Financial Ecosystem

The Model

Financial stability

・ 同 ト ・ ヨ ト ・ ヨ ト

Crises in the Modern Financial Ecosystem

G. di Iasio (ECB) Z. Pozsar (Credit Suisse)

2018 RiskLab/BoF/ESRB Conference on Systemic Risk Analytics Helsinki, 28-30 May 2018

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Disclaimer

This presentation should not be reported as representing the views of the European Central Bank (ECB) or Credit Suisse (CS).

The views expressed are those of the authors and do not necessarily reflect those of the ECB or CS.

소리가 소문가 소문가 소문가

3

Motivation

- Banking/financial regulation and financial stability.
- Conceptual framework for market-based financial intermediation.
- Financial crises, manifestation of real economy developments.

The Model

Financial stability

・ 同 ト ・ ヨ ト ・ ヨ ト

This paper/outline of the talk

- Market-based intermediation evolves to accommodate transformations of the financial ecosystem.
 - Institutional savers, in need for "parking space".
 - Institutional investors, in need for returns.
- **2** Incorporate these concepts into a theoretical model:
 - How these transformations affect systemic risk-taking.
 - Post-crisis reforms and new sources of systemic risk.

Introd	uction

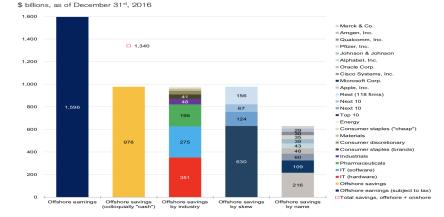
The Model

Financial stability

(4月) (4日) (4日)

Institutional savers: Who they are

Examples:


- Treasurers of multinational corporations.
- FX reserve mangers.
- Central liquidity desk of large asset managers.

Introduction	
000	

Financial Ecosystem ○●○○○○○ The Model

Financial stability

Example: Multinational corporations

Offshore earnings and savings by the largest 150 US non-financial firms, breakdown by industry and name.

G. di Iasio (ECB) Z. Pozsar (Credit Suisse)

Crises in the Modern Financial Ecosystem

Introduction	Financial Ecosystem ००●००००	The Model	Financial stability
Institution	al savers		

Real economy roots:

- Arbitrage of global tax regimes.
- Capital vs labor share: technological progress.
- Global imbalances: large savers inhabit economies with less sophisticated financial markets.

What do they do:

- A decade ago: mainly institutional cash pools.
- After the crisis: Size (*you can't run trillions the way you run billions*) and global QEs (ultra-low yields) force them to morph into bond portfolios.

Introd	luction

The Model

Financial stability

・ 母 と ・ ヨ と ・ ヨ と

Institutional investors: Who they are

Examples:

- Life-insurance companies offering products with guaranteed returns.
- Defined-benefits pensions.

Institution	al investors		
Introduction	Financial Ecosystem	The Model	Financial stability

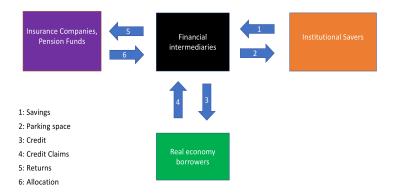
Why are they reaching for yield:

- Long-term liabilities expressed in fixed nominal amounts.
- Disappointing market returns on traditional portfolios.
- Real economy drivers include population ageing, savings glut and large appetite for US dollar-denominated assets.

What do they do:

- A decade ago: mainly "alternative" investments (e.g. allocation to hedge funds,...).
- After the crisis: more synthetic leverage, more direct credit exposures.

Introductio	bn


Financial Ecosystem ○○○○○●○ The Model

・ロト ・回ト ・ヨト ・ヨト

Э

Financial stability

Simplified conceptual framework

Introduction	Financial Ecosystem 000000●	The Model	Financial stability
Polationshi	n with the literatu	ro	

Relationship with the literature

- General approach to demand and supply of liquidity of Holmström-Tirole (2011).
- Shadow banking as intermediation mechanism (Farhi and Tirole 2017).
- Shadow banking and risk-taking (e.g. Gennaioli et al. 2013).
- Financial innovations as a liquification technology (Gorton and Metrick 2012).
- Discussions on the modern financial ecosystem (e.g. Pozsar 2014, 2015) and on real economy roots of financial developments (e.g. Bernanke's savings glut and Summers' secular stagnation).

