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Abstract

This paper proposes two backtesting tests to assess the validity of the systemic risk measure
forecasts. This new tool meets the need of �nancial regulators of evaluating the quality of
systemic risk measures generally used to identify the �nancial institutions contributing the
most to the total risk of the �nancial system (SIFIs). The tests are based on the concept
of cumulative violations and it is built up in analogy with the recent backtesting procedure
proposed for ES (Expected Shortfall). First, we introduce two backtests that apply for the
case of the MES (Marginal Expected Shortfall) forecasts. The backtesting methodology is
then generalised to MES-based systemic risk measures (SES, SRISK) and to the �CoVaR.
Second, we study the asymptotic properties of the tests in presence of estimation risk and we
investigate their �nite sample performances via Monte Carlo simulations. Finally, we use our
backtests to asses the validity of the MES, SRISK and �CoVaR forecasts on a panel of EU
�nancial institutions.
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1 Introduction

Many systemic risk measures have been proposed in the academic literature over the past years (see

Benoit et al. 2016, for a survey), the most well-known being the Marginal Expected Shortfall (MES)

and the Systemic Expected Shortfall (SES) of Acharya et al. (2010), the Systemic Risk Measure

(SRISK) of Acharya et al. (2012) and Brownlees and Engle (2015), and the Delta Conditional

Value-at-Risk (�CoVaR) of Adrian and Brunnermeier (2016). These measures are designed to

summarize the systemic risk contribution of each �nancial institution into a single �gure, in order

to identify the so-called systemically important �nancial institutions (SIFIs), i.e. the �rms whose

failure might trigger a crisis in the whole �nancial system. The identi�cation of the SIFIs is

crucial for the systemic risk regulation, whatever the regulation tools considered (higher capital

requirements, speci�c regulation, systemic risk tax, etc.). As a consequence, regulators and other

end-users of these measures thus need guidance on how to select the ones most adapted to their

objectives. In this context, the validation is a key requirement for any systemic risk measure to

become an industry standard. Some attemps of validation procedures have been proposed in the

litterature. Following the coherent risk approach of Artzner et al. (1999), Chen, Iyengar, and

Moallemi (2013) de�ne an axiomatic framework for systemic risk measures. Brownlees and Engle

(2015) show that banks with higher SRISK before the �nancial crisis were more likely to be bailed

out by the government and to receive capital injections from the Federal Reserve. Engle, Jondeau,

and Rockinger (2015) compare the empirical ranking obtained with a given measure with the one

computed by the FSB-BCBS, which is based on con�dential bank supervisory data. However, to

the best of our knowledge, no backtesting procedure have been proposed yet for the systemic risk

measures.

In this paper we propose a general framework for backtesting the MES and the related systemic

risk measures. Introduced by Acharya et al. (2010), the MES of a �nancial �rm is de�ned as its

short-run expected equity loss conditional on the market taking a loss greater than its Value-at-Risk

(VaR). The MES is simple to compute and therefore easy for regulators to consider. Furthermore,

the MES constitutes one of the key elements (with the leverage and the market value) of two

popular systemic risk measures, i.e. the SRISK and the SES. The latter is equal to the expected

amount a bank is undercapitalized in a future systemic event in which the overall �nancial system

is undercapitalized (Acharya et al. 2010). Thus, the SES increases in the bank�s expected losses

during a crisis. The SRISK corresponds to the expected capital shortfall of a given �nancial

institution, conditional on a crisis a¤ecting the whole �nancial system (Brownlees and Engle 2015).

This index can be used to rank the �nancial institutions according to their systemic risk, since

the �rms with the highest SRISK are the largest contributors to the undercapitalization of the

�nancial system in times of distress. What it is important to note is that these two systemic

risk measures are theoretically related to the the current leverage, the current equity value of the

�nancial institution and its MES. As a consequence, testing for the validity of the SRISK or SES

forecasts, implies to test for the validity of MES forecasts.

As de�ned by Jorion (2007), backtesting is a formal statistical framework that consists in
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verifying if actual losses are in line with projected losses. This involves a systemic comparison of

the history of model-generated risk measure forecasts with actual returns. Since the true value of

the risk measure is unobservable, this comparison generally relies on violations. When one comes

to backtest the VaR, a violation is said to occur when the ex-post portfolio return is lower than the

VaR forecast. The trick of our paper consists in de�ning an appropriate concept of violation for

the MES forecast. Then, it is possible to adopt the same standard backtesting tests (Kupiec, 1995,

Christo¤ersen, 1998, etc.) as those that are currently used for the VaR forecasts (see Christo¤ersen,

2009 for a survey on backtesting). Our approach is the following. First, we introduce a concept

a concept of Conditional-VaR (CoVaR), inspired from the systemic risk measure proposed by

Adrian and Brunnermeier (2016). The (�; �)-CoVaR is de�ned as the �-quantile of the truncated

distribution of the �rm�s returns given that the market takes a loss greater than its �-VaR. We

express the MES as an integrale of the CoVaRs for all the coverage rate � between 0 and 1. To

the best of our knowledge, this is the �rst time that a relationship is established between the

CoVaR and the MES, and so on with the SES and SRISK. Second, we de�ne a concept of joint

violation of the (�; �)-CoVaR of the �rm�s returns and �-VaR of the market returns. Finally, we

extend the concept of cumulative violation recently proposed by Du and Escanciano (2015) for

the Expected Shortfall (ES) backtests, to a bivariate case. We de�ne a cumulative joint violation

process de�ned as the integrale of the joint violation processes for all the coverage rate � between

0 and 1. This process can be viewed as a "violation" counterpart of the de�nition that we propose

for the MES. Furthermore, we show that this process has the same properties than the cumulative

violation process introduced by Du and Escanciano for the ES. In particular, this process is a

martingale di¤erence sequence (mds). Exploiting this mds property, we propose two backtests for

the MES : an Unconditional Coverage (UC) test and an Independence (IND) test (Christo¤ersen,

1998). The UC test refers to the fact that the violations frequency should be in line with the

theoretical probability to observe a violation. Failure of UC means that the MES forecast does not

measure the risk accurately. Besides UC, MES model should satisfy the independence property.

The independence property refers to clustering of violations. One advantage of our approach is that

it allows to backtest either conditional (with respect to the past information set) MES (Brownless

and Engle 2015) or unconditional MES (Acharya et al. 2010) forecasts.

We consider the same test statistics as those used by Du and Escanciano (2015) for the back-

testing of the ES, since these statistics are similar to those generally used by the regulator or the

risk manager in the context of the VaR backtesting (Kupiec, 1995). We derive the asymptotic

distribution of the two test statistics, while taking into account the estimation risk (Escanciano

and Olmo 2010, 2011, Gouriéroux and Zakoian, 2013). Indeed, the MES forecasts are generally

issued from a parametric model for which the parameters have to be estimated. Then, the use

of standard backtesting procedures to assess the MES model in an out-of-sample basis can be

misleading, because these procedures do not consider the impact of the estimation risk. That is

why we propose a robust version of our test statistics to the estimation risk. Our Monte Carlo

simulations show that these robust test statistics have good �nite sample properties for realistic

sample sizes.
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Finally, from the previous results we derive backtesting tests for the �CoVaR and the MES-

based systemic risk measures (SES, SRISK). The �CoVaR, which is de�ned as the di¤erence

between the conditional VaR (CoVaR) of the �nancial system conditional on an institution being

in distress and the CoVaR conditional on the median state of the institution. The backtesting for

the �CoVaR is based on a vector of two joint violations de�ned for the two conditioning events.

