DANMARKS NATIONALBANK

IDENTIFICATION AND ASSESSMENT OF SYSTEMIC RISKS IN FINANCIAL NETWORKS: MODELLING FIRE SALES FROM REGULATORY CLIFF EFFECTS

Andreas Brøgger & Graeme Cokayne

Identification and assessment of systemic risks in financial networks: Modelling fire sales from regulatory cliff effects

Andreas Brøgger & Graeme Cokayne

Systemic Risk Analysis and Policy Financial Stability Danmarks Nationalbank

28 May, 2018

Andreas Brøgger & Graeme Cokayne Identification and assessment of systemic risks

- CRR-compliant covered bonds (SDO) are a large part of the Danish covered bond market
- We investigate fire sale effects if SDOs lose their preferred status
- Solvency reduction
- Capital losses

- CRR-compliant covered bonds (SDO) are a large part of the Danish covered bond market
- We investigate fire sale effects if SDOs lose their preferred status
- Solvency reduction
- Capital losses

- CRR-compliant covered bonds (SDO) are a large part of the Danish covered bond market
- We investigate fire sale effects if SDOs lose their preferred status
- Solvency reduction
- Capital losses

- CRR-compliant covered bonds (SDO) are a large part of the Danish covered bond market
- We investigate fire sale effects if SDOs lose their preferred status
- Solvency reduction
- Capital losses

Outline

- Previous Literature
- Covered Bonds in Denmark
 - Market
 - Regulation
- Our Model
- 6 Results
- 6 Discussion
 - Conclusion

Outline

Systemic Risk and Fire sales

- Previous Literature
- Covered Bonds in Denmark
 - Market
 - Regulation
- 4 Our Model
- 5 Results
- 6 Discussion
- 7 Conclusion

Systemic Risk Channels

Two broad channels of Systemic Risk

- Direct interconnectivity
 - Banks loan money to each other
 - If a bank gets in trouble this affects banks from whom it has borrowed money
 - Spreads to other banks
- Indirect interconnectivity
 - Banks invest in similar securities
 - If those securities lose value this hits a number of banks at once
 - Particularly a problem if securities used as collateral

Systemic Risk Channels

Two broad channels of Systemic Risk

- Direct interconnectivity
 - Banks loan money to each other
 - If a bank gets in trouble this affects banks from whom it has borrowed money
 - Spreads to other banks
- Indirect interconnectivity
 - Banks invest in similar securities
 - If those securities lose value this hits a number of banks at once
 - Particularly a problem if securities used as collateral

Systemic Risk Channels

Two broad channels of Systemic Risk

- Direct interconnectivity
 - Banks loan money to each other
 - If a bank gets in trouble this affects banks from whom it has borrowed money
 - Spreads to other banks
- Indirect interconnectivity
 - Banks invest in similar securities
 - If those securities lose value this hits a number of banks at once
 - Particularly a problem if securities used as collateral

Systemic Risk Channels

Two broad channels of Systemic Risk

- Direct interconnectivity
 - Banks loan money to each other
 - If a bank gets in trouble this affects banks from whom it has borrowed money
 - Spreads to other banks
- Indirect interconnectivity
 - Banks invest in similar securities
 - If those securities lose value this hits a number of banks at once
 - Particularly a problem if securities used as collateral

Systemic Risk Channels

Two broad channels of Systemic Risk

- Direct interconnectivity
 - Banks loan money to each other
 - If a bank gets in trouble this affects banks from whom it has borrowed money
 - Spreads to other banks
- Indirect interconnectivity
 - Banks invest in similar securities
 - If those securities lose value this hits a number of banks at once
 - Particularly a problem if securities used as collateral

Systemic Risk Channels

Two broad channels of Systemic Risk

- Direct interconnectivity
 - Banks loan money to each other
 - If a bank gets in trouble this affects banks from whom it has borrowed money
 - Spreads to other banks
- Indirect interconnectivity
 - Banks invest in similar securities
 - If those securities lose value this hits a number of banks at once
 - Particularly a problem if securities used as collateral

