assume implicitly that the failure of a dominant firm could pose a substantial threat to the
financial system and the markets where the firm operates, given its linkages to other firms, both financial
and non-financial, and the importance of the services it provides, (Laconte, 2015 [38], BCBS, 2013 [7]).

The second category comprises Too-Interconnected-to-Fail (TICTF) measures which attempt to capture the
likelihood of the failure of a single firm and its effect on the financial sector and the real economy. Focus on
these type of measures seems justified, as concerns about interconnectedness risk have shaped the response of
government officials in recent crisis episodes, as it was the case of the bailout of the insurance firm American
International Group, Inc (AIG) in the aftermath of the bankruptcy of Lehman Brothers in September 2008.

The remainder of the paper, which focuses on TICTF measures, is organized as follows. Section 2 frames
the paper’s contribution in the extant literature. Section 2.3 presents the key findings. Detailed analysis on
network properties can be found in section 3, and default mechanism can be found in section 4. Section 5
concludes. The Appendix (Sec 7) provides additional information.

2 Interconnectedness Risks

2.1 Microprudential and Macroprudential Approaches

To better understand systemic risk, it is appropriate to analyze it from both the micro and macroprudential
perspectives. At the microprudential level, the systemic importance of an individual firm in the financial
network depends on the size of its balance sheet and its capital reserves relative to the firm’s overall exposure
to other firms (or interbank exposure if we restrict the analysis to the banking system). At the macropruden-
tial level, which emphasizes the stability of the system as a whole, the topological properties of the network,
or interconnectedness among the firms, determine how likely domino effects are, and if triggered, what the
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potential damages to the system are. For simplicity, the defaults that trigger the domino effects are assumed
as exogenous events in this paper.

When studying the banking network, we used a microprudential model-free analysis that assessed how the
attributes of individual firms, such as capital buffers and the size of firms, influenced network properties
such as the distribution of connectivity measures. The model-free approach does not require specifying an
explicit default mechanism nor a contagion chain, which makes it particularly useful when detailed balance
sheet data and interbank exposure data are unavailable and a specific default contagion mechanism is either
unobservable or difficult to discern.

We complemented the microprudential analysis with a macroprudential model-based analysis that captured
the domino effect or contagion chain triggered by the default of a firm. The default mechanism, based
on the observed behavior of financial firms in past crisis events, incorporated various factors contributing
to a cascade of failures following an initial default, such as direct counterparty credit exposures, market
shocks and liquidity shortages. Hence, the approach captured the macroprudential dimension associated
with interconnectedness.

2.2 Related Literature

Several strands of the academic literature and current policy debates influence our study. The model-

free approach builds on the early work on modern network theory of Newman (2003) [43], which set the
foundations for the analysis of the topological properties of financial networks. Together with Boss et al.
(2004) [12] and Cont et al (2012) [20], this paper is among the few that analyze the empirical structure of a
financial system using real-world, highly disaggregated data on the banking sector of an advanced (emerging)
market economy. Having access to disaggregated and complete exposures helps the paper stand out from
earlier work using aggregate exposure data. By necessity, the latter relied on maximum entropy methods to
infer unobserved bilateral interbank exposures from aggregate counterparty exposures (Sheldon and Maurer,
1998 [47]; Upper and Worms, 2004 [49]; Wells, 2004 [52]; Elsinger et al., 2006a,b [25, 26]; Degryse and
Nguyen, 2007 [21]). But as pointed out by Cont et al (2012), maximum entropy methods typically assume
exposures are shared equally among all counterparts, which is at odds with data on reported interbank
exposures. As a result, maximum entropy-based studies could underestimate the likelihood and severity of
contagion and domino effects in financial networks.

Following the earlier network literature, the model-based approach builds on a numerical simulation frame-
work, first developed by Eisenberg and Noe (2001) [24], who assumed a fictitious default mechanism to
model domino effects; and Furfine (2003) [30], who assumed a more natural sequential default mechanism,
i.e. firms default one by one if the losses incurred exhaust their safety buffers. In Eisenberg and Noe (2001)
[24], following an initial default, the existence of a unique equilibrium requires all surviving firms to liquidate
their cross holdings to determine their equilibrium values, assuming all liabilities receive equal priority. Cont
et al. (2012) [20] argue that such equilibrium is unrealistic. Rather, it may be more appropriate to assume
that when firms facing a liquidity shortage unwind their portfolios, the recovery rate could be as low as
zero in the short-run. This assumption seems consistent with the protracted and lengthy bankruptcy pro-
cedures observed in practice, which forces creditors looking forward to cut their exposures rapidly to accept
low recovery rates. The sequential default algorithm of Furfine (2003) [30] bypasses Eisenberg and Noe’s
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equilibrium conditions, modeling instead the potential cascade of failures that a single default could trigger.
Furfine applied his algorithm to analyze the U.S. federal funds market. Since this market only comprises
around one-seventh of the U.S. wholesale interbank market, the results might have underestimated systemic
risk in the U.S. financial system (Upper and Worm, 2004 [49], Armantier and Copeland, 2012 [4]).

Our analysis goes some steps beyond the earlier literature discussed above. As in previous studies, it
captures the systemic risk associated with credit risk driven contagion, or primary effects. Following a round
of initial defaults, or fundamental default, the transmission of the initial shock relies only on the credit losses
resulting from the failure of debtor banks to honor their obligations. The initial round of credit losses could
cause additional banks to fail, triggering subsequent defaults. But our analysis also looks at the secondary

effects associated with the funding risk and liquidity shortages that occurred when creditor banks demand
immediate repayment from failed or stressed debtor banks. The later set of banks, facing higher funding
costs, may be forced to sell their assets at fire sale values, which in turn would reduce the fair asset and
equity value of banks holding similar assets, creating an adverse positive feedback effect or liquidity spiral
(Brunnermeier and Pedersen, 2009b [13]). We capture both primary and secondary effects, the latter linking
funding costs and fire-sale losses to the solvency of individual firms, using an extension of the balance sheet
network models of Jo (2012)[35] which in turn builds on the earlier work of Chan-Lau (2010)[15].

Finally, while this study benefits from data availability on interbank exposures, we would like to discuss
briefly alternative approaches based on market price data that could make up for the lack of exposure data.
For instance, Acharya et al. (2010) [1] and Zhou et al. (2009) [54]construct systemic risk measures based
on high frequency historical market data on credit default swap spreads and/or equity return volatility.
Chan-Lau et al (2016) [16] identify systemically important banks using partial correlation networks, where
the links between firms correspond to the partial correlation of projected probabilities of default. These
projections use information from market prices and balance sheet and income statements. One assumption
underlying these measures is that markets are sufficiently efficient, ensuring that market prices capture well
information on the risk profile of the firms analyzed, including their potential interaction during periods of
distress.

2.3 Some Selected Results

While results will be discussed in detail later, this section offers a glimpse of the main results. In this
advanced emerging market economy, the network comprised twenty five banks, and any two banks were
pairwise connected if there were counterparty exposures between them. These exposures could be related
to any of twenty seven different asset classes (see Table 2), differentiated by type of contract, currency of
denomination, and maturity. In the analysis, we used counterparty exposure data as of end-September 2010.

From the microprudential perspectives, we have examined several properties of this interbank network:

1. Network topology reveals a semi-complete network exhibiting a high degree of clustering. While the
number of potential edges or links in the network, determined by the existence of counterparty ex-
posures, could be as high as three hundred, the number of existent edges was roughly half at about
one hundred fifty, with one disconnected node. Completeness, or full interconnectedness, can be a
double-edged sword: Allen and Gale (2000) [2] argue that completeness makes the financial network
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more resilient by creating multi-dimensional connections among firms, and hence more credit channels;
at the same time, this property creates additional transmission channels for shocks during adverse
market condition, with one firm’s default affecting several firms at the same time.