伺下 イヨト イヨト

イロト イポト イヨト イヨト

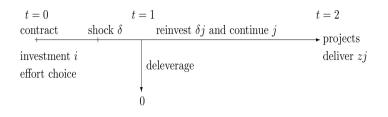
3

Baseline framework

- 2-period model à la Holmström-Tirole (1998, 2011).
- Three dates: 0,1,2.
- Single good used for consumption and investment.
- All contracts must be backed by pledgeable claims on real assets.
- Limited pledgeability (informational frictions).

Introduction	Financial Ecosystem	The Model ○●○○○○○○○○○○	Financial stability
Agents			

- (Financial intermediaries, shortly) Bankers:
 - Initial equity A.
 - Protected by limited liability.
 - Borrow and invest in projects at t = 0.


• Households:

- Large endowment at each date.
- Access to a storage technology.
- (Institutional savers, shortly) Firms:
 - Endowment Y_f at t = 0
 - Dislike consumption at t = 0 and no storage technology.
 - Can invest in a finite amount T of productive projects.
 - When $Y^f > T$, they lend $Y_f T$.
 - (Assumption: do not borrow).

Investment technology

- **Projects**: invest 1 at t = 0, get Z if success, 0 if failure at t = 2.
- Moral hazard: prob of success depends on the effort of the agent (banker):
 - High effort: prob of success is q.
 - Low effort: prob of success is 0, private benefits b.
- (define: $z \equiv qZ$) **Pledgeability**: $\rho_0 \equiv z b$.

Introduction	Financial Ecosystem	The Model ०००●००००००००	Financial stability
Aggregate liqu	uidity shock at $t =$: 1	

- Prob 1 − α: aggregate liquidity shock (crisis); δ must be reinvested for each unit to be brought to completion.
- Claims on projects' future returns can be pledged to meet the reinvestment need ($j \le i$: continuation scale).
- Continuation requires $\ell \geq \delta$, where ℓ is the pledgeability of the claims in a crisis, aka **liquidity**.

Introduction	

The Model

Financial stability

向下 イヨト イヨト

Two types of projects

- Low risk projects:
 - Expected return: z
 - Moral hazard: b
 - Pledgeability: $\rho_0 \equiv z b$
 - Liquidity: $\ell \geq \delta$ in a crisis.
- High risk projects:
 - Expected return: z^r
 - Moral hazard: b^r
 - Pledgeability: $\rho_0^r \equiv z^r b^r$
 - Liquidity: ℓ^r in a crisis.

Assumptions:

- $1 z^r > z$
- 2 $\rho_0^r > \rho_0$

Introduction	Financial Ecosystem	The Model 00000●0000000	Financial stability
The banke	r's problem		

Maxime utility

$$\max_{i',i} \alpha[z'i'+zi] + (1-\alpha)[(z'-\delta)j'+(z-\delta)j] - R(i'+i)$$

subject to

a borrowing constraint:

$$\mathsf{R}(i^r+i-A) \leq \alpha [\rho_0^r i^r + \rho_0 i] + (1-\alpha)[(\rho_0^r - \delta)j^r + (\rho_0 - \delta)j].$$

and liquidity constraints:

$$j^{r} = 0; \; j = i$$

Lagrangian is linear, the banker either invests in low-risk projects or in high-risk ones.

A 3 1 A 3 1

Introduction	Financial Ecosystem	The Model ○○○○○○●○○○○○○	Financial stability
The banker's	s choice		

• Utility from investing in high-risk projects:

$$u_b^r = (\alpha z^r - R)i^r$$

with

$$i^r = \frac{A}{1 - \alpha \rho_0^r / R}$$

• Utility from investing in low-risk projects:

$$u_b = [z - (1 - \alpha)\delta - R]i$$

with

$$i = \frac{A}{1 - \alpha \rho_0 / R}$$

伺 と く き と く き と

æ

Introduction	Financial Ecosystem	The Model ○○○○○○●○○○○○	Financial stability
Optimal c	hoice		

- High-risk projects: Higher leverage and per-unit return, but return zero in a crisis (full deleverage).
- Low-risk projects: Lower leverage and per-unit return, but brought to completion in all states of nature.

Result

Bankers invest in high-risk projects when the cost of leverage R is low enough:

$$R < \bar{R} \equiv \frac{\alpha}{1-\alpha} (\rho_0^r - \alpha \rho_0)$$

Intuition. Banker's utility is a combination of leverage (investment scale) and insurance against the liquidity shock (continuation scale).