Systemic Risk Channels

Two broad channels of Systemic Risk

- Direct interconnectivity
 - Banks loan money to each other
 - If a bank gets in trouble this affects banks from whom it has borrowed money
 - Spreads to other banks
- Indirect interconnectivity
 - Banks invest in similar securities
 - If those securities lose value this hits a number of banks at once
 - Particularly a problem if securities used as collateral

Systemic Risk Fire Sales and Cliff Effects

Fire Sales

The forced sale of an asset at a dislocated price

Regulatory Cliff Effect

Breaches of a regulatory threshold leads to out-sized effects on the financial system

Systemic Risk Fire Sales and Cliff Effects

Fire Sales

The forced sale of an asset at a dislocated price

Regulatory Cliff Effect

Breaches of a regulatory threshold leads to out-sized effects on the financial system

Outline

2

Previous Literature

- Covered Bonds in Denmark
 - Market
 - Regulation
- 4 Our Model
- 5 Results
- Discussion
- 7 Conclusion

Greenwood et al (2015) 'Vulnerable banks'

Greenwood et al

- Fall in equity price \rightarrow increase in leverage
- Banks sell assets to return to previous leverage
- Asset prices fall leading to further increases in leverage
- Aggregate Vulnerability = Sum of all 2nd round spillover losses as a share of total equity capital in the system

Greenwood et al (2015) 'Vulnerable banks'

Greenwood et al

• Fall in equity price \rightarrow increase in leverage

• Banks sell assets to return to previous leverage

- Asset prices fall leading to further increases in leverage
- Aggregate Vulnerability = Sum of all 2nd round spillover losses as a share of total equity capital in the system

Greenwood et al (2015) 'Vulnerable banks'

Greenwood et al

- Fall in equity price → increase in leverage
- Banks sell assets to return to previous leverage
- Asset prices fall leading to further increases in leverage
- Aggregate Vulnerability = Sum of all 2nd round spillover losses as a share of total equity capital in the system

Greenwood et al (2015) 'Vulnerable banks'

Greenwood et al

- Fall in equity price \rightarrow increase in leverage
- Banks sell assets to return to previous leverage
- Asset prices fall leading to further increases in leverage
- Aggregate Vulnerability = Sum of all 2nd round spillover losses as a share of total equity capital in the system

Danmarks Nationalbank (2017) 'Modelling fire sales from regulatory cliff effects'

- Based on Greenwood et al (2015) model
- But:
 - uses regulatory cliff effect as initial shock rather than fall in asset price
 - bases the reaction on solvency rather than leverage
 - allows the rounds of fire sales to go to completion rather than stopping after one round

Danmarks Nationalbank (2017) 'Modelling fire sales from regulatory cliff effects'

- Based on Greenwood et al (2015) model
- But:
 - uses regulatory cliff effect as initial shock rather than fall in asset price
 - bases the reaction on solvency rather than leverage
 - allows the rounds of fire sales to go to completion rather than stopping after one round

Danmarks Nationalbank (2017) 'Modelling fire sales from regulatory cliff effects'

- Based on Greenwood et al (2015) model
- But:
 - uses regulatory cliff effect as initial shock rather than fall in asset price
 - bases the reaction on solvency rather than leverage
 - allows the rounds of fire sales to go to completion rather than stopping after one round

Danmarks Nationalbank (2017) 'Modelling fire sales from regulatory cliff effects'

- Based on Greenwood et al (2015) model
- But:
 - uses regulatory cliff effect as initial shock rather than fall in asset price
 - bases the reaction on solvency rather than leverage
 - allows the rounds of fire sales to go to completion rather than stopping after one round

Danmarks Nationalbank (2017) 'Modelling fire sales from regulatory cliff effects'

- Based on Greenwood et al (2015) model
- But:
 - uses regulatory cliff effect as initial shock rather than fall in asset price
 - bases the reaction on solvency rather than leverage
 - allows the rounds of fire sales to go to completion rather than stopping after one round

Market Regulation

Outline

Previous Literature

Overed Bonds in Denmark

- Market
- Regulation

4 Our Model

5 Results

Discussion

7 Conclusion

Market Regulation

The Market is Large...