The intuition of the test is then similar to the backtests proposed for multi-level VaR (Francq and

Zakoian, 2015), i.e. the VaR de�ned for a �nite set of coverage rates (Hurlin and Tokpavi 2006,

Pérignon and Smith 2008, Leccadito, Bo¤elli and Urga 2014). Since the SRISK and the SES can

be written as a deterministic function of the MES, we adapt the two MES backtesting tests (UC

and INDF) and their robust versions for these systemic risk measures.

The paper is organized as follows. In Section 1, we de�ne the MES and we express it as a simple

integral of conditional Value-at-Risk (CoVaR). Section 2 introduces the concept of cumulative joint

violation process and its properties, which will be used for the backtesting test of the MES. The

backtesting tests for the MES are presented in Section 3 and their �nite sample properties are

illustrated by Monte Carlo simulations in Section 4. Section 5 extends our backtests to the main

systemic risk measures that depends on the MES, i.e. the SES and the SRISK of Acharya et al.

(2012) and Brownlees and Engle (2015), and to the �CoVaR of Adrian and Brunnermeier (2016).

An empirical application is proposed in Section 6. Finally, the last section concludes.

2 Marginal Expected Shortfall

Let Yt = (Y1t; Y2t)
0 denote the vector of stock returns of two assets at time t. In the speci�c context

of systemic risk, Y1t generally corresponds to the stock return of a �nancial institution, whereas Y2t
corresponds to the market return.1 Denote by 
t�1 the information set available at time t�1, with
(Yt�1; Yt�2; :::) � 
t�1 and F (:; 
t�1) the joint cumulative distribution function (cdf ) of Yt given

t�1 such that F (yt; 
t�1) � Pr (Y1t < y1; Y2t < y2j
t�1) for any y = (y1; y2)

0 2 R2. Assume
that F (:; 
t�1) is continuous.

Following Acharya et al. (2010), we de�ne the MES of a �nancial �rm as its short-run expected

equity loss conditional on the market taking a loss greater than its Value-at-Risk (VaR). This

de�nition of the MES was extended to a 
t�1-conditional version by Brownlees and Engle (2015).

Formally, the �-level MES of the �nancial institution at time t given 
t�1 is de�ned as

MES1t (�) = E(Y1tjY2t � V aR2t(�); 
t�1); (1)

where V aR2t (�) denotes the �-level VaR of Y2t, such that Pr (Y2t � V aR2t (�)j
t�1) = � with

� 2 [0; 1]. Notice that if the market return Y2t is de�ned as the value-weighted average of the
�rm�s returns (for all the �rms that belong to the �nancial system), then the MES of one �rm

corresponds to the derivative of the market�s Expected Shortfall (ES) with respect to the �rm�s

market share (Scaillet, 2004), hence the term "Marginal". Hence, the MES can be interpreted as

a measure of the participation of one �nancial institution to the overall systemic risk.
1Our results can be easily extended to the general case with m � 2 assets.
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As usual, V aR2t (�) is de�ned as the �-th percentile of the marginal distribution of Y2t, denoted

FY2 (:;
t�1), with V aR2t (�) = F
�1
Y2
(:;
t�1).2 Similarly, the MES can be expressed as a function

of the quantiles of the conditional distribution of Y1t given Y2t � V aR2t(�). For that, we introduce
a concept of Conditional-VaR (CoVaR) inspired from the systemic risk measure proposed by Adrian

and Brunnermeier (2016). For any coverage level � 2 [0; 1], the CoVaR for the �rm 1 at time t is

the quantity CoV aR1t(�; �) such that

Pr (Y1t � CoV aR1t(�; �)jY2t � V aR2t(�); 
t�1) = �: (2)

There are two main di¤erences between CoV aR1t(�; �) and the CoVaR introduced by Adrian and

Brunnermeier (2014). First, the conditioning event is based on an inequality, i.e. Y2t � V aR2t(�)
as in Girardi and Ergun (2013), rather than on the equality Y2t = V aR2t(�). Second we introduce

a distinction between the coverage level � of the CoVaR and the coverage level � of the VaR, which

is used to de�ne the conditioning event. Then, the (�; �)-level CoVaR can also be de�ned as

CoV aR1t(�; �) = F
�1
Y1jY2�V aR2t(�)

(�; 
t�1); (3)

where FY1jY2�V aR2t(�)(:; 
t�1) is the cdf of the conditional distribution of Y1t given Y2t � V aR2t(�)
and 
t�1. De�nition of conditional probability and a change in variables yields a useful represen-

tation of the MES in terms of CoVaR.

MES1t(�) =

Z 1

0

CoV aR1t(�; �)d�: (4)

Equation (4) gives a simple relationship between two risk measures, i.e. the MES and the

CoVaR, that are broadly used in the systemic risk literature. Notice that this expression can be

used to determine either the 
t�1-conditional MES1t(�), as in Brownlees and Engle (2015) or the

unconditional MES1(�), as in Acharya et al. (2010). Furthermore, this de�nition of the MES is

valid for any bivariate distribution and for any dynamic model (DCC, CCC, etc.).

For some particular distributions, the conditional cdf FY1jY2�V aR2t(�)(:; 
t�1) that de�ned the

CoVaR has a closed form expression. For instance, Arnold et al. (1993) calculate the marginal of a

bivariate normal distribution with double truncation over one variable. Horrace (2005) formalized

analytical results on the truncated multivariate normal distribution, where the truncation is one-

sided and at an arbitrary point. Ho et al. (2012) study of the truncated multivariate t distribution.

However, whatever the distribution considered, it is possible to express the cdf of the truncated

distribution of Y1t given Y2t � V aR2t(�) as a simple function of the cdf of the joint distribution
of Yt, with

FY1jY2�V aR2t(�)(y1; 
t�1) =
1

�
F (ey; 
t�1) ; (5)

where the vector ey is de�ned as ey = (y1; V aR2t(�))0.
In general, the MES forecasts are issued from a parametric model speci�ed by the researcher,

the risk manager or the regulation authority. For instance, Brownlees and Engle (2015) or Acharya,

2For simplicity in the notations, we do not use the usual convention that de�nes the VaR as the opposite of the
�-quantile of the returns distribution. Similarly, we de�ne the MES as the conditional expectation.
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Engle, and Richardson (2012) consider a bivariate DCC model to compute the MES and the SRISK.

In practice, the cdf F (y; 
t�1; �0) of the joint distribution of Yt, the cdf FY2 (:; 
t�1; �0) of the

marginal distribution of Y2t and the cdf FY1jY2�V aR2t(�;�0)(y; 
t�1; �0) of the truncated distribution

of Y1t given Y2t � V aR2t(�; �0) depend on �0; an unknown parameter in � 2 Rp. This parameter
has to estimated before producing MES forecasts.