2. Compared to other financial networks, banks in this economy tend to cluster closely together, exhibiting
the small world property. The global clustering coefficient of this network, which measures the number
of groups of three banks connected to each other, is around⇠0.53, well above what has been found for
Austria (⇠0.12) (Boss et al, 2004 [12]). Boss et al. (2004) [12] also points out that the Austrian network
is a small-world network, with three degrees of separation, meaning the path lengths among the nodes
are smaller than three. Originally described by Watts and Strogatz (1998) [51], a small-world network
can be created by randomly rewiring several links among the nodes of a regular ring lattice graph;
these links become the short-cuts among the originally distant nodes, which creates a short average
path length of the network. Compared to the Austrian interbank network, another emerging market
economy, Brazil, described in Cont et al. (2012) [20], presents decaying local clustering coefficient,
across nodes with increasing degrees of connection. Cont et al (2012) [20] argue that, a small diameter
(path length) is not sufficient to characterize the small-world property. Indeed, the Brazilian financial
network does not enjoy the small world property since the distribution of the local clustering coefficients
across all nodes is not bounded away from zero. In comparison, our network can be characerized as a
samll world netowrk: it has asignificantly higher local clustering coefficient (see Table 5), only slightly
larger path length than that of its random graph counterpart, and two degrees of separation, meaning
every bank in this network connects to its neighbour through one other bank at most.

3. The financial network exhibits (double) heavy-tailedness: The interbank network can be naturally
separated into a core, comprising a reduced number of institutions, and a periphery, comprising the
rest, which suggests a multi-money centre structure (Allen and Gale, 2000[2]). This is a natural
outcome for a network that exhibits a two-sided heavy-tailed distribution, where the degree measures
the number of connections a bank has. The left tail comprises banks with a small number of connections
and distant from the core, and mainly groups foreign bank branches. The right tail comprises banks
with a large number of connections, and mainly comprises domestic banks. Within the banking system,
the right tail banks are the most important (systemic) ones from an economic viewpoint. Two-sided
heavy tail distributions also support the existence of a preferential attachment effect in the network, or
in other words, highly connected notes tend to get more connected as the network expands (Barabasi
and Albert, 1997[6]). Our network connectivity and exposure distributions are similar to those of
Austrian network (Boss et al. (2004) [12]), which also have double heavy-tailedness. In comparison,
Brazilian interbank network connectivity and exposure distributions seem to have significant right tail
only (Cont et al., 2012) [20]. In comparison, German interbank network connectivity and exposure
distributions, do not exhibit significant heavy-tailedness (Roukny et al., 2014 [46]).

4. Capital ratio: Using capital ratio requirement proposed by Basel III, all banks in this network seem
to have adequate buffer. However, when applying relative exposure measures described in Cont et al.
(2012) [20], we identify several institutes at the borderline of capital adequacy. Centrality measures
also capture the SIFIs in the network in the debt and credit dimensions; in other words, the important
debtors and creditors in the banking system.
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The microprudential analysis identifies a set of core banks systemically more important than other banks
based on their counterparty exposures. The macroprudential analysis then allows us to evaluate whether
the failure of a systemic bank could impair the banking system. The sequential default analysis, based
on numerical simulations, suggest that despite the core-periphery structure and the incompleteness of the
network, bank defaults are likely to remain isolated events and would not trigger a cascade of failures, due
to credit risk alone. This result follows from the structure of the banking system, where banks counterparty
exposures are small relative to the assets in their balance sheet, and their capital buffers. Credit losses, or
primary effects, do not seem to be the main source of losses to banks, but rather the losses associated with
the secondary effects, or fire sale of assets when firms face liquidity shortages. This finding appears consistent
with empirical evidence, albeit yet scant, that fire sale of assets tend to drive losses during crises (Mitchell
and Pulvino, 2010 [41]; Merrill et al, 2013 [28]), and supports the lender of last resort role played by the
central bank. In comparison, it worths mentioning that Upper and Worm (2004) [49] estimate the bilateral
exposure in the German banking system, using balance sheet information, and measure the credit risk due
to bilateral counterparty exposure. Their results show given the safety net of institutional guarantees for
saving banks and cooperative banks, which reduces contagion risks significantly, one single bank default can
cause as much as 15% assets destroyed in the entire banking system.

3 Banking Network Topology

3.1 Data

The dataset used in the analysis comprises 25 financial institutions, including 12 domestic banks (DBs) and
13 foreign bank branches (FBs) operating in the domestic market. Among the domestic banks we included
global banks since the nature of their operations resemble those of domestic banks. This choice was justified
when later on, the analysis showed their network properties were quite similar to those of domestic banks.
Table (1)shows the market share in the banking sector of domestic banks and foreign bank branches as of
end-September 2010.

Table 1: Assets by different types of institutions, end-September 2010

Sep 2010 in local currency MM %
Domestic Banks 95,255,691 81.16%

Foreign bank branches 22,106,349 18.84%

Total Banking system 117,362,039 100%

For these banks there were detailed information on interbank exposures disaggregated into 27 different asset
classes as of end September 2010, as shown in Table 2. The different asset categories distinguish between:

• Overnight deposits (denominated in domestic and foreign currencies)

• Short-term deposits up to one year (denominated in domestic and foreign currencies)

• Repos (denominated in domestic and foreign currencies)
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• Derivatives (denominated in domestic and foreign currencies)

• Interbank claims (denominated in domestic and foreign currencies)

Within these categories, there were additional subcategories corresponding to different maturities: overnight,
less or equal to one year, or more than one year. The dataset, hence, consists of a three-dimensional matrix
with dimensions 25⇥25⇥27. In addition, we have the capital and levels and detailed balance sheet structures
of all the institutions in the network shown in Table 2.

Figure 1 provides a graphical visualization of the banking network. A quick glance at it highlights how
closely this network resembles a multi-money center network (Allen and Gale, 2000,[2]), that is, a network
where a few banks, i.e. banks B1, B3, B5, B7, B9 and B10, have a central role connecting all the banks in
the network. A couple of banks are just weakly connected to the network, i.e. B13 and B6, while one bank is
completely disconnected (B24). While we analyze it formally later, the graphical evidence already suggests
a network with a high degree of clustering.

Figure 1: Visualization of the network of an advanced emerging economy in Sep 2010: n = 25. number of
links m= 350. Please note node size and distance are not of scale. Links are undirected.
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Table 3 on page 13 shows the banks’ regulatory capital ratios, or equity to risk-weighted assets. All banks
in our network exceed the minimum regulatory requirement of 8 percent proposed by the Basel Committee
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Table 2: Asset classes, maturity and currency denomination
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(whereas investors typically favour 10% minimum). Government bonds, which carry a zero risk weight,
comprise the larger share of assets held by the banks. Following Cont et al (2012) [20] we also report other
useful size and several relative exposure (RE) measures. These measures include:

1. Total Capital (TC
i

)= Tier 1 + Tier 2 Capital for bank i. E
i

is the total exposure of bank i , essentially
the total interbank liabilities of bank i in the network. TC = Core Capital + Provisions + Subordinated
bonds + Minority Interest. Total Capital Ratio TCR

i

= TC

i/RWA

i

. RWA
i

is the risk-weighted Assets of
bank i.

2. Tier 1 Capital Ratio T1CR
i

= Tier 1Capital

i/RWA

i

. Prudential regulations stipulate that this ratio exceeds the
minimum regulatory capital requirement.

3. Basic Capital RatioBCR
i

= Tier 1Capital

i/A(i) . A(i) is the un-weighted assets of bank i.

4. The Cont et al (2012)[20] measures of relative exposure are: (1).RE1
i

= TC

i/E
i

(2). RE2
i

= Tier1C
i/maxEi,j.

(3).RE3
i

= Tier1C
i/E

i

+RWA

i

.

5. We calculate bank size as percent of assets in the whole banking network, as comparison. Please note B24 has
no interbank exposure.

Conflicting conclusions can be drawn from observations: B12, 13 and 14 have very large TCR, and T1CR ratios. This
is likely due to they hold large amount of government bonds as assets, which has a zero or low risk. Non-targeted
capital ratios adopted by regulators (TCR, T1CR and BCR) do not show insufficient capital buffer in the banking
network. However, relative exposure measure RE1 show B3, 9, 12, 14 and 18 have relatively thin capital (<1), with
the capital not enough to cover its total exposure. RE2(> 1) shows all banks have sufficient capital to cover its
largest counterparty exposure. Using RE3 as an alternative capital ratio to target high concentration nodes, there
are quite a few nodes that have relatively thin capital ratio (RE3 < 10%), B1, 2, 3, 5, 7, 8, 16, 20 and 25. Among
these nodes, B1, 3, 5, 10 are large in size (Size% > 10), which account for almost 70% of the total assets.

3.2 Network Properties

3.2.1 Degrees of Connection

This section analyzes the topological characteristics of the banking network. An interbank network can be
modeled as a weighted directed graph, defined as a triplet I = (V, E, c),where:

• V is a set of financial institutions, each is denoted by number n = 1, 2, 3, ...