Andreas Brøgger & Graeme Cokayne

5 main issuers of Danish covered bonds represent 95% of the market

Holders of Danish covered bonds are mostly large institutions

Andreas Brøgger & Graeme Cokayne

Market Regulation

SDOs have Regulatory Benefits

- Loan limit requirements
- Collateral requirements
- Continuous requirements
- Regulatory benefits
 - Lower risk weights in solvency calculations
 - Not included in large exposure calculations

Market Regulation

SDOs have Regulatory Benefits

- Loan limit requirements
- Collateral requirements
- Continuous requirements
- Regulatory benefits
 - · Lower risk weights in solvency calculations
 - Not included in large exposure calculations

Market Regulation

SDOs have Regulatory Benefits

- Loan limit requirements
- Collateral requirements
- Continuous requirements
- Regulatory benefits
 - Lower risk weights in solvency calculations
 - Not included in large exposure calculations

Market Regulation

SDOs have Regulatory Benefits

- Loan limit requirements
- Collateral requirements
- Continuous requirements
- Regulatory benefits
 - · Lower risk weights in solvency calculations
 - Not included in large exposure calculations

Market Regulation

SDOs have Regulatory Benefits

- Loan limit requirements
- Collateral requirements
- Continuous requirements
- Regulatory benefits
 - Lower risk weights in solvency calculations
 - Not included in large exposure calculations
Market Regulation

SDOs have Regulatory Benefits

• SDOs considered safer than normal covered bonds

- Loan limit requirements
- Collateral requirements
- Continuous requirements
- Regulatory benefits
 - Lower risk weights in solvency calculations
 - Not included in large exposure calculations

Market Regulation

SDOs have Regulatory Benefits

• SDOs considered safer than normal covered bonds

- Loan limit requirements
- Collateral requirements
- Continuous requirements
- Regulatory benefits
 - Lower risk weights in solvency calculations
 - Not included in large exposure calculations

Outline

- Previous Literature
- 3 Covered Bonds in Denmark
 - Market
 - Regulation
- Our Model
- 5 Results
- 6 Discussion
- 7 Conclusion

Our Model

Regulatory cliff effect

• (Some) SDOs lose SDO-status \rightarrow

- Fall in solvency of banks due to increase in risk weights and hence in risk-weighted assets
- Increase in calculated large exposures, possibly breaching large-exposures regulation
- (Possible) Fall in liquidity ratings, breaching liquidity requirements
- We focus on the first of these channels

Our Model

- (Some) SDOs lose SDO-status \rightarrow
 - Fall in solvency of banks due to increase in risk weights and hence in risk-weighted assets
 - Increase in calculated large exposures, possibly breaching large-exposures regulation
 - (Possible) Fall in liquidity ratings, breaching liquidity requirements
- We focus on the first of these channels

Our Model

- (Some) SDOs lose SDO-status \rightarrow
 - Fall in solvency of banks due to increase in risk weights and hence in risk-weighted assets
 - Increase in calculated large exposures, possibly breaching large-exposures regulation
 - (Possible) Fall in liquidity ratings, breaching liquidity requirements
- We focus on the first of these channels

Our Model

- (Some) SDOs lose SDO-status \rightarrow
 - Fall in solvency of banks due to increase in risk weights and hence in risk-weighted assets
 - Increase in calculated large exposures, possibly breaching large-exposures regulation
 - (Possible) Fall in liquidity ratings, breaching liquidity requirements
- We focus on the first of these channels

Our Model

- (Some) SDOs lose SDO-status \rightarrow
 - Fall in solvency of banks due to increase in risk weights and hence in risk-weighted assets
 - Increase in calculated large exposures, possibly breaching large-exposures regulation
 - (Possible) Fall in liquidity ratings, breaching liquidity requirements
- We focus on the first of these channels