3 Cumulative Joint Violation Process

As de�ned by Jorion (2007), backtesting is a formal statistical framework that consists in verifying

if actual losses are in line with projected losses. This involves a systemic comparison of the history

of model-generated risk measure forecasts with actual returns. This comparison generally relies on

tests over violations. When one comes to backtest the VaR, a violation is said to occur when the

ex-post portfolio return is lower than the VaR forecast. In order to backtest the CoVaR and the

MES, we de�ne a joint violation of the (�; �)-CoVaR of Y1t and the �-VaR of Y2t at time t. This

violation process is represented by the following binary variable

ht(�; �; �0) = 1 ((Y1t � CoV aR1t (�; �; �0)) \ (Y2t � V aR2t (�; �0))) ; (6)

where 1 (:) denotes the indicator function. The violation takes the value one if the losses of the

�rm exceeds its CoVaR and the losses of the market exceeds its VaR, and it is zero otherwise.

The VaR backtesting procedures (Kupiec, 1995; Christo¤ersen, 1998; Berkowitz et al., 2011,

among others) are generally based on the mds property of the violation process (see Christo¤ersen

2009 or Hurlin and Pérignon 2012, for a survey). Here, we adopt the same approach for backtest the

CoVaR, and so the MES. Notice that the Bayes�theorem implies that Pr (ht(�; �; �0) = 1j
t�1) =
��. Then, equation (2) implies that the violations are Bernouilli variables with mean ��; and that

the centered violation fht(�; �; �0)� ��g1t=1 is a mds for risk levels (�; �) 2 [0; 1]
2.

E (ht(�; �; �0)� ��j
t�1) = 0: (7)

In order to test for the validity of the MES, we consider a cumulative joint violation process

which can be viewed as a kind of violations "counterpart" of the MES de�nition in equation (4).

This cumulative joint violation process is de�ned as the integral of the violations ht(�; �; �0) for

all the risk levels � between 0 and 1, with

Ht (�; �0) =

Z 1

0

ht(�; �; �0)d�: (8)

This cumulative joint violation process is similar to the cumulative violation process intro-

duced by Du and Escanciano (2015) to backtest the ES, even if the two de�nitions are slightly

di¤erent. The mean and variance of Ht(�; �0) are equal to �=2 and � (1=3� �=4), respectively
(see appendix A). Furthermore, the Fubini�s theorem implies that the mds property of the se-

quence fht(�; �; �0)� ��g1t=1 ; 8 (�; �) 2 [0; 1]
2 is preserved by integration. As a consequence, the

sequence fHt(�; �0)� �=2g1t=1 is also a mds for any � 2 [0; 1], that is

E (Ht (�; �0)� �=2j
t�1) = 0: (9)
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The backtesting tests that we propose for the MES are based on this mds property.

Finally, it is possible to rewrite Ht (�; �0) in a more convenient way, through the Probability In-

tegral Transformation (PIT). Notice that the cumulative joint violation process Ht (�; �0) depends

on the distribution of Yt as follows

Ht (�; �0) = 1 (Y2t � V aR2t (�; �0))�
Z 1

0

1 (Y1t � CoV aR1t (�; �; �0)) d� (10)

= 1 (FY2 (Y2t; 
t�1; �0) � �)�
Z 1

0

1
�
FY1jY2�V aR2t(�;�0) (Y1t; 
t�1; �0) � �

�
d�:

Let us introduce two terms that can be interpreted as "generalized" errors, namely u2t (�0) � u2t =
FY2(Y2t; 
t�1; �0) and u12t (�0) � u12t = FY1jY2�V aR2t(�;�0)(Y1t; 
t�1; �0). Then, the cumulative

joint violation process becomes

Ht (�; �0) = 1 (u2t � �)
Z 1

0

1 (u12t � �) d� = 1 (u2t � �)
Z 1

u12t

1d�: (11)

Thus, the processHt (�; �0) can be expressed as a simple function of the transformed i.i.d. variables

u2t and u12t, de�ned over [0; 1], such as

Ht (�; �0) = (1� u12t (�0))1(u2t (�0) � �): (12)

The PIT implies that the variable u2t has a uniform U[0;1] distribution. The generalized error term

u12t has also a U[0;1] distribution as soon as the transformation FY1jY2�V aR2t(�;�0)(:; 
t�1; �0) is

applied to observations Y1t for which Y2t � V aR2t (�; �0).

4 Backtesting MES

Exploiting the mds property of the cumulative joint violation process, we propose two backtests

for the MES. These tests are similar to those generally used by the regulator or the risk man-

ager for VaR backtesting (Christo¤ersen, 1998). The unconditional coverage (hereafter UC) test

corresponds to the null hypothesis

H0;UC : E (Ht (�; �0)) = �=2: (13)

Since E (Ht (�; �0)) =
R 1
0
E (ht(�;�; �0)) d�, the null H0;UC can also be written as

H0;UC : Pr (ht(�; �; �0) = 1) = ��; 8� 2 [0; 1] :

The null hypothesis UC means that for any coverage level �, the joint probability to observe an

ex-post return y1t exceeding its (� �)-CoVaR and an ex-post return y2t exceeding its �-VaR must

be equal to ��.

The second backtest is based on the independence (hereafter IND) property of the cumulative

violation process fHt (�; �0)� �=2g1t=1: the cumulative violations observed at two di¤erent dates
for the same coverage rate � must be distributed independently. As Christo¤ersen (1998), we
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propose a simple Box-Pierce test (Box and Pierce, 1970) in order to test for the nullity of the �rst

K autocorrelations of Ht (�; �0), denoted �k. The null of the IND test is then de�ned as

H0;IND : �1 = :::: = �K = 0: (14)

with �k = corr (Ht (�; �0)� �=2;Ht�k (�; �0)� �=2).

These two tests imply to estimate the parameters �0 2 � in order to forecast the MES. For

simplicity, we consider a �xed forecasting scheme. An in-sample period from t = �T + 1 to t = 0
is used to estimate �0. Denote by 
�1 the information set available at the end of the in-sample

period, with fY�T+1; :::; Y0g � 
�1 and b�T a consistent estimator of �0. This estimator is used to
forecast the MES for all the dates from t = 1 to t = n. The backtesting tests are then based on

the out-of-sample forecasts of the cumulative violation process process given by

Ht(�;b�T ) = �1� u12t(b�T )�1�u2t(b�T ) � �� ; 8t = 1; :::; n: (15)

4.1 Unconditional Coverage Test

By analogy with the backtest proposed by Du and Escanciano (2015) for ES, and the Kupiec�s

backtest (1995) for VaR, we propose a standard t-test for the null hypothesis of unconditional

coverage H0;UC for the MES. This test statistic, denoted UCMES , is de�ned as

UCMES =

p
n
�
�H(�;b�T )� �=2�p
� (1=3� �=4)

; (16)

with �H(�;b�T ) the out-of-sample mean of Ht(�;b�T )
�H(�;b�T ) = 1

n

nX
t=1

Ht(�;b�T ): (17)

In order to give the intuition of the asymptotic properties of the statistic UCMES , let us de�ne

a similar statistic UCMES (�; �0) based on the true value of the parameters �0 rather than on

its estimator �̂T . Under the null hypothesis, the sequence fHt (�; �0)� �=2gnt=1 is a mds with
a variance equal to � (1=3� �=4). As a consequence, the Lindeberg-Levy central limit theorem
implies that UCMES (�; �0) has an asymptotic standard normal distribution. A similar result

holds for the feasible statistic UCMES � UCMES(�;b�T ) when T ! 1 and n ! 1, whereas
� = n=T ! 0, i.e. when there is no estimation risk.