• E denotes a matrix that represents a bilateral exposure data between each pair of the counter-parties.
E

i, j

represents the exposure of bank i on bank j, in other words, how much bank j owes bank i. It is
the short term maximum loss of bank i caused by an exogenous default of bank j

12



Table 3: Capital and Relative Exposure Measures, end-September 2010. Critical values are highlighted: Blue
highlights mean sufficient or large. Red highlights mean insufficient or small. We bold font the Domestic Banks
(DBs), most of which are the core (nodes that have large connectivity and exposure) of the network shown in Figure 1
on page 10. Here, for simplicity, we define money centre with connectivity of 75 percentile or above. We denote the
core with a star (*). Please note that some foreign bank branches that have strong presence in this economy also act
like core, e.g. B4*. They are consistent in the paper, in Table 5 on page 17, Figure 6 on page 29 and 8 on page 31.

TCR (%) T1CR(%) BCR (%) RE

1
i

RE

2
i

RE

3
i

(%) Size(%)
B1* 13.64 8.79 6.72 5.6295 14.58 8.58 17.45

B2* 11.74 7.43 5.24 1.8454 6.39 6.99 0.75

B3* 11.85 8.01 4.8 0.9941 1.96 7.16 16.50

B4* 15.42 12.60 9.09 2.8797 10.02 11.96 4.73

B5* 13.64 9.38 7.01 4.4535 10.64 9.10 12.24

B6 59.21 58.95 54.18 19.8519 67.14 57.25 0.03

B7* 12.82 8.76 6.76 4.5874 14.58 8.52 6.46

B8 12.22 9.23 6.74 8.8715 24.03 9.11 2.77

B9 13.45 13.45 6.37 0.4977 2.52 10.59 1.25

B10* 14.52 10.50 7.2 5.2123 18.80 10.22 20.80

B11* 13.88 12.50 9.08 3.3736 6.38 12.01 3.23

B12 126.39 126.39 29.75 0.7344 3.41 46.45 0.47

B13 124.36 124.36 64.55 2.6744 5.46 84.89 0.02

B14 115.79 115.79 22.83 0.7847 4.32 46.77 0.08

B15 88.91 88.78 37.97 3.6271 11.65 71.30 0.29

B16* 12.96 8.77 6.22 2.2496 8.17 8.29 2.75

B17 19.37 14.08 10.27 1.9690 5.78 12.81 0.83

B18* 28.9 28.90 8.26 0.4861 2.98 18.12 0.86

B19 16.44 16.42 13.36 76.4129 86.48 16.38 0.21

B20 10.75 10.75 6.4 1.3462 3.18 9.96 0.51

B21 25.52 25.52 13.68 1.2815 3.14 21.28 0.33

B22 47.12 47.40 19.42 2.8666 9.16 40.67 0.22

B23 15.04 15.04 13.06 3.3545 13.06 14.40 0.17

B24 192.43 192.43 70.53 - - 192.43 0.16

B25* 13.13 8.57 6.26 3.3710 9.54 8.25 6.88
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Table 4: Summary of connectivity measures

Summary k

in

(i) k

out

(i) k(i) A(i) MM$ L(i) MM$

Mean 14 14 28 171500.65 171500.65

Standard deviation 7 6 12 281567.60 242075.25

Minimum 0 0 0 0.00 0.00

10th percentile 3 5 8 846.36 185.82

30th percentile 10 11 22 28043.90 8811.81

50th percentile 17 16 33 70042.82 85702.52

75th percentile 18 19 36 219226.28 234782.75

Maximum 23 22 45 1374956.94 929915.91

• c

n

is the capital of each institution in the network, where n = 1, 2, 3, ... Capital acts as the first buffer
to absorb losses

In a directed graph, the degree of a node is defined as the number of edges directed towards or originated
from a node. If the edge originates from a note it is counted as out � degree, K

out

, if the edge is directed
towards the node, it is counted as in� degree, K

in

. For i, j 2 V ,

• K

in

(i) =
P

j2V

1

E

ij

>0 measures the number of institution i’s debtors.

• K

out

(i) =
P

j2V

1

E

ji

>0 measures the number of institution i’s creditors.

• The degree of connectivity is measured by K

i

= K

in

(i) +K

out

(i).

• The total interbank assets for institution i is denoted as A(i) =
P

j2V

E

ij

• The total interbank liabilities for institution i is denoted as L(i) =
P

j2V

E

ji

The summary statistics are presented in the table below.

3.2.2 Density, reciprocity, eccentricity and diameter

Density: The connectivity of a network, p, is the unconditional probability that two nodes share one
link. Density refers to the ratio of the number of edges E to the number of possible edges. Suppose there
are n nodes and m directed links, p = m

n(n�1) .
1
n

 p  1. At its smallest value, 1
n

, the network is a
tree shaped network. At its peak value, 1, the network is a complete network, meaning every node has
interbank exposure in both directions (in and out) to every other node in the network. In our network,
n = 25, m = 350, density = m

n(n�1) = 350
25⇥24 = 0.5833. As a comparison, the smallest value of density in a

network with the same number of nodes (n = 25) to out network is density

min

= 1
n

= 1
25 = 0.04.

Reciprocity: Reciprocity refers to the fraction of links connecting the same two nodes in the network, and
have both direction (in and out), which is denoted as r here. In our network, r = 89

350 = 25.43%. This means
about one quarter of the links are reciprocal. In other words, one quarter of the interbank exposure are
bilateral among all the pairs of counter-parties.

Eccentricity: The eccentricity of node i represents the maximum distance to any other node in the network,
is denoted as "

i

= max

j

d

ij

. In our network, since bank 24 is not accessible for all the other banks in the
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network, the eccentricity of any bank i becomes 1. However, if we ignore bank 24, the eccentricity of each
bank i can be calculated (Table 9 on page 33). The diameter of a network is defined as D = max

i

"

ij

.
Similarly to eccentricity, since bank 24 is not accessible from other banks, D is 1. However, if we ignore
node 24, D = 2. The results are presented in Table 5.

3.2.3 Random graph or small-world?

Let n be the number of vertices in a graph and k be average edges of any vertex has. Note that in a regular
ring lattice type of random graph with rewired probability p �! 0, based on the same vertex set of our
network (excluding B24), its average path length L s n

2k � 1 , andC s 3
4 . As p �! 1, the graph becomes

a completely random rewired graph, with L ⇡ L

random

t ln(k)
ln(n) , andC ⇡ C

random

⇡ k

n

. In the two limiting
cases, the regular lattice graph is a highly clustered, large world, with L grows linearly with n, whereas the
random graph with p = 1 is a poorly clustered, small world, where L grows only logarithmically with n. The
small-world phenomenon appears when p grows from 0 to 1, adding a few “short-cuts” between otherwise
distant nodes shortens L(p), while C(p) remains high (Watts and Strogats, 1998) [51]). It is defined by
L(p) & L

random

, but C(p) > C

random

.

Distance The analysis of the network first requires calculating the distance from node i to node j, defined
as d

i,j

, which is the length of the shortest the path between two nodes. If there is a link directed from node
i to node j, d

i,j

= 1. Table 9 shows the shortest paths between all pairwise combinations of banks. Since
the distance between most pair of banks is either 1 or 2, the banking network is well connected. Bank 24 is
not accessible at all.

Average Path Length The average path length of node i within the network is defined as l
i

= 1
/(n�1)

P
j 6=i

d

i,j

.
In this banking network, the average path length is Inf , as there is a disconnected bank, namely bank 24.
However, if we form a sub network except for bank 24 (the disconnected vertex), the average path length
for each vertex i, L̄

i

, can be calculated, as shown in Table 5. The average path length for our network,
L̄, is 1.3659. This is slightly larger than L

random,n=25,k=14 = 1.2197, and L

random,n=24,k=14 =1.2042. We
calculate the results when n=24 (the sub-graph excluding B24) as a comparison.

Clustering Coefficient Classic graph theory refers clustering coefficient to the degree to which vertices in a
graph cluster together, that is to concentrate in groups with a high density of links. Empirical research show
that in most real-world complex networks such as genetic networks, social networks and internet, vertices
tend to have higher clustering coefficients than in the random network of Erdős and Rényi (1959)[27] (Watts
and Strogatz, 1998 [51]). There are several different measures of clustering coefficients:

Global Clustering Coefficient It measures the overall clustering effect in the network (see Luce and Perry
(1949) [39] and Wasserman and Faust (1994) [50]). It is calculated as follows:

C

global

= 3⇥number of triangles
number of connected triplets of vertices = number of closed triplets

number of connected triplets of vertices
The global clustering coefficient result for our network (excluding node 24) is 0.5297. This shows our
network is higher clustered compared to the Austrian network analyzed by Boss et al. (2004) [12], which
has C

global

= 0.12± 0.01 (mean and standard deviation across 10 datasets).