Introduction	Financial Ecosystem	The Model oooooooooooo	Financial stability
Competitive eq	quilibrium		

Two cases:

• Firms do not save: Bankers borrow only from households.

② Firms need to save: Bankers borrow (also) from firms. Bankers' cost of leverage *R* is decreasing in the firms' savings $Y^f - T$.

$$R = 1 - (1 - \beta) \frac{\max[Y_f - T, 0]}{i^r + i - A}$$

Result

The higher the firms' savings, the lower R, the higher the bankers' incentives to invest in high-risk projects.

・ 同 ト ・ ヨ ト ・ ヨ ト

소리가 소문가 소문가 소문가

3

Take home messages, part I

- Equilibrium (output and output volatility) is affected by:
 - Availability of investment opportunities to firms (rise of institutional savers).
 - Initial distribution of wealth among households, firms and bankers.
 - $\bullet\,$ Bankers' technology to liquefy credit claims ($\sim\,$ financial innovation).

Introduction	Financial Ecosystem	The Model ○○○○○○○○○●○○	Financial stability

ICPFs and the need for returns

- Insurance companies and pensions funds (ICPFs) with endowment A_p at t = 0
- ICPFs maximize utility:

$$u_{p} = \begin{cases} C_{p} - \bar{C}_{p} & \text{if } C_{p} \ge \bar{C}_{p} \\ & & \\ -M & \text{if } C_{p} < \bar{C}_{p} \end{cases}$$
(1)

ゆ く き と く き と

• Let $\bar{c}_{
m p}\equiv \bar{C}_{
m p}/A_{
m p}\sim$ required return.

• ICPFs allocate A_p to bankers with the mandate to invest in high or low risk projects, paying a fee w.

Introduction

Financial Ecosystem

The Model

Financial stability

- 4 同 6 4 日 6 4 日 6

ICPFs and the need for returns

Result

ICPFs allocate to high-risk projects if the (leverage-enhanced) return of low risk projects in a crisis is low enough:

$$\bar{c}_{p} > \frac{z - \delta - R}{1 - \alpha \rho_0 / R} - w$$

Intuition. When low-risk projects fail to deliver the required return in a crisis, ICPFs seek to maximize the return in the no crisis state, and allocate to high-risk projects.

Introduction	Financial Ecosystem	The Model oooooooooooooo	Financial stability
Take home me	essages, part II		

- ICPFs naturally dislike high-risk projects (return zero in a crisis, $u_p = -M$).
- But, when required return is high (as compared to projects' productivity), ICPFs allocate to low-risk projects only if leverage is cheap.
- When allocation is aimed at meeting a fixed return target, leverage and liquidity risk become substitute.
- Either ICFPs access cheap leverage and lever low-risk assets up, or they seek to invest in high-risk assets.

The Model

Financial stability

・ 同 ト ・ ヨ ト ・ ヨ ト

Authority with a financial stability mandate

- No externality in the model.
- Assume there is a public authority with a financial stability mandate: no deleveraging at the equilibrium.
- First evaluate policy measures in the context with bankers, households and firms, then in the extended version with ICPFs.

ヘロン 人間 とくほど くほとう

Leverage Ratio

- $LR \equiv i_{LR}/A$, with $i_{LR} = \frac{\rho_0^r \alpha \rho}{\rho_0^r \rho}A$
- Banker's utility is a combination of investment scale (leverage) and continuation scale (insurance).
- When investment scale is capped, the banker exhausts borrowing capacity by boosting continuation scale, i.e. invest in low-risk projects.

소리가 소문가 소문가 소문가

Sovereign bonds

- Introduce sovereign bonds to investigate the effects of liquidity regulation and public parking space.
- The authority issues sovereign bonds X at t = 0 backed by the promise to tax households at future dates.
- Sovereign bonds cost 1 at t = 0 and repay $R_X \in [\beta, 1]$ at t = 1.

Introduction	Financial Ecosystem	The Model	Financial stability 000●00000000
Liquidity r	egulation		

- Bankers are required to purchase $x \equiv \delta/R_X$ sovereign bonds for each unit invested in high-risk projects.
- Sovereign bonds are liquid in all states of nature and can be used in a crisis to raise funds, accommodate the reinvestment need and bring high-risk projects to completion.
- But, LCR particularly costly to bankers when firms are in need for parking space, as they bid aggressively for sovereign bonds R_X = β.