However, in the general case T !1, n!1 and n=T ! � <1, there is an estimation risk as
soon as � 6= 0. In this case, the asymptotic distribution of UCMES is not standard and depends on

the ratio of the in-sample size T to the out-of-sample size n. Theorem 1 gives the corresponding

asymptotic distribution of UCMES when T !1, n!1 and n=T ! � with 0 < � <1.

Theorem 1 Under assumptions A1-A4

UCMES
d! N

�
0; �2�

�
; (18)
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where d! denotes the convergence in distribution and where the asymptotic variance �2� is

�2� = 1 + �
R0MES�0RMES

� (1=3� �=4) ; (19)

where RMES = E0 (@Ht (�; �0) =@�) and Vas(�̂T ) = �0=T .

The proof of Theorem 1 is reported in appendix B. The vector RMES quanti�es the parameter

estimation e¤ect on the test statistic UCMES . Indeed, this estimation risk that comes from the

di¤erence between the estimate b�T and the true value of the parameter �0. This di¤erence a¤ects
the UCMES test statistic as follows

UCMES =
1

�H
p
n

nX
t=1

(Ht (�; �0)� �=2)| {z }
UCMES(�0)

+

p
�

�H

1

n

nX
t=1

E

0B@ @Ht
�
�;e��0
@�

�������
t�1
1CApT (b�T � �0)

| {z }
Estimation risk

+ op (1) : (20)

Whatever the dynamic model considered for the returns, the vector RMES can be simply deduced

from the cdf of the joint distribution of Yt given 
�1. Indeed, since the derivative of a step function

is a Dirac function and a continuous distribution has no point mass, we get

RMES = E0
�
@Ht (�; �0)

@�

�
= � 1

�
E0
�
@F (eyt; �0)

@�

�
(21)

where eyt = (y1t; V aR2t(�; �0))0 and
@F (eyt; �0)

@�
=

Z y1t

�1
f (u; V aR2t (�; �0) ; �0) du�

@V aR2t (�; �0)

@�| {z }
Impact on the truncation

+

Z y1t

�1

Z V aR2t

�1

@f (u; v; �0)

@�
dudv| {z }

impact on the pdf of the joint distribution

(22)

with the pdf of the conditional distribution of Y1t given Y2t = V aR2t (�). An analytical expression

for the derivative @F (eyt; �0)=@� can be determined for some particular bivariate distributions (see
appendix C for the case of the bivariate normal distribution). In the general case, it can be obtained

by numerical di¤erentiation.

Corollary 2 When there is no estimation risk, i.e. when � = 0; under assumptions A1-A4,

UCMES
d! N (0; 1) : (23)

When the estimation period T is much larger than the evaluation period n, the unconditional

coverage test is simpli�ed since it does not require to evaluate RMES and �0.
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Given these results, it is possible to de�ne a robust test statistic, denoted UCCMES , that explic-

itly takes into account the estimation risk and that has standard limit distribution for any � with

0 � � <1, when T and n tends to in�nity. The feasible robust UC backtest statistics is

UCCMES =

p
n
�
�H(�;b�T )� �=2�q

� (1=3� �=4) + n bR0MES
bVas(�̂T ) bRMES

(24)

with bVas(�̂T ) = b�0=T a consistent estimator of the asymptotic variance covariance matrix of �̂T
and bRMES , a consistent estimator of RMES given by

bRMES = �
1

�n

nX
t=1

@F (byt;b�T )
@�

1(y2t � V aR2t(�; �̂T )): (25)

with byt = (y1t; V aR2t(�; �̂T ))0.
4.2 Independence Test

To test the independence hypothesis H0;IND : �1 = :::: = �m = 0, we use a Portmanteau Box-

Pierce test on the sequence of cumulative joint violation forecasts. The Box-Pierce test statistic is

de�ned as follows

INDMES = n
mX
j=1

�̂2nj ; (26)

with �̂nj the sample autocorrelation of order j of the estimated cumulative joint violation Ht(�;b�T )
given by

�̂nj =
bnjbn0 and bnj = 1

n� j

nX
t=1+j

�
Ht(�;b�T )� �=2��Ht�j(�;b�T )� �=2� ; (27)

where bnj denotes a consistent estimator of the j-lag autocovariance of Ht(�; �̂T ). Theorem 3 gives
the asymptotic distribution of the statistic INDMES when T !1, n!1 and n=T ! � <1.

Theorem 3 Under assumptions A1-A4:

INDMES
d!

mX
j=1

�jZ
2
j ; (28)

where f�jgmj=1 are the eigenvalues of the matrix � with the ij-th element given by

�ij = �ij + �R
0
i�0Rj ; (29)

Rj =
1

� (1=3� �=4)E0
�
(Ht�j(�; �0)� �=2)

@Ht(�; �0)

@�

�
; (30)

�ij is a dummy variable that takes a value 1 if i = j and 0 otherwise, fZjgmj=1 are independent
standard normal variables and Vas(�̂T ) = �0=T .

10



The proof of Theorem 3 is reported in appendix D. The test statistic INDMES has an as-

ymptotic distribution which is a weighted sum of chi-squared variables. The weights depends on

the asymptotic variance-covariance matrix of the estimator b�T , on the cumulative joint violation
process and on its derivative with respect to the model parameter �, as for the UC test. However,

this limit distribution becomes standard when � = 0, i.e. when there is no estimation risk.

Corollary 4 When there is no estimation risk, i.e. when � = 0; under assumptions A1-A4,

INDMES
d! �2 (m) : (31)

From the previous results, we can deduce a robust test statistics for the indendepence hypothesis

which has standard distribution for any � with 0 � � <1, when T and n tends to in�nity. Denoteb�(m)n the vector (b�n1; :::;b�nm)0. The feasible robust IND backtest statistics is de�ned as
INDC

MES = nb�(m)0n
b��1b�(m)n (32)

where b� is a consistent estimator for �, such that

b�ij = �ij + n bR0ibVas(�̂T ) bRj ; (33)

bRj = 1

� (1=3� �=4)
1

n� j

nX
t=j+1

�
Ht�j(�;b�T )� �=2� @Ht(�;b�T )

@�
; (34)

and bVas(�̂T ) is a consistent estimator of the asymptotoc variance covariance matrix of �̂T . When
T and n tends to in�nity, the robust statistic INDc

MES converges to a chi-squared distribution

with m degrees of freedom whatever the relative value of n and T .

5 Monte Carlo Simulation Study

This section assesses the �nite sample properties of the test statistics, computed with and without

taking into account the estimation risk. The �rst part describes the data generating process (DGP)

used to build up the realistic setup, along with the algorithm required to construct the cumulative

violation series. The second part is devoted to the analysis of the empirical size and power of the

test.