Local Clustering Coefficient (LC1) It is a local version of the above global clustering coefficient measure
(Newman, 2003 [43]) and defined as follows: C

i

= number of triangles connected to vertex i
number of triples centered on vertex i
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Results are presented in Table 5 on the following page (LC1).

Local Clustering Coefficient (LC2) This is another measures of local clustering coefficient developed by
Watts and Strogatz (1998) [51], which is calculated as follows: Suppose that a vertex i has k

i

neighbours;
then at most k

i

(k
i�1)/2 edges can exist between each pair of two neighbours in the network. In other words,

that is when every neighbour of vertex i is connected to every other neighbour of vertex i. Let C

i

denote
the fraction of these maximum possible edges that actually exist. C̄ = 1

n

P
n

i=1 Ci

as the average of C
i

over
all i.

Table 5 (LC2) presents the results for the local clustering coefficients. The average local clustering co-
efficient of our network is 0.8267 (except for bank 24). Including Bank 24, the average local clustering
coefficient is 0.7936. This is significantly higher than if the graph is a random graph of the same vertex set
C

random,n=25,k=14 = 0.56, C
random,n=24,k=14 = 0.5833.

Our network is indeed a small world network as defined in Watts and Strogats (1998) [51], due to its higher
local clustering coefficients, and only slightly larger APL, compared to its corresponding random graph.

3.2.4 Centrality

Eigenvector centrality is measured as follows:

Consider a graph G := (V,E) with |V | number of vertices. let A = (a
v,t

) be the adjacency matrix. If
a

v,t

= 1, vertex v is linked to vertex t, and a

v,t

= 0 otherwise. The centrality score of vertex v can be
defined as: x

v

= 1
�

P
t2M(v) xt

= 1
�

P
t2G

a

v,t

x

t

where M(v)is a set of the neighbors of v and � is a constant.
This can be rearranged and rewritten in vector notation as the eigenvector equation Ax = �x. Centrality
measures the importance of nodes within a network. The result is presented in Table 5.

3.3 Distribution of connectivity measures

3.3.1 Parametric distribution fitting

Analyzing the distribution of connectivity and exposure further our understanding on interbank network
structure. For K

in

,K
out

, K and Exposure A we fit the following parametric distributions:

A. Lognormal distribution with mean µand standard deviation �

pdf: y = f(x|µ, �) = 1
x�

p
2⇡

e

�(ln x�µ)2

2�2

B. Extreme Value (EV) Distribution: location parameter µ and scale parameter �;

pdf 1: y = f(x|µ, �) = �

�1
exp(x�µ

�

) exp(�exp(x�µ

�

))

C. Weibull Distribution: location parameter a and scale parameter b. Please note that if T has a Weibull
distribution with parameters a and b, then log(T ) has an extreme value distribution with parameters µ =

log(a) and � = 1/b.

pdf: y = f(x|a, b) = b

a

(x
a

)b�1
e

�(x/a)b

D. Truncated Pareto distribution fitting, which is a semi-parametric fitting process, discussed in detail in
the section 3.3.2

1This form of EV distribution is suitable to measure the minimum values of a distribution whose tail decays exponentially
fast, such as normal distribution. To model the largest values, one may use the negative of the original values.
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Table 5: Network Property Summary Table. Significant values are highlighted in red. Eccentricity (Ecc).
Average Path Length (APL): Core money centres of the network (APL<1.20) include B1, 4, 5, 8, 10, 11, 25.
The rest are peripheral nodes. Local clustering coefficients (LC1 and LC2). EC (Eigenvector Centrality) Ej,i
(un)wgt is the importance of banks as debtors. EC Ei,j (un)wgt is the important of banks as creditors. “wgt”
is weighted version that account for the weights of the flows of debts/credits. High concentration nodes are
highlighted in red by a critical value of the 75 percentile of the series, which is 0.1394. B1, 3, 5, 7, 9, 10,12,
18 and 25 are large debtors; B1 3 5 10, 12 and 25 are large creditors.

Ecc. APL LC1 LC2 EC Ej,i (unwgt) EC Ei,j (unwgt) EC Ej,i (wgt) EC Ei,j (wgt)

B1* 2 1.0435 0.1696 0.6829 0.2567 0.2525 0.1500 0.3400

B2* 2 1.2174 0.205 0.8307 0.2353 0.2317 0.0225 0.0173

B3* 1 1 0.154 0.6167 0.2638 0.2641 0.2699 0.7799

B4* 2 1.1739 0.2112 0.8055 0.2341 0.2159 0.0630 0.1241

B5* 2 1.1304 0.1795 0.7323 0.2528 0.2523 0.5267 0.2058

B6 2 1.8261 0.0972 0.7353 0.0353 0.0738 0.0002 0.0010

B7* 2 1.2609 0.1857 0.8127 0.2287 0.2437 0.2177 0.1131

B8 2 1.1304 0.2472 0.8947 0.2437 0.2113 0.0594 0.0240

B9 2 1.2174 0.2268 0.9127 0.2283 0.2173 0.1696 0.1284

B10* 2 1.1304 0.1776 0.7372 0.2526 0.2525 0.5875 0.3069

B11* 2 1.1739 0.2095 0.7850 0.2410 0.2215 0.0549 0.0687

B12 2 1.2609 0.2379 0.9064 0.2307 0.2113 0.2439 0.1726

B13 2 1.913 0.0238 0.8250 0.0316 0.0650 0.0000 0.0017

B14 2 1.8696 0.0321 0.8333 0.0410 0.1322 0.0000 0.0103

B15 2 1.4348 0.2482 0.8792 0.1777 0.1518 0.0147 0.0192

B16* 2 1.2609 0.1849 0.8157 0.2287 0.2480 0.0773 0.0678

B17 2 1.4348 0.129 0.8075 0.1733 0.2465 0.0065 0.0343

B18* 2 1.2174 0.2317 0.8881 0.2435 0.2255 0.1563 0.1079

B19 2 1.6087 0.3516 0.8864 0.1203 0.0686 0.0007 0.0004

B20 2 1.6522 0.1333 1 0.1198 0.1042 0.0075 0.0330

B21 2 1.5652 0.1759 0.9835 0.1444 0.1905 0.0087 0.0435

B22 2 1.3043 0.1989 0.848 0.2199 0.2235 0.0090 0.0132

B23 1 1 0.2316 0.8462 0.1225 0.1049 0.0001 0.0017

B24 Inf - - 0 0 0 0 0

B25* 2 1.1304 0.1956 0.7741 0.2477 0.2404 0.3233 0.1965

mean(ex. B24) 1.9167 1.3315 0.1849 0.8266 - - - -

mean (inc. B24) Inf - - 0.7936 - - - -
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E. Normal-Laplace (N-L) and Double Pareto Lognormal (dPlN) Distributions, discussed in detail in the
Appendix.

Figure 2 shows the fitted distributions with the empirical pdf, while the estimated parameters are presented
in Table 6. The data suggests, as evident by the titling point in the plots reported in Figure on page 22
that the dPlN distribution best fit the data. This distribution falls somewhere in between lognormal and
Pareto distribution (see Reed and Jorgensen, 2004, [45] and the statistical appendix). Our choice of the dPlN
distribution is inspired by the core-peripheral network structure displayed in Figure 1, suggesting possible
two tail in both ends of the connectivity and exposure distributions. This distribution was first discovered
by Mitzenmacher (2001) that “have a lognormal body and Pareto tail” (Reed and Jorgensen, 2004) [45].