•
$$i_{LCR} = \frac{A}{1+\delta\left(\frac{1}{\beta}-\frac{\alpha}{R}\right)-\frac{\alpha\rho_0'}{R}}$$

Public parking space

- Sovereign bonds represent parking space to institutional savers and compete with the parking space supplied by bankers.
- X is usually set according to exogenous fiscal policy considerations.
- Central banks with large sovereign bonds holdings can repo out sov bonds (\sim Fed RRP accessible to nonbank counterparts), thereby expanding sovereign bonds availability to institutional savers.
- The higher X the higher the cost of leverage for bankers.

•
$$X_{pps} = Y_f - T - (i_{pps} - A)\overline{R}$$
.

Introduction	Financial Ecosystem	The Model	Financial stability ○○○○○●○○○○○○
Addendum:	US tax reform		

- Before the reform: 35% tax was due on offshore earnings in the case of repatriation (offshore savings \sim \$1 trillion invested in corporate bonds, Treasuries and agency securities).
- The reform, Jan 1, 2018: (8% or 15.5%) taxes have to be paid whether earnings are repatriated or not. No more incentives to retain earnings offshore.
- Effects:

- Dismantling bond portfolios (firms' asset side). Over the next 8 years, the pace will be dictated by the type of trade to be funded (M&As, paying dividends, stock and debt buybacks).
- Roll-back of funding strategies. US firms have been issuing bonds onshore and using the proceeds to pay dividends and share buybacks (firms' liabilities side).

向下 イヨト イヨト

• In the model: lower demand for parking space.

イロト イポト イヨト イヨト

Policies and ICPFs

- Let R^* be the cost of leverage and R_X the return of sovereign bonds.
- ICPFs can allocate to high- and low-risk projects and also purchase sovereign bonds.
- Bankers' leverage (equity multiplier) is capped by regulation and must be lower than $1/\lambda$ (higher λ stands for tighter regulatory constraints)
- Continuum of ICPFs, heterogeneous wrt \bar{c}_p

The Model

(日) (同) (E) (E) (E)

Equilibrium allocations

Result

Optimal portfolio:

- Low-risk projects for $ar{c}_{p} \leq rac{z-\delta-R^{*}}{\lambda}-w$
- Sovereign bonds for $\bar{c}_p \in (\frac{z-\delta-R^*}{\lambda}-w, R_X]$
- High-risk projects for $ar{c}_p > \max[R_X, rac{z-\delta-R^*}{\lambda}-w]$

Introduction

Financial Ecosystem

The Model

Financial stability

Side-effects of banks' regulation

- Fraction of ICPFs investing in high-risk projects is decreasing in R_X and increasing in λ.
- Tight liquidity ($\sim \text{low } R_X$) and leverage ($\sim \text{high } \lambda$) regulations have "ambiguous" financial stability implications.

소리가 소문가 소문가 소문가

소리가 소문가 소문가 소문가

Pre-crisis

- The environment:
 - High demand for parking space, relatively low supply of public parking space: low R^{\ast} and R_X
 - Low λ : "softer" regulation and buoyant market valuation of ρ_0^r .
- The equilibrium
 - ICPFs with smaller \bar{c}_p allocate to low-risk projects and sov bonds
 - Bankers (prop trading) and ICPFs with larger \bar{c}_p allocate to high-risk projects.

Introduction	Financial Ecosystem	The Model	Financial stability ooooooooooooooo
Post-crisis			

- The environment:
 - Larger public parking space (more T-bills, RRP), ultra low R_X (global QEs and liq reg).
 - High λ : tight regulation, low ρ_0^r .
 - Looking forward: lower demand for parking space from US global corporations (US tax reform).
- The equilibrium
 - Low-risk projects less attractive.
 - Synthetic leverage (consume less dealers' balance sheet).
 - Global banks/dealers less popular (low λ , high w).
 - Asset managers operating at lower *w* (e.g. ETFs) more popular.
 - More direct (unlevered) exposures to more and more illiquid and credit risky assets (loans, infrastructures, EMs).

Introduction	Financial Ecosystem	The Model	Financial stability ○○○○○○○○○○
Conclusions			

- Intermediation mechanism evolves to accommodate needs that originate from outside the financial sphere.
- In recent decades, these demands and needs have caused deep **transformations** in the financial ecosystem.
- These transformations mirror real economy **developments** on a global scale.
- Embracing this view sheds a different light on **policies** aimed at safeguarding financial stability.
- Financial stability implications from different kinds of **imbalances**.