5.1 Monte Carlo Design

In line with the current literature, we consider two de�nitions of MES to examine the �nite sample

proprieties of our test. First, we present MES as a conditional systemic risk measure (Ã la

Brownlees and Engle (2015)). Second, we deal with the particular case of a time-invariant MES

(de�ned Ã la Acharya et al. (2010)). The DGP, as well as the size and power exercises, are drawn

up in line with these aspects.
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Conditional MES

For the dynamic case, the DGP consists in a dynamic conditional correlation (DCC) model engle:02

computed on demeaned return processes Yt = (Y1t Y2t)0:

Yt = �
1=2
t zt; (35)

where the 2x2 matrix �t is the time-varying conditional covariance matrix of Yt and zt is an i:i:d:

Gaussian vector error process such that E[zt] = 0 and E[ztz0t] = I(2). The conditional covariance
matrix is de�ned as follows:

�t = DtRtDt; (36)

where Dt = diagf
q
�21;t;

q
�22;tg contains conditional standard deviations of the Yt system and

Rt =

�
1 �t
�t 1

�
is the conditional correlation matrix of Yt. The conditional variances are most

often modeled using the standard univariate GARCH(1,1) framework:

�2i;t = �i;0 + �i;1Y
2
i;t�1 + �i;2�

2
i;t�1; 8i = 1; 2

Furthermore, the time varying correlation matrix;, Rt, that can be obtained as follows: Et�1("t"0t) =
D�1
t �tD

�1
t = Rt, since "t = D

�1
t Yt. We consider:

Qt = (1� a� b)R+ a"t�1"0t�1 + bQt�1;

where a and b are non-negative scalar parameters such that a + b < 1, R is the unconditional

correlation matrix of the standardized errors "t, and Q0 is positive de�nite. The correlation matrix

is subsequently obtained by rescaling Qt, such as: Rt = (I �Qt)�1=2Qt(I �Qt)�1=2.
For a more realistic scenario we use the parameter estimates obtained from the GARCH(1,1)-

DCC(1,1) model on real log-returns series (i.e., JP Morgan Chase Co. and S&P500 index from

January 1st, 2005 to October 9th, 2015).3

Based on this dynamic speci�cation, we compute the conditional MES as follows :

MESt = Et�1[Y1tjY2t � V aR2t(�)]

=

Z
R
xfY1tjY2t�V aR2t(�)(x; �

c
0j
t�1)dx

(37)

where fY1tjY2t�V aR2t
(x; �c0j
t�1) is the pdf of Y1tjY2t � V aR2t, �

c
0 is the set of true parameters,

and 
t�1 is the known information set at time t� 1, so that MESt depends on past information.
The vector of parameters is estimated at each iteration using the following two-step procedure: (i)

�rst, we estimate the univariate GARCH parameters (�1;0; �1;1; �1;2), (�2;0; �2;1; �2;2) by CMLE;

(ii) second, given the estimated parameters from step one, we adjust the DCC parameters (a; b)

based on a bivariate Normal distribution.
3GARCH(1,1) parameters for the conditional variances of the �rst and second asset, (�1;0; �1;1; �1;2),

(�2;0; �2;1; �2;2), are set to (0:02893; 0:09696; 0:90053) and (0:02100; 0:10346; 0:87903). DCC(1,1) parameters for the

conditional correlation between the two series, (a; b), are set to (0:03640; 0:91189), and R =
�

1 0:74826
0:74826 1

�
.
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Unconditional MES

A natural extension of the conditional speci�cation is represented by the time invariant represen-

tation, given by:

Yt = �
1=2zt (38)

where the 2x2 matrix � is the non time-varying covariance matrix of Yt and zt is the same error

term than in dynamic case. The unconditional covariance matrix is de�ned as follows :

� = DRD (39)

where Dt = diagf
p
�21;
p
�22g contains unconditional standard deviations of the Yt system and

R =

�
1 �
� 1

�
is the unconditional correlation matrix of Yt.

In line with the previous speci�cation, the parameters of this speci�c static case correspond

with the unconditional counterpart of the GARCH(1,1)-DCC(1,1) model parameters.4

The unconditional MES associated with this static speci�cation is computed as follows:

MES = E[Y1tjY2t � V aR2t(�)]

=

Z
R
xfY1tjY2t�V aR2t(�)(x; �

u
0 )dx

(40)

where fY1tjY2t�V aR2t
(x; �u0 ) is the pdf of Y1tjY2t � V aR2t, and �

u
0 is the vector of parameters

aggregating all the parameters of this unconditional speci�cation. At each replication, we estimate

�u0 by MLE using the proprieties of the bivariate Normal distribution.

The Monte Carlo simulation exercise is based on 10,000 replications, and we consider in-sample

sizes T = 250; 2500 and out-of-sample sizes N = 250; 500. The coverage levels are set to

� = 0:01; 0:05.

5.1.1 Size and Power

The empirical size and power of the test are assessed within the two con�gurations previously

presented. Note that when studying the power, two types of misspeci�cation are considered under

the alternative: (i) on the volatility dynamics; (i) on the correlation dynamics. For instance, in

the H1(A) and H1(B) frameworks, the volatility of Y1;t (i.e., the �rm) and Y2;t (i.e., the market),

respectively, is undervalued. Such underestimation of the riskiness on the �rm/market losses

might wrongly reduce the estimated MES. In the H1(C) structure, the misspeci�cation occurs in

the dependence between the two series. We focus hence on a scenario in which the correlation

between the �rm and the market is undervalued. This can imply a strong undervaluation of MES

when the market is in times of distress.

Consider �rst the conditional MES case. The DGP structure of Yt under the null and the

alternative is given by:

4Thus, �21, �
2
2, and � match the unconditional variances and the unconditional correlation of our dynamic

speci�cation. We set hence (�21, �
2
2, �) to (11:50177, 1:19961, 0:74826).
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H0 : GARCH(1,1)-DCC(1,1) model:

Yt = �
1=2
t zt

�t = DtRtDt

zt � i:i:d: N(0; I)

H1(A) : GARCH(1,1)-DCC(1,1) model with undervalued variance of the �rm (Y1;t):

Yt = �
1=2
t zt

�21;t = �
H1(A)
1;0 + �1;1Y

2
1;t�1 + �1;2�

2
1;t�1

with �H1(A)
1;0 = 25%� �1;0, 50%� �1;0, 75%� �1;0, successively.

H1(B) : GARCH(1,1)-DCC(1,1) model with undervalued variance fo the market (Y2;t):

Yt = �
1=2
t zt

�22;t = �
H1(B)
2;0 + �2;1Y

2
2;t�1 + �2;2�

2
2;t�1

with �H1(B)
2;0 = 25%� �2;0, 50%� �2;0, 75%� �2;0, successively.

H1(C) : GARCH(1,1)-DCC(1,1) model with undervalued correlation :

Yt = �
1=2
t zt

�t = DtRDt

R =

�
1 �H1(C)

�H1(C) 1

�
with �H1(C) = 0; 0:3; 0:6, successively.

Second, in the unconditional MES case, the DGP structure of Yt under the null and the alter-

native is given by:

H0 : Static model:

Yt = �
1=2zt,

� = DRD

zt � i:i:d: N(0; I)

H1(A) : Static model with undervalued variance of Y1;t:

Yt = �
1=2zt

� =

"
�
2;H1(A)
1 ��

H1(A)
1 �2

��
H1(A)
1 �2 �22

#

with �2;H1(A)
1 = 25%� �21, 50%� �21, 75%� �21, successively.
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H1(B) : Static model with undervalued variance of Y2;t:

Yt = �
1=2zt

� =

"
�21 ��1�

H1(B)
2

��1�
H1(B)
2 �

2;H1(B)
2

#

with �2;H1(B)
2 = 25%� �22, 50%� �22, 75%� �22, successively.

H1(C) : Static model with undervalued correlation :

Yt = �
1=2zt

� =

�
�21 �H1(C)�1�2

�H1(C)�1�2 �22

�
with �H1(C) = 0; 0:3; 0:6, successively.