Equation 31 on page 36 and Equation 32 on page 36 show the limiting cases for the paretian tail indices when
the distribution approaches right (1) and left (0), respectively. The results of our network distribution are
presented in Table 6d on page 20. We can view these results as the paretian tail index estimates in the limiting
cases (should the network expands), and they are comparable to the results presented in the truncated Pareto
case in Section 3.3.2 on page 21. This is an evidence of possible community structure and hierarchy within
our network.
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Figure 2: Fitted lognormal v.s. empirical pdf of k
in

(i),k
out

(i) , k(i) and Exposure A (in 1010 local currency)
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Table 6: Distribution parameter estimates of K
in

, K
out

, K and exposure A

i

(⇤in 1010 of domestic currency).
CI refers to confidence intervals. nll refers to negative log-likelihood. The returned value of ADh = 0 is
the hypothesis test result, which indicates that Anderson-Darling test fails to reject the null hypothesis of
the respective assumption of distributions at the default 5% significance level, and vice versa. cv refers to
AD critical values.

(a) Log-normal distribution fitting: As expected at 5% significant level, A-D test reject the hypothesis of lognormal distribution for
K

in

, K
out

, K and A.

µ CI

↵=5% � CI

↵=5% nll AD h p

AD, 5% AD statistics cv
K

in

2.7298 [2.5894, 2.8702] 0.3084 [0.2360, 0.4453] 61.9218 1 0.009 1.0073 0.7553
K

out

2.5354 [2.2622, 2.8085] 0.6469 [0.5028, 0.9075] 83.9508 1 0.0092 1.0131 0.7273
K 3.2712 [3.0547, 3.4879] 0.5129 [0.3986, 0.7195] 96.0405 1 0.0037 1.1668 0.7262
A 24.7964 [23.9938, 25.599] 1.9007 [1.4772, 2.6662] 644.0808 1 0.0000 2.8928 0.7262

(b) Weibull distribution fitting: The A-D test shows strong evidence to reject the null hypothesis of Weibull distribution in the
case of K

in

, K
out

, K. However, fail to reject the hypothesis of Weibull distribution in the case of Exposure A. We further tests
goodness-of-fit of the extreme value distribution to the distribution of log(A) in tab 6c.

a CI

↵=5% b CI

↵=5% nll AD h p

AD, 5% AD stat cv
K

in

17.4285 [15.9514, 19.0424] 5.0391 [3.5145, 7.2250] 57.9402 1 0.0026 1.2296 0.7387
K

out

16.2917 [13.9821, 18.9827] 2.71171 [1.9056, 3.8589] 77.5211 1 0.0013 1.3490 0.7393
K 32.6124 [28.5729, 37.2229] 3.1478 [2.2181, 4.4671] 91.1131 1 0.0000 1.4109 0.7387
A 13.6895⇤ [7.3731⇤, 25.4171⇤] 0.6807 [0.4989, 0.9288] 642.1669 0 0.7832 0.2440 0.7387

(c) Extreme value distribution fitting: The A-D test does not reject the null hypothesis of extreme value distribution with moderate evidence
(p-value at 5%) in the cases of K

in

, K
out

, K, whereas, it rejects the null hypothesis in the case of Exposure A, with strong evidence. For
the distribution of log(A), A-D test shows no evidence of rejection. Together with evidence shown in sub-table 6b, it is intuitive that this
specific class of extreme value distribution fits well with the logarithmic form of the exposure distribution, and the distributions of in and
out-degree and connectivity.

µ CI

↵=5% � CI

↵=5% nll AD h p

AD, 5% AD stat cv
K

in

16.662 [14.883 18.441] 4.3245 [3.1260 5.9827] 76.9965 0 0.1163 0.5984 0.7393
K

out

16.9521 [14.9619, 18.9422] 4.8353 [3.5034, 6.6735] 79.6616 0 0.1172 0.5972 0.7393
K 33.4891 [29.8050, 37.1733] 8.9545 [6.4834, 12.3676] 95.1290 0 0.0511 0.7358 0.7393
A 34.3361⇤ [15.2187⇤, 53.4534⇤] 45.6317⇤ [35.9967⇤, 57.8456⇤] 705.5769 1 0.0000 4.8015 0.7393

log(A) 25.6425 [25.0237, 26.2613] 1.4691 [1.0767, 2.0044] 47.0536 0 0.7832 0.2440 0.7387

(d) N-L and dPlN distributions fitting using MLE. Please note that,
as we understand, and evidences shown in sub-table 6b and 6c, we are
fitting distribuiton of in and out-degree and connectivity to Normal-
Laplace distribution, and we are fitting Exposure to Double Pareto Log-
normal distribution. Please note that dPlN is the exponential form of
the N-L distribution.

↵ � ⌫ ⌧ nlog-likelihood
K

in

(NL) 3.9189 0.1604 20.1082 1.3260 457.3975

K

out

(NL) 2.9628 0.1604 20.4802 1.7901 273.0211

K (NL) 1.1735 0.0887 39.5836 3.3891 235.0851

A (dPlN) 1.8732 0.5210 26.1820 0.1651 1.6204e+03
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3.3.2 Semi-parametric heavy-tail distribution fitting

The failure to fit a lognormal distribution to the connectivity measures steers the analysis towards the
detection of heavy tails, or the so-called scale-free property, which can be assessed from an analysis of
log-log plots of the complementary cumulative distribution function (CCDF), which is simply given by
P(K

out

� k), P(K
in

� k), P(K � k) and P(A � a) for the out-degree, in-degree, degrees of connectivity and
exposure respectively. The scale-free property occurs quite often in nature, i.e. earthquake intensity, and
man-made phenomena, i.e. city population, income distribution, etc. Many known large complex networks
such as internet, actors collaboration, genetic networks, exhibit scale-free, or power-law distribution in their
connectivity. This is due to two generic characteristics: (i) networks expand continuously as new vertices
enter the system, and (ii) new vertices have preferential attachments [6]). In interbank networks the scale-free

property is present in the Austrian and Brazilian networks (see Boss et al. (2004) [12] and Cont et al. (2012)
[20]). Preferential attachments in interbank network refers to the phenomenon that new banks entering the
network tend to connect to banks that already have more links to other neighbours. In a scale-free network,
the first two moments of the distribution, the mean and standard deviation, are not enough to represent the
empirical distribution of the data since the density of the distribution is heavily weighed in the right tail, as
implied by the power-law distribution: p(x) s x

�↵, where ↵ is the exponent or scaling parameter. Normally,
2 < ↵ < 3, with some exceptions. The analysis of empirical data sets finds that above a minimum threshold
value, x

min

, the tail of the distribution follows a power-law (Choromanski et al., 2013 [18]; Onnela et al.,
2007[44]).

Detecting heavy tails and estimating the parameters of a power law distribution is relatively difficult. Tra-
ditional least squared fitting, developed by Pareto’s work in 19th century (Arnold, 1983 [5]), can produce
inaccurate results. Clauset et al (2009) [19] have suggested combining maximum likelihood estimation (MLE)
with goodness-of-fit tests such as Kolmogorov-Smirnov (K-S) statistic and likelihood ratios.

We follow Clauset et al. (2009) [19] in our analysis, and use MLS with K-S Statistics, with adjustment
to finite sample. Table 7 shows the key statistics, and Figure 3 shows the log-log plots of the CCDF of
K

in

,K

out

,K and exposuresA, and the corresponding fitted power law distribution. According to Clauset
et al. (2009) [19], when the sample size n . 100, and p-values for the tested distributions are above our
threshold of 0.1, the power-law hypothesis cannot be ruled out. Our sample size, however, is very small
which makes difficult for the test to single out the true power-law distribution from others, e.g. exponential,
lognormal etc. This problem disappears as the sample size increases since the p-values for the non-power-law
distributions drop off. Hence, even if the data set is sampled from a power law distribution, the small data
sample prevents a good fit, which is evident by the large standard deviations of the parameter estimates
in Table 7.Nonetheless, the clear and distinct double tail features shown in Figure 3, exhibit two regions in
connectivity and exposure measures that could be fitted with power. Overall, the tail indices in our interbank
network where prominent with statistical significance (K-S test p value > 0.1*).
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Table 7: Key Statistics of MLE and K-S for K

in

(i),K
out

(i), K(i) andA(i) (**in 108 local currency). Data
is for Sep 2010. This table is accompanying Figure 3. k

in,min

, k

out,min

, k

min

are selected by the fitted
distributions that have the minimum of K-S goodness-of-fit statistics (D). We use the hatted parameters for
estimation of the (unhatted) true (unobserved) variables; subscript 1 and 2 denote left and right tail statistics
respectively: ↵̂1 and ↵̂2 are the estimated left and right tail indices, �̂(↵̂1) and ↵̂2 are the estimated standard
deviation of ↵̂1 and ↵̂2. This is equivalent to the Hill (1975) [34] estimator. Limit1 is the upper limit of the
data analysed as this is a truncated Pareto distribution (selected based on observation of Figure 3 ), and it
is only defined for the left tail in this test. The right tail is the natural upper limit of the entire distribution.
L1 and L2 are the log-likelihood estimates for left tail and right tail distribution. p1 and p2 are the p-values
of K-S test (when larger than 0.1 - significant*). Large ↵̂ and �̂(↵̂) may be caused by the small sample bias.
Further data will be collected to verify the test results.