Our Model

- Risk-weight shock
- React to get back to solvency
- Several rounds of fire-sales

Andreas Brøgger & Graeme Cokayne

Our Model

Risk-weight shock

- React to get back to solvency
- Several rounds of fire-sales

Andreas Brøgger & Graeme Cokayne

Our Model

- Risk-weight shock
- React to get back to solvency
- Several rounds of fire-sales

Andreas Brøgger & Graeme Cokayne

Our Model

- Risk-weight shock
- React to get back to solvency
- Several rounds of fire-sales

Andreas Brøgger & Graeme Cokayne

Modeling Decisions

Institutions

- Only banks
- Other institutions not covered by same regulations
- How do they react?
 - Sell covered bonds
 - Raising equity takes too long
 - Selling other assets not as effective
- Time Horizon
 - Not explicitly modeled but probably fairly short
- Who is buying?
 - Not sure

- Institutions
 - Only banks
 - Other institutions not covered by same regulations
- How do they react?
 - Sell covered bonds
 - Raising equity takes too long
 - Selling other assets not as effective
- Time Horizon
 - Not explicitly modeled but probably fairly short
- Who is buying?
 - Not sure

Modeling Decisions

- Institutions
 - Only banks
 - Other institutions not covered by same regulations

How do they react?

- Sell covered bonds
 - Raising equity takes too long
 - Selling other assets not as effective
- Time Horizon
 - Not explicitly modeled but probably fairly short
- Who is buying?
 - Not sure

- Institutions
 - Only banks
 - Other institutions not covered by same regulations
- How do they react?
 - Sell covered bonds
 - Raising equity takes too long
 - Selling other assets not as effective
- Time Horizon
 - Not explicitly modeled but probably fairly short
- Who is buying?
 - Not sure

- Institutions
 - Only banks
 - Other institutions not covered by same regulations
- How do they react?
 - Sell covered bonds
 - Raising equity takes too long
 - Selling other assets not as effective
- Time Horizon
 - Not explicitly modeled but probably fairly short
- Who is buying?
 - Not sure

- Institutions
 - Only banks
 - Other institutions not covered by same regulations
- How do they react?
 - Sell covered bonds
 - Raising equity takes too long
 - Selling other assets not as effective
- Time Horizon
 - Not explicitly modeled but probably fairly short
- Who is buying?
 - Not sure

- Institutions
 - Only banks
 - Other institutions not covered by same regulations
- How do they react?
 - Sell covered bonds
 - Raising equity takes too long
 - Selling other assets not as effective
- Time Horizon
 - Not explicitly modeled but probably fairly short
- Who is buying?
 - Not sure

- Institutions
 - Only banks
 - Other institutions not covered by same regulations
- How do they react?
 - Sell covered bonds
 - Raising equity takes too long
 - Selling other assets not as effective
- Time Horizon
 - Not explicitly modeled but probably fairly short
- Who is buying?
 - Not sure

- Institutions
 - Only banks
 - Other institutions not covered by same regulations
- How do they react?
 - Sell covered bonds
 - Raising equity takes too long
 - Selling other assets not as effective
- Time Horizon
 - Not explicitly modeled but probably fairly short
- Who is buying?
 - Not sure

Outline

- Previous Literature
- 3) Covered Bonds in Denmark
 - Market
 - Regulation
- 4 Our Model
- 5 Results
- Discussion
- Conclusion

Direct Effect

Andreas Brøgger & Graeme Cokayne

Initial Sales

Andreas Brøgger & Graeme Cokayne

System equity lost as a result of fire sales

Stronger price impact scenarios

Andreas Brøgger & Graeme Cokayne

Stronger price impact scenarios

Andreas Brøgger & Graeme Cokayne Identi

Outline

- Previous Literature
- 3) Covered Bonds in Denmark
 - Market
 - Regulation
- 4 Our Model
- 5 Results