6 Backtesting other Systemic Risk Measures

Other systemic risk measures can be written as a function of the MES or the CoVaR, and therefore,

can be backtested according to our methodology. It is especially the case for the SES (Acharya et

al. 2010) and the SRISK (Acharya et al. 2012 and Brownlees and Engle 2015) which extend the

MES in order to take into account both the liabilities and the size of the �nancial institution. It is

also the case for the �CoVaR (Adrian and Brunnermeier 2016) which is fundamentally based on

the di¤erence of two conditional VaR.

6.1 Backtesting MES-based Systemic Risk Measures

The SRISK corresponds to the expected capital shortfall of the �nancial institution, conditional on

a crisis a¤ecting the whole �nancial system. Brownlees and Engle (2015) de�ne the capital shortfall

(CSit) as the capital reserves the �rm needs to hold for regulation or prudential management minus

the �rm�s equity. Then, we have

CS1t�1 = k (L1t�1 +W1t�1)�W1t�1; (41)

with L1t the book value of debt, W1t the market value of the �rm�s equity and k a prudential ratio.

As a consequence, if the �nancial system crisis is de�ned as a situation in which Y2t < V aR2t (�) ;

the SRISK become

SRISK1t = Et�1 (CS1tjY2t < V aR2t (�)) (42)

= kEt�1 (L1tjY2t < V aR2t (�))� (1� k)Et�1 (W1tjY2t < V aR2t (�)) (43)

Brownlees and Engle assume that the debt is constant, i.e. Et�1 (L1tjY2t < V aR2t (�)) = Lit�1.
Since Et�1 (W1tjY2t < V aR2t (�)) =Wit�1(1 + Et�1 (Y1tjY2t < V aR2t (�))); then we get

SRISK1t = k L1t�1 � (1� k)W1t�1MES1t (�) (44)
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Similarly, we can de�ne a linear relationship between the SES (Acharya et al. 2010) and the

MES. Indeed, the SES corresponds to the amount a bank�s equity drops below its target level

(de�ned as a fraction k of assets) in case of a systemic crisis when aggregate capital is less than

k times aggregate assets. Acharya et al. (2010) show that the SES of bank i can be expressed as

linear function of its MES, with:

SESit = (k LVit � 1 + � MESit (�) + �) Wit�1; (45)

where � and � are constant terms, Wit the market capitalization or market value of equity, and

Lit = (Lit�1 +Wit�1)=Wit�1 the leverage.

Within this two examples, a MES-based systemic risk measure for the �rm i at time t, denoted

RMit, can de�ned as a deterministic function of the MESit(�) given 
t�1; such as.

RMit = gt (MESit(�); Xi;t�1) ; (46)

with gt (:) an decreasing function (with MES) and Xt�1 a set of variables that belong to 
t�1.

De�ne a new joint violation process ht(�; �; �0; Xt�1) such that

ht(�; �; �0; Xt�1) = (1� 1 (gt (Y1t; Xt�1) � gt (CoV aR1t (�; �; �0) ; Xt�1)))

�1 (Y2t � V aR2t (�; �0)) ; (47)

and a corresponding cumulative joint violation process

Ht (�; �0; Xt�1) =

Z 1

0

ht(�; �; �0; Xit�1)d�: (48)

For these systemic risk measures, we consider the following test

H0;RM : E (Ht (�; �0; Xt�1)) =
�

2
:

The test statistic is then similar to that used for the MES test

UCRM =

p
n
�
�H(�;b�T )� �=2�p
� (1=3� �=4)

;

with

�H(�;b�T ) = 1

n

nX
t=1

Ht(�;b�T ; Xt�1):
When there is no estimation risk, i.e. when � = 0; under assumptions A1-A4,

UCRM
d! N (0; 1) : (49)

When T ! 1, n ! 1 and n=T ! � < 1, test statistic UCRM has a non standard asymptotic

distribution. However, by using the same approach as in Section 4, it is possible to derive a robust

test statistic that has a standard normal distribution whatever the relative value of n and T .
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6.2 Backtesting �CoVaR

Adrian and Brunnermeier (2016 ) propose a measure for systemic risk, called the�CoVaR, which is

de�ned as the di¤erence between the conditional VaR (CoVaR) of the �nancial system conditional

on an institution being in distress and the CoVaR conditional on the median state of the institution.

Contrary to the MES case, denote by Y1t the return of a portfolio of �nancial institutions and by Y2t
the stock return of a given institution. Adrian and Brunnermeier de�ne the stress of the institution

as a case in which the return Y2t is equal to V aR2t (�). This choice is justi�ed by their estimation

methodology based on a (quantile) regression model. A more general approach consists in de�ning

the �nancial stress as a situation in which Y2t � V aR2t(�) and in using truncated distributions

(Girardi and Ergun, 2013). Similarly, the median state of the institution can be represented by

an interquartile range, V aR2t(�inf) � Y2t � V aR2t(�sup), with for instance �inf = 25% and

�inf = 75%. Then, the �CoVaR of the �nancial system corresponds to the quantity

�CoVaR1t (�) = CoV aR1t(�; �; �0)� CoV aR1t(�; e�; �0); (50)

with e� = ��inf ; �sup�0 and
Pr (Y1t � CoV aR1t(�; �; �0)jY2t � V aR2t(�; �0); 
t�1) = �;

Pr
�
Y1t � CoV aR1t(�; e�; �0)jV aR2t(�inf ; �0) � Y2t � V aR2t(�sup; �0); 
t�1� = �: (51)

In order to backtest each of the two CoVaRs, we de�ne two violations. These violation processes

are represented by the following binary variables

ht(�; �; �0) = 1 ((Y1t � CoV aR1t (�; �; �0)) \ (Y2t � V aR2t (�; �0))) ;

ht(�; e�; �0) = 1��Y1t � CoV aR1t ��; e�; �0�� \ �V aR2t(�inf ; �0) � Y2t � V aR2t(�sup; �0)�� :
If the risk model is well speci�ed, the two centered violation processes satisfy

E
�
ht(�; �; �0)� �2

��
t�1� = 0 (52)

E
�
ht(�; e�; �0)� � ��sup � �inf����
t�1� = 0 (53)

The intuition of the test is then similar to the backtests proposed for multi-level VaR (see Francq

and Zakoian, 2015 for the estimation method), i.e. the VaR de�ned for a �nite set of coverage

rates (Hurlin and Tokpavi 2006, Pérignon and Smith 2008, Leccadito, Bo¤elli and Urga 2014). It

consists in considering a vector a violations, denoted ht(�; e�; �0), with
ht(�; e�; �0) = �ht(�; �; �0); ht(�; e�; �0)�0 : (54)

Thus, a test for the validity of the two components of the �CoVaR can be expressed as

H0;UC : E
�
ht(�; e�; �0)� = �h = ��2; � ��sup � �inf��0 : (55)

The corresponding test statistic is de�ned as

UC�CoV aR = n
�
h(�; e�;b�T )� �h�0 bV(h(�; e�;b�T ))�1 �h(�; e�;b�T )� �h� ; (56)
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with h(�; e�;b�T ) the out-of-sample mean of ht(�; e�;b�T ); and bV(h(�; e�;b�T )) a consistent estimator
of the variance-covariance matrix of h(�; e�; �0). Notice that as soon as � < �inf , this matrix is

diagonal since the covariance between the two violations ht(�; �; �0) and ht(�; e�; �0) is null.
When there is no estimation risk, i.e. when � = 0; under assumptions A1-A4,

UC�CoV aR
d! �2 (2) : (57)

When T !1, n!1 and n=T ! � <1, test statistic UC�CoV aR has an asymptotic distribution
which is a weighted sum of chi-squared variables. However, by using the same approach as in

Section 4, it is possible to derive a robust test statistic that has a chi-squared distribution with 2

degrees of freedom whatever the relative value of n and T .