Left tail statistics
k

in

(i) k

out

(i) k(i) A

⇤⇤
i

↵̂1 1.4792 1.1917 1.2875 1.1949

�̂(↵̂1) 0.3038 0.6825 0.6685 1.1554

k̂

in,min 1 5 2 7 4**

Limit1 12 15 30 1630.1722**

L1 -92.2793 -110.2908 -110.5894 -215.2695

p1 0.7430* 0.2150* 0.3030* 0.0000

D1 0.4479 0.5791 0.3189 0.3646

Right tail statistics
k

in

(i) k

out

(i) k(i) A

⇤⇤
i

↵̂2 4.7500 4.7333 4.7500 2.5421

�̂(↵̂2) 0.6787 0.6542 0.6744 1.1813

k̂

in,min 2 15 16 32 1630.1722

Limit2 - - - -

L2 -58.4769 -45.9618 -44.0562 -61.4525

p2 0.002 0.007 0.0660 0.9430*

D2 0.1882 0.1940 0.2423 0.1005

Figure 3: Log log plot of ccdf of in-degree, out-degree and degree of connectivity and exposure in Sep 2010

(a) K

in

100 101 102

K
in

10-2

10-1

100

P
r(

K
in
≥

 k
in

,m
in

)

Log-log plot of Out-degree K
in

 in Sep 2010

α
1
 = - 1.4792

α
2
 = - 4.7500

(b) K

out

100 101 102

K
out

10-2

10-1

100

P
r(

K
o

u
t≥

 k
o

u
t,

m
in

)

Log-log plot of Out-degree K
out

 in Sep 2010

α
1
 = - 1.1917

α
2
 = - 4.7333

(c) K

100 101 102

K

10-2

10-1

100

P
r(

K
≥

 k
m

in
)

Log-log plot of Out-degree K in Sep 2010

α
1
 = - 1.2875

α
2
 = - 4.7500

(d) Exposure (A)

100 105

A

10-2

10-1

100

P
r(

A
≥

 A
m

in
)

Log-log plot of Exposure A in Sep 2010

α
1
 = - 1.1949

α
2
 = - 2.5421

22



4 Systemic Risk Analysis in a Balance-Sheet Framework

While an examination of the topological properties of the interbank network is useful to determine the degree
of interconnectedness among banks, and to make qualitative inferences about systemic risk, it is not enough
to quantify systemic risk. Henceforth, we shift the focus to the analysis of systemic risk within a balance-
sheet network framework, which can capture how connectivity affects the transmission of defaults within the
network.

4.1 Default mechanism

A default event occurs when a bank is unable to fulfill its financial obligation, i.e. failure to repay principal or
interests on contractual obligations, or inability to provide a scheduled loan as agreed with a counter-party.
In theory, a institution fails when it becomes insolvent, i.e. its capital buffer is wiped out by credit and/or
market losses. These losses can be triggered by exogenous events or macroeconomic shocks affecting the
institution’s earnings.

Prompt corrective action frameworks, however, suggest that insolvency may not be the most appropriate
default event as regulatory intervention may occur prior to insolvency (Chan-Lau and Sy, 2007 [17]). For
practical purposes, therefore, the default event is better defined as the point when the capital reserves of a
bank fall below a minimum requirement established by the regulatory authority. For simplicity, we define a
default event as the institute’s failure to meet an arbitrary minimum capital requirement of 7 percent in our
model. .

The balance-sheet network analysis follows Jo (2012) [35], which expands on Chan-Lau (2010) [15]. Con-
ceptually, given the balance sheet of banks in the network at a given point in time, including interbank
exposures, it subjects banks to credit losses and funding losses driven by the pre-specified default of one
bank (or set of banks). Cash outflows and funding losses are linked to the solvency of the financial institution,
representing liquidity and solvency risk.

The default simulation, illustrated in Figure 4c runs as the following steps:

• A set of defaulted institutions is defined as follows: D = {i : C
i

� L

i

< C

r

i

(1 + b

i

)}. where C

i

is the
capital held by the institution i, L

i

is the institution’s loss, Cr

i

minimum threshold of capital required
by regulator for institution i, and b

i

is an additional capital buffer.

• Credit loss arises with counter-party defaults: Losses from claims on the defaulted institutions. In the
case of a default by institution h, the exposure from institution i toh can be expressed as E

ih

. With
the defined defaulted set of D, the credit loss (CL

i

=
P

h2D

E

ih

�), where the loss given default (LGD),
� is computed through exogenous default mechanism by Chan-Lau (2010) [15].

• Funding losses are calculated through a complex mechanism: To repay claims from defaulted (creditor)
institutions, debtor institutions must be able to refinance through two sources: (1) sell part of its assets,
or (2) get fundings from other alternative creditors. Under normal market condition, the troubled
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Figure 4: Replacement rate and incremental funding cost rate

(a) replacement rate (b) Incremental funding cost loss ratio

(c) Default contagion mechanism. CRRW (Capital ratio risk weighted)
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institution can sell its liquid assets at market price and can find alternative creditors easily. However,
under stress scenarios, the troubled institution would have to sell its assets at fire sale prices and/or pay
considerable additional funding costs to seek refinance. The funding losses are computed as follows:

1. After initial defaults, from defaulted set defined by D, institution i (as a creditor of the defaulted set
D) would collect

P
h2D

E

hi

from D. This amount is assumed to be withdrawn completely.

2. Institution i then replaces a part of cash outflow with funds newly borrowed from alternative creditors,
and the replacement amount can be expressed by �

P
h2D

E

hi

(0  �  1), where � is the replacement
rate.

3. The difference between fire-sale prices and book values would induce losses for institution i. This is
calculated by the price of liquid assets and illiquid assets and their loss rates. Let q denote fire-sale
loss rate for liquid assets, and z define loss rate for illiquid assets2. Cash generated from fire-sales of
liquid assets a

q

i

is a

q

i

(1� q).

(a) If the cash outflow can be covered by selling liquid assets, no illiquid assets are to be sold. Such
condition can be written as (1 � �)

P
h2D

E

hi

 a

q

i

(1 � q), institution i would sell a part of its
liquid asset equivalent to the amount of (1 � �)

P
h2D

E

hi

/(1 � q), then it would take a loss of
(1� �)

P
h2D

E

hi

⇥ q

/(1�q). The fire sale losses (FSL

i

) can be written as:

FSL

i

= Min


(1� �)

X

h2D

E

hi

, a

q

i

(1� q)

�
·

q

1� q

(1)

(b) If the cash outflow cannot be recovered by selling illiquid assets, (1 � �)
P

h2D

E

hi

> a

q

i

(1 � q),
then institution i has to sell illiquid assets3. The fire sale losses (FSL

i

) can be written as:

FSL

i

= Min


(1� �)

X

h2D

E

hi

, a

q

i

(1� q)

�
·

q

1� q

+Max


(1� �)

X

h2D

E

hi

� a

q

i

(1� q), 0

�
·

z

1� z

(2)

4. Except for fire sale losses, an increase in funding costs can cause funding losses during the refinancing
process for institution i. Jo (2012) [35] assumes that short-term debts are from two sources: (1)
from the defaulted institutions, and the amount can be expressed as �

P
h2D

E

hi

; (2) from the non-
defaulted institutions, which can be written as

P
k/2D

E

S

ki

. Short term debts are considered extensively
here because the more an institution replies on them, the more chances it would be subject to liquidity
risk. Hence the funding cost loss (FCL

i

) can be written as

FCL

i

=
X

h2D

E

hi

�µ+
X

k/2D

E

S

ki

µ (3)

5. Calibration of the replacement rate �: The replacement rate first declines as the capital ratio falls.
It is assumed that there is a normal capital ratio �0 that an institution can completely rollover or
find alternative creditors but below the regulatory capital ratio �̄ refinancing is not possible. This
relationship can be expressed in mathematical form as below:

�(�) =

( 1 if �0 < �

1� (�0��)2

(�0��̄)2
if

0 otherwise

�̄ < �  �0 (4)

This is illustrated in Figure 5.1 (a).
2It is reasonable to assume q < z

3It is reasonable to assume that illiquid assets should be sold only after all liquid assets are sold.
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6. Calibration of funding cost loss ratio: An incremental funding cost adversely increases as the capital
ratio falls. In the normal state (�0), replacement is not difficult to find at normal costs, so µ is set to
zero. As a general rule, it is intuitive to link funding cost to relevant credit spread. Using empirical
evidence between funding cost and solvency ability, a panel regression is fitted between credit spreads
and capital ratios. The results by Jo(2012) [35] for Korea suggest that the credit spread is proportional
to the third power of a decline in the capital ratio4. This relationship can be written in the mathematical
formula as below:

µ =

(
0 if �0 < �

a · (�0 � �)3 if �̄ < �  �0
(5)

where a is the proportional constant obtained by the regression. In our emerging market economy, this
is relatively small, less than 1%. The upper bound of µ and � are forecasted value at the regulatory
capital ratio (�̄). See Figure 5.1.(b).