6 Discussion

Conclusion

Discussion

The shock

- We only consider the shock to be the loss in solvency from the change in risk-weights
- If SDOs lost their SDO status there would likely also be an immediate price impact
- We ignored this as we wanted to focus on the regulatory effect

Discussion

The shock

- We only consider the shock to be the loss in solvency from the change in risk-weights
- If SDOs lost their SDO status there would likely also be an immediate price impact
- We ignored this as we wanted to focus on the regulatory effect

Discussion

The shock

- We only consider the shock to be the loss in solvency from the change in risk-weights
- If SDOs lost their SDO status there would likely also be an immediate price impact
- We ignored this as we wanted to focus on the regulatory effect

Discussion

Calibration of the price impact

- In the baseline model we use estimates of Greenwood et al (2015)
- Using Nykredit data for yield spreads during the financial crisis, price impact could be 10 times as large as baseline
- Dick-Nielsen et al (2012) and Buchholst et al (2012) suggest it could be even larger than this

Discussion

Calibration of the price impact

- In the baseline model we use estimates of Greenwood et al (2015)
- Using Nykredit data for yield spreads during the financial crisis, price impact could be 10 times as large as baseline
- Dick-Nielsen et al (2012) and Buchholst et al (2012) suggest it could be even larger than this

Discussion

Andreas Brøgger & Graeme Cokayne

Discussion

Calibration of the price impact

- In the baseline model we use estimates of Greenwood et al (2015)
- Using Nykredit data for yield spreads during the financial crisis, price impact could be 10 times as large as baseline.
- Dick-Nielsen et al (2012) and Buchholst et al (2012) suggest it could be even larger than this

Discussion

Calibration of the price impact

- In the baseline model we use estimates of Greenwood et al (2015)
- Using Nykredit data for yield spreads during the financial crisis, price impact could be 10 times as large as baseline.
- Dick-Nielsen et al (2012) and Buchholst et al (2012) suggest it could be even larger than this

Discussion

Return to solvency

• We assumed banks attempt to return to solvency after the shock

- Most banks have greater solvency than the minimum required so have some flexibility to reduce solvency levels
- If banks could use a solvency buffer they might avoid fire sales
- However, might still need to sell assets as large-exposures regulations begin to bind

Discussion

Return to solvency

- We assumed banks attempt to return to solvency after the shock
- Most banks have greater solvency than the minimum required so have some flexibility to reduce solvency levels
- If banks could use a solvency buffer they might avoid fire sales
- However, might still need to sell assets as large-exposures regulations begin to bind

Discussion

Return to solvency

- We assumed banks attempt to return to solvency after the shock
- Most banks have greater solvency than the minimum required so have some flexibility to reduce solvency levels
- If banks could use a solvency buffer they might avoid fire sales
- However, might still need to sell assets as large-exposures regulations begin to bind

Discussion

Return to solvency

- We assumed banks attempt to return to solvency after the shock
- Most banks have greater solvency than the minimum required so have some flexibility to reduce solvency levels
- If banks could use a solvency buffer they might avoid fire sales
- However, might still need to sell assets as large-exposures regulations begin to bind

Discussion

Andreas Brøgger & Graeme Cokayne

Identification and assessment of systemic risks

Outline

- 2 Previous Literature
- 3) Covered Bonds in Denmark
 - Market
 - Regulation
- 4 Our Model
- 5 Results
- 6 Discussion

Conclusion

- If SDOs lose SDO-status can have large impacts on Danish banking system
- Loss of solvency could lead to fire sales of covered bonds
- Solvency buffers might help but other regulations might bind

Conclusion

- If SDOs lose SDO-status can have large impacts on Danish banking system
- Loss of solvency could lead to fire sales of covered bonds
- Solvency buffers might help but other regulations might bind

Conclusion

- If SDOs lose SDO-status can have large impacts on Danish banking system
- Loss of solvency could lead to fire sales of covered bonds
- Solvency buffers might help but other regulations might bind