7 Conclusion

This paper develops a backtesting procedure for systemic risk measures. These tests are based on

the concept of cumulative joint violation process. This original approach has many advantages.

First, its implementation is easy since it only implies to evaluate a cdf of a bivariate distribu-

tion. Second, it allows for a separate test for unconditional coverage and independence hypothesis

(Christo¤ersen, 1998). Third, Monte-Carlo simulations show that for realistic sample sizes, our

tests have good �nite sample proerties. Finally, we pay a particular attention the consequences of

the estimation risk and propose a robust version of our test statistics.
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Table 1. Empirical rejection rates for backtesting MES(0.05) at 5% signi�cance level

UCMES(b�T ) UCCMES(
b�T ) INDMES(b�T ) INDC

MES(
b�T )

T = 250; n = 250, Size and Power (size corrected)

H0 � 0.089 0.047 0.094 0.075

HA
1 ��21 = 25% 0.308 0.351 0.030 0.040

��21 = 50% 0.834 0.866 0.051 0.052

HB
1 ��22 = 25% 0.382 0.452 0.035 0.037

��22 = 50% 0.984 0.989 0.080 0.053

HC
1 �H1

= 0:6 0.346 0.383 0.038 0.037

�H1
= 0:3 0.714 0.766 0.041 0.045

T = 2500; n = 2500, Size and Power (size corrected)

H0 � 0.091 0.051 0.059 0.057

HA
1 ��21 = 25% 0.975 0.981 0.085 0.085

��21 = 50% 1.000 1.000 0.472 0.458

HB
1 ��22 = 25% 0.999 1.000 0.111 0.110

��22 = 50% 1.000 1.000 0.931 0.922

HC
1 �H1

= 0:6 0.994 0.995 0.095 0.092

�H1
= 0:3 1.000 1.000 0.223 0.215
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Table 2. Empirical rejection rates for backtesting MES(0.05) at 5% signi�cance level

UCMES(b�T ) UCCMES(
b�T ) INDMES(b�T ) INDC

MES(
b�T )

T = 2500; n = 250, Size and Power (size corrected)

H0 � 0.059 0.054 0.099 0.094

HA
1 ��21 = 25% 0.357 0.362 0.039 0.038

��21 = 50% 0.891 0.895 0.047 0.048

HB
1 ��22 = 25% 0.467 0.473 0.044 0.045

��22 = 50% 0.986 0.988 0.099 0.100

HC
1 �H1

= 0:6 0.448 0.454 0.033 0.035

�H1
= 0:3 0.798 0.802 0.053 0.056

T = 250; n = 2500, Size and Power (size corrected)

H0 � 0.312 0.045 0.076 0.056

HA
1 ��21 = 25% 0.641 0.867 0.069 0.071

��21 = 50% 0.999 1.000 0.416 0.317

HB
1 ��22 = 25% 0.899 0.997 0.077 0.084

��22 = 50% 1.000 1.000 0.910 0.774

HC
1 �H1

= 0:6 0.773 0.901 0.087 0.075

�H1
= 0:3 0.989 0.999 0.251 0.208
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A Moments of the Cumulative Joint Violation Process

Let us de�ne the binary variable Ht (�; �0) = (1� u12t (�0))1 (u2t (�0) � �) with u2t (�0) � u2t =
FY2(Y2t; 
t�1; �0) and u12t (�0) � u12t = FY1jY2�V aR2t(�;�0)(Y1t; 
t�1; �0). The two �rst condi-

tional moments of the cumulative joint process Ht (�; �0) are then given by

E (Ht (�; �0)j
t�1) = Pr (u2t (�0) � �j
t�1)� E (Ht (�; �0)ju2t (�0) � �;
t�1)

= �� � E (u12t (�0)ju2t (�0) � �;
t�1) ;

E
�
H2
t (�; �0)

��
t�1� = � E �1� 2u12t (�0) + u212t (�0)��u2t (�0) � �;
t�1� :
Since the conditional distribution of u2t (�0) given 
t�1 is U[0;1] with E (u2t (�0)j
t�1) = 1=2 and
E
�
u22t (�0)

��
t�1� = 1=3, then we get
E (Ht (�; �0)j
t�1) =

�

2
; V (Ht (�; �0)j
t�1) = �

�
1

3
� �
4

�
: (58)

B Proof of Theorem 1

To derive the asymptotic properties of the statistic CCMES ; we introduce the following assump-

tions.

A1: The vectorial process Yt = (Y1t; Y2t)
0 is strictly stationary and ergodic.

A2: The marginal distribution of Y2t is given by FY2(Y2t; 
t�1; �0) and the truncated distribution

of Y1t given Y2t � V aR2t(�; �0) is given by FY1jY2�V aR2t(�;�0)(Y1t; 
t�1; �0).

A3: �0 2 �, with � a compact subspace of Rp.

A4: The estimator b�T is consistent for �0 and is asymptotically normally distributed such that:
p
T
�b�T � �0� d! N (0;�0) ;

with �0 a positive de�nite p� p matrix. Denote Vas(b�T ) = �0=T .
Proof. Denote Ht (�; �) = (1� u12t (�)) 1 (u2t (�) � �) the cumulative violation process, with
u2t (�) = FY2(Y2t; 
t�1; �) and u12t (�) = FY1jY2�V aR2t(�;�)(Y1t; 
t�1; �); 8t = 1; :::; n and 8� 2
�. Under the null hypothesis H0;UC , the sequence fHt (�; �0)� �=2gnt=1 is a mds with �2H =

V (Ht (�; �0)) = � (1=3� �=4). For simplicity, we assume that 
t�1 only includes a �nite number
of lagged values of Yt, i.e. there is no information truncation. The test statistic UCES can be

rewriten as

UCMES =
1

�H
p
n

nX
t=1

�
Ht(�;b�T )� �=2� : (59)

Under assumptions A1-A4, the continuous mapping theorem implies that

1p
n

nX
t=1

�
Ht(�;b�T )� E�Ht(�;b�T )���
t�1�� = 1p

n

nX
t=1

(Ht (�; �0)� E (Ht (�; �0)j
t�1)) + op (1) :
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Rearranging these terms gives

1p
n

nX
t=1

�
Ht(�;b�T )� E (Ht (�; �0)j
t�1)� =

1p
n

nX
t=1

(Ht (�; �0)� E (Ht (�; �0)j
t�1)) (60)

+
1p
n

nX
t=1

E
��
Ht(�;b�T )�Ht (�; �0)����
t�1�+ op (1) :

The mean value theorem implies that

Ht(�;b�T ) = Ht (�; �0) + �b�T � �0�0 @Ht(�;e�)
@�

; (61)

where e� is an intermediate point between �0 and b�T . Equation (60) becomes
1

�H
p
n

nX
t=1

�
Ht(�;b�T )� �=2� =

1

�H
p
n

nX
t=1

(Ht (�; �0)� �=2) (62)