7. By combining 2, 3, 4, and 5, we can write the total funding loss as below:

FL

i

= FSL

i

+ FCL

i

= Min

"
(1� �(�))

X

h2D

E

hi

, a

q

i

(1� q)

#
q

1� q

+Max

"
(1� �(�))

X

h2D

E

hi

� a

q

i

(1� q), 0

#
z

1� z

+
X

h2D

E

hi

�(�)µ(�) +
X

h/2D

E

S

ki

µ(�) (6)

4.2 Default simulation results (exogenous case)

4.2.1 Parameter calibration

The funding cost loss function needs to be calibrated according to each economy’s funding characteristics.
In Jo (2012) [35], the calibration results are based on data before Lehman bankruptcy (2007Q3 to 2010 Q3),
and the regression is fitted as follows:

spread

t

= 0.04⇥ (14.62�Basel ratio

t

)3 + 0.5 (7)

The incremental funding cost function is estimated asµ(�) = 0.04(14.62��)3. The relationship between the
capital ratio and bank bond spread is presented in 5.

For the advanced emerging economy analyzed here, there is limited data for calibrating the incremental
funding cost function. We estimated a panel regression using July 2013 data of option-adjusted spreads
(OAS) for eight institutions and the government yield curve as the risk-free rate to estimate the equation:

µ =

(
0 if �0 < �

a · (�0 � �)r if �̄ < �  �0

where �0, i is calculated as the historical average capital ratio before the crisis for each institution i. We
found the following incremental funding cost loss equation in our market is µ = 0.0006495⇥ (�0��)3, which
was used in the analysis of default contagion.

We also make the following assumptions, which are suggested by previous literature (Jo (2012) [35] and
several others).

• The the fire sale loss rate for liquid assets:q = 0.2

• The fire sale loss rate for illiquid assets: z = 0.7

4This can be re-calibrated to fit each country’s specific market characteristics.
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Figure 5: Scatter plot between capital ratio and bank bond spread and out of sample forecast (Jo, 2012)

• Fair Value loss rate FV LR = 0.2.

Discussion: The results of the default simulations are summarized in Table 8 on the following page and
Figure 6, 7 and 8 on page 31.

1. Using simulation analysis, any one single bank’s default does not cause contagion due to direct coun-
terparty exposure in the first round of the simulation. Majority of the damage is caused by fire-sales
of assets and liquidity shortage. These in turn, would trigger second round default of several institutes
with thin capital buffers, and so on and so forth. We assume multiple rounds of default simulations
take place simultaneously.

2. Small banks by size (Table 3 on page 13) default may cause domino effects as much as larger banks’
defaults, due to fire-sale of assets and liquidity shortage in the stress scenario, especially some small
banks have large interbank exposures (see point 5).

3. By examining capital adequacy regarding bilateral exposures, relative exposure RE

3 in Table 3 shows
B1, 2, 3, 4* 5, 7, 8, 9* 10*, 11*, 16, 17* 20, 25 (*banks at borderlines) are the ones with the thin
capital buffer (RE

3
< 10%).

4. Results from the default simulation (Table 8 on the next page and Figure 6, 7 and 8) show similar
results to the relative exposure measure: The first round default due to secondary effect (fire-sale and
funding loss in stress market conditions) are consistent: Bank 2, 3, 8, 9, 16, 18, 20, 21, and 25. The
second round defaulted banks due to secondary effect are also consistent: 1, 5, 7, 10, 11, 22, with
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Table 8: Default simulation result (exogenous case). Credit Shock (CS), Funding Shock (FS). Results show
Direct counter-party exposure do not cause as much damage as Funding (liquidity) shock.
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occassionally 4 or 14 also defaulted in this round. The third round, defaults due to credit loss are 4
and 14, with bank 17 only defaulted once, triggered by initial default of bank 4.

5. After examination (Table 3 on page 13), we found the relative exposure of Bank 9, 12, 14, 18, 20
and 21, RE

1
i

� 1, which means their total Tier 1 capital is just enough to cover its total interbank
exposure. At the same time, their sizes are small (size

i

� 1% of the total banking sector assets). In
addition, bank 22 shares similar characteristics, with RE

1
22 = 2.87 and size

i

� 1%. These all make
the above mentioned nodes vulnerable in the network. Hence, the micro and macro analysis conclude
the same group of vulnerable nodes in this banking network.
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Figure 6: Asset Destroyed% by Direct Counter Party Exposure (Credit Shock). Due to the high capital level
of the institutes within the network, defaults caused by credit risk is not high, only less than 5% assets are
destroyed due to credit risk.
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5 Conclusions

Leveraging on the availability of disaggregated interbank exposure data in an advanced emerging market
economy, we have used two complementary approaches for analyzing systemic risk in the banking sector. The
first approach, the model-free approach, examines the topological properties of the network by examining
interbank connectivity and exposure using network theory, which does not rely on granular balance sheet
information or the funding cost structure faced by the banks. There exist two tails in the connectivity and
exposure distribution, which indicates two groups of banks within the network: the well connected money
centre banks, and the distant peripheral banks. By the non-targeted, homogeneous capital ratio currently
pledged by Basel Committee and implemented by Central banks, banks in our network are solvent and
well capitalized. However, using relative exposure, a measure developed by Cont et al (2012) [20] to target
exposure concentrated banks (SIFIs), a few banks are identified as vulnerable nodes in the network. Also,
weighted centrality measure shows the important debtors and creditors in the network.

While the topological analysis is useful for identifying core and peripheral banks, and qualitative measures
such as relative exposure and network centrality, systemic risk assessment also requires quantifying the risk.
This was accomplished by the model-based approach, employing a balance-sheet network framework, to define
a specific default mechanism. In this emerging economy, counter-party credit risk, or the primary effect, in
the interbank market is relatively small, and the default of a single bank does not lead to successive defaults.
However, counter-party credit risk is just one of many risk factors driving systemic risk. Results indicate
that secondary effects such as fire-sale losses, fair value market losses, funding losses and liquidity shortages
could lead to a widespread failures in the banking network, which induce further defaults by the domino
effect. The default mechanism links liquidity risk and solvency risk by specifying explicitly funding costs
and access to funding to banks solvency.

The two complementary approaches single out the same group of SIFIs in the banking network. This finding
suggests that a network topology approach could be used when granular public information on balance sheet,
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Figure 7: Asset Destroyed% by Funding (Liquidity) Shock. DB-Domestic Banks, FB - Foreign Bank Branches
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(b) DB2
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(c) FB1
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(d) FB2
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Figure 8: Comprehensive Default Simulation Illustration (CS + FS)
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(b) DB2
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(c) FB1
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securities prices, and credit ratings is missing. In the case that this information is available, the balance-sheet
network approach and default simulations could provide complementary insights on systemic risk. Finally,
the analysis highlights the importance of heterogeneous interconnectedness in the banking system as a driver
of systemic risk, supporting policy efforts towards incorporating the interconnectedness dimension in the
regulatory framework.
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6 Appendix I Figures and Tables

Table 9: Shortest path length of the banking network, end-September 2010. The number in cell (i, j) in the
table refers to the shortest path length between bank i and bank j. If it is 1, it means bank i has no access
to bank j.
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7 Appendix II Statistical Methodology

7.1 Normal Laplace distribution and double pareto-lognormal distribution

The dPlN distribution has four parameters, which is similar to log-hyperbolic distribution first developed by . The dPlN and
log-hyperbolic both exhibit power-law behavior in both tails. These two distributions are derived from mixture of lognormal
distributions. The difference between the two is that dPlN arises from the distribution of a final state of a Geometric Brownian

Motion (GBM) with a constant killing rate, while the hyperbolic distribution has a more complicated killing rate functions.
Consider a Geometric Brownian Motion (GBM) defined by Itô stochastic differential equation (SDE) as follows:

dX = µXdt+ �Xdw (8)

It has an initial state X(0) = X0 distributed lognormally, logX0 s N(�, �2). After T units of time, X(T ) will have a lognormal
distribution as follows:

logX(T ) ⇠ N(� + (µ� �

2
/2)T, ⌧2 + �

2
T ) (9)

Supposedly at time T , the GBM process is observed has an exponentially distributed random variable with density f

T

(t) =

�e

��t

, t > 0. � is refereed as the “killed” rate rate, and k(X) ⌘ �. The distribution of the state X̂ at the time of the observation
of the “killing”, is a mixture of lognormal random variables 7.1with mixing parameter T .

Taking logarithmic of X, Ŷ = log(X̂) so that Ŷ is the state of an ordinary Brownian motion after an exponentially distributed
time. Y is the sum of independent variables W and Z . Z ⇠ N(�, ⌧2); W is a skewed Laplace distribution as described by ,
with a pdf as follows:

fw(!) =

(
↵�

↵+�

e

�!

, for !  0
↵�

↵+�

e

�↵!

, for ! � 0
(10)

where ↵ and � are roots of characteristic function

�

2

2
z

2 + (µ�
�

2

2
)z � � = 0 (11)

Hence, the distribution of Ŷ is a convolution of Laplace and normal distributions. We introduce the concept of Mill’s ratio for
convenience as follows:

R(z) =
�c(z)

�(z)
(12)

where �c(z) is the complementary cumulative density function of normal distribution, and �(z) is the normal pdf. We can then
express the density function of Ŷ as follows:

g(y) =
↵�

↵+ �

�(
y � �

⌧

)[R(↵⌧ � (y � �)/⌧) +R(�⌧ + (y � �)/⌧)] (13)

This is a Normal-Laplace (N-L) distribution. In other words, Y ⇠ NL(↵,�, ⌫, ⌧2).

Since a Laplace random variable can be expressed as the difference between two exponentially distributed variates, we can
rewrite Y as follows:

Y

.

= ⌫ + ⌧Z + E1
/↵ � E2

/� (14)

where E1 and E2 are standard independent exponentiate deviates, and Z is a standard normal deviate, which is independent
of E1 and E2. One can use this equation to generate pseudo-numbers from N-L distribution.

We then deduce the pdf of X̂ as follows:

f(x) =
1

x

g(log(x)) (15)

That is, in the form of ccdf �

c

and pdf � of standard normal distribution N(0, 1) as follows:

f(x) =
↵�

↵+ �

[A(↵, �, ⌧)x�↵�1�(
logx� � � ↵⌧

2

⌧

) + x

��1
A(��, �, ⌧)�c(

logx� � + �⌧

2

⌧

)] (16)
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where
A(✓, �, ⌧) = exp(✓� + ↵

2
⌧

2
/2) (17)

This is a double Pareto lognormal distribution. In other words, X s dP lN(↵,�, �, ⌧2). From 7.1, we can express X as follows:

X

.

= UV1
/V2 (18)

Where U follows a lognormal distribution that log(U) s N(�, ⌧2, and V1and V2 are Pareto distributed and with a pdf as follows:

f(�) = ✓�

�✓�1
, � > 1 (19)

with ✓ = ↵ and ✓ = � for V1and V2, respectively. We can rewrite the expression for X as

X

.

= UQ (20)

where Q = V1
V2

, and has pdf as follows:

f(q) =

8
<

:

↵�

↵+�

q

��1

↵�

↵+�

q

�↵�1

for 0 < q < 1

for q < 1
(21)

This is referred to as the double pareto-lognfrmal (dPlN) distribution. One can generate pseudo-numbers from dPlN distribution
by exponentiating the N-L pseudo-numbers generated using 7.1.

7.2 Properties of N-L distribution

There are two special cases of the N-L distribution:

1. When ↵ = 1. This corresponds to the case of N-L distribution is the difference between the independent normal and
exponential components. It exhibits extra normal behavior in the lower tail. It is also referred to as the right-handed

normal-exponential distribution, and is expressed as Y ⇠ NE

r

(�, �, ⌧2) . Its pdf is reduced from the original 7.1:

g1(y) = ��(
y � �

⌧

)R(�⌧ + (y � �)/⌧) (22)

2. When � = 1. This corresponds to the case of N-L distribution is the sum of the independent normal and exponential
components. It exhibits extra normal behavior in the upper tail. It is often referred to as left-handed normal-exponential

distribution, and is expressed as Y ⇠ NE

l

(↵, �, ⌧2) . Its pdf is

g2(y) = ↵�(
y � �

⌧

)R(↵⌧ + (y � �)/⌧) (23)

The N � L(↵, �, , � , ⌧

2) distribution can be represented as a mixture of the right-handed and left-handed normal-

exponential distributions, and its pdf can be written as follows:

g(y) =
�

↵+ �

g1(y) +
�

↵+ �

g2(y) (24)

The cumulative density function (cdf) of the N � L(↵, �, , � , ⌧

2) can be expressed as follows:

G(y) = �(
y � �

⌧

)� �(
y � �

⌧

)
�R(↵⌧ � (y � �)/⌧) + ↵R(�⌧ + (y � �)/⌧)

↵+ �

(25)

The moment generating function (mgf) of the N � L(↵, �, , � , ⌧

2) is the product of the mgf normal and exponential
components, and can be expressed as follows:

M

Y

(s) =
↵� exp(�s+ ⌧

2
s

2
/2)

(↵� s)(� + s)
(26)

7.3 The properties of dPlN distribution

Corresponding to the two cases (right-handed and left-handed) of the N-L distribution described as above, we deduce the
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right-handed and left-handed dPlN distribution pdf as follows:

1. When ↵ = 1. This limiting single Pareto-lognormal distribution only exhibits heavy tail behavior in the lower tail.

f1(x) = �x

��1
A(�, �, ⌧)�(

log x� � + �⌧

2

⌧

) (27)

2. When � = 1. This limiting single Pareto-lognormal distribution only exhibits heavy tail behavior in the upper tail.

f2(x) = ↵x

�↵�1
A(↵, �, ⌧)�(

log x� � � ↵⌧

2

⌧

) (28)

where A(✓, �, ⌧) = exp(✓� + ↵

2
⌧

2
/2) as in the case of N-L distribution.

3. The dPlN distribution pdf can be represented as a mixture of right-handed and left-handed pareto-lognfrmal distributions:

f(x) =
�

↵+ �

f1(x) +
↵

↵+ �

f2(x) (29)

The cdf of the dPlN distributions can be written as F (x) = G(exp(x)), where G is equal to 25, or it can be expanded in
the forms of � and �c as follows:

F (x) = �(
logx� �

⌧

)�
1

↵+ �

[�x�↵

A(↵, �, ⌧)�(
logx� � � ↵⌧

2

⌧

) + ↵x

�

A(��, �, ⌧)�c(
logx� � � �⌧

2

⌧

)] (30)

The dP lN(↵, �, �, ⌧2) exhibits heavy tail behavior at both tails in the sense that

f(x) ⇠ k1x
�↵�1(x ! 1) (31)

and
f(x) ⇠ k2x

��1(x ! 0) (32)

where
k1 = ↵A(↵, �, ⌧) (33)

and
k2 = ↵A(�, �, ⌧) (34)

The maximum likelihood function of dPlN and the N-L distributions are the same, in the sense that if the dataset (x1, x2, x3, ... xn

)

is assumed to follow a dPlN , then its logarithmic form (y1, y2, , ... , yn) is assumed to follow a N-L distribution. The log likeli-
hood function is as follows:

l(↵, �, ⌧) = nlog↵ + nlog� � nlog(↵+ �) +
nX

i=1

log[R(↵⌧ �
y

i

� ȳ + 1
/↵ + 1

/�

⌧

) +R(�⌧ +
y

i

� ȳ + 1
/↵ + 1

/�

⌧

)] (35)

and v can be solved analytically as �̂ = ȳ � 1
/↵ + 1

/�.
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