+

p
�

�H

p
T (b�T � �0)0 1

n

nX
t=1

E

 
@Ht(�;e�)

@�

�����
t�1
!
+ op (1) :

Assume that T ! 1, n ! 1 and n=T ! � with 0 � � < 1. Under the null hypothesis H0;UC ,
the �rst term on the right hand converges in distribution to a standard normal distribution. The

covariance between the �rst term and
p
T (b�T��0) is 0 as b�T depends on the in-sample observations

and the summand in the �rst term is for out-of-sample observations. Under assumption A4, e� p! �0

and since @Ht (�; �0) =@� is also a mds, we have

1

n

nX
t=1

E

 
@Ht(�;e�)

@�

�����
t�1
!

p! RMES = E0
�
@Ht (�; �0)

@�

�
; (63)

where E0 (:) denotes the expectation with respect to the true distribution of Ht (�; �0). So, we get
p
�

�H

1

n

nX
t=1

E

 
@Ht(�;e�)

@�

�����
t�1
!0p

T (b�T � �0) d! N
�
0;
�

�2H
R0MES�0RMES

�
: (64)

and �nally

UCMES
d! N

�
0; 1 + �

R0MES�0RMES

� (1=3� �=4)

�
: (65)

C Computation of RMES in the Bivariate Normal Case

Let us assume that Yt = (Y1t; Y2t)
0 such that

Yt = �
1=2
t "t (66)

where "t = ("1t; "2t)
0 are i.i.d. N (0; I2), where I2 denotes the 2�2 identity matrix and �t = �t (�0)

is the conditional variance covariance matrix of Yt given 
t�1. Denote by f (y;�t) � f (y1; y2;�t)
the pdf and by F (y;�t) � F (y1; y2;�t) the cdf of the joint distribution of Yt such that

f (y;�t) =
1

2�
j�tj�

1
2 exp

�
�y

0�ty

2

�
(67)
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F (y;�t) = Pr ((Y1 � y1) \ (Y2 � y2)) =
Z y1

�1

Z y2

�1
f (a; b;�t) dadb (68)

Using the Dwyer�s formula (1967), we know that

@f (y;�t)

@�t
=
@ ln f (y;�t)

@�t
� f (y;�t) = �

f (y;�t)

2

�
��1t � ��1t yy0��1t

�
(69)

and we get

@F (y;�t)

@�t
=

Z y1

�1

Z y2

�1

@f (a; b;�t)

@�t
dadb (70)

= ��
�1
t

2
F (y;�t) +

1

2

Z y1

�1

Z y2

�1
f (a; b;�t)�

�1
t �(a; b) ��1t dadb

with �(a; b) a 2� 2 matrix equal to (a; b)0 � (a; b). If the conditional variance covariance matrix
is de�ned as

�t =

�
�21t �12t
�12t �22t

�
(71)

the matrix expression given in equation (70) can be decomposed as follows

@F (y;�t)

@�21t
= � �

2
2t

2�t
F (y;�t) +

1

2�2t

Z y1

�1

Z y2

�1

�
�22ta

2 � 2�12t�22tab+ �212tb2
�
f (a; b;�t) dadb

@F (y;�t)

@�22t
= � �21

2�t
F (y;�t) +

1

2�2t

Z y1

�1

Z y2

�1

�
�212ta

2 � 2�12t�21ab+ �21tb2
�
f (a; b;�t) dadb

@F (y;�t)

@�12t
= ��12t

2�t
F (y;�t)

+
1

2�2t

Z y1

�1

Z y2

�1

�
��22t�12ta2 +

�
�212t + �

2
1t�

2
2t

�
ab� �21t�12tb2

�
f (a; b;�t) dadb

with �t = �21t�
2
2t� �212t. If � denotes the parameters vector of the conditional variance-covariance

model (CCC, DCC, etc.), then for any vector � 2 �, we have

@F (y;�t)

@�
=

�
vec
�
@F (y;�t)

@�t

��0
vec
�
@�t
@�

�
(72)

where vec(:) denotes the vectorization operator of a matrix. A consistent estimate of RMES is

given by

bRMES = �
1

�n

nX
t=1

 
vec

 
@F (eyt;�t)

@�t

����b�T
!!0

@vec (�t)
@�

����b�T (73)

D Proof of Theorem 3

Proof. De�ne the lag-j autocovariance and autocorrelation of the cumulative joint violation

Ht(�; �0) for j � 0 by

�j =
j
0

and j = Cov (Ht(�; �0);Ht�j(�; �0)) : (74)
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We drop the dependence of j and �j on � and �0 for simplicity of notation. The sample counter-

parts of j and �j based on the sample fHt(�; �0)g
n
t=1 are

�nj =
nj
n0

and nj =
1

n� j

nX
t=1+j

(Ht(�; �0)� �=2) (Ht�j(�; �0)� �=2) ; (75)

respectively. Similarly, de�ne b�nj and bnj , the sample counterparts of j and �j based on the
sample

n
Ht(�;b�T )on

t=1
with

�̂nj =
bnjbn0 and bnj = 1

n� j

nX
t=1+j

�
Ht(�;b�T )� �=2��Ht�j(�;b�T )� �=2� : (76)

The sketch of the proof is similar to that used for Theorem 1. Under assumptions A1-A4, the

continuous mapping theorem impliesp
n� j

�b�nj � E �b�nj��
t�1�� =pn� j ��nj � E ��nj��
t�1��+ op (1) : (77)

Rearranging these terms givesp
n� j

�b�nj � �nj� =pn� jE �b�nj � �nj��
t�1�+ op (1) : (78)

The mean value theorem implies that

b�nj = �nj + �b�T � �0�0 @e�nj@�
; (79)

whith e�nj the lag-j autocorrelation of the processHt(�;e�); where e� is an intermediate point between
�0 and b�T . De�ne � = (n� j)=T , equation (78) becomesp

n� j
�b�nj � �j� =pn� j ��nj � �j�+p�pT (b�T � �0)0E� @e�nj@�

����
t�1�+ op (1) : (80)

Under assumption A4, when T !1 we have e� p! �0. Then, we get for j 6= 0

E
�
@e�nj
@�

����
t�1� p! E
�
1

n0

@nj
@�

����
t�1�� E� �njn0 @n0@�

����
t�1� : (81)

When n ! 1, n0
p! 0 and �nj

p! �j . Since E( (Ht (�; �0)� �=2)@Ht�j(�; �0)=@�j
t�1) =
@Ht�j(�; �0)=@� E( (Ht (�; �0)� �=2)j
t�1) = 0 for j > 0, we get

E
�
@e�nj
@�

����
t�1� p! Rj � 2�jR0; (82)

with

Rj =
1

0
E
�
@nj
@�

�
=
1

0
E
�
(Ht�j(�; �0)� �=2)

@Ht(�; �0)

@�

�
; (83)

and 0 = � (1=3� �=4). Under the null �j = 0 for j = 1; :::;m. Therefore

p
nb�nj = pn�nj +p�pTR0j(b�T � �0) + op (1) : (84)
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Notice that
p
n (�n1; :::; �nm)

0 d! N (0; Im) and the covariance between the �rst term and
p
T (b�T �

�0) is 0 as b�T depends on the in-sample observations and the correlation �nj depends on the out-
of-sample observations. Denote b�(m)n the vector (b�n1; :::;b�nm)0. Under assumptions A1-A4, we
have

p
nb�(m)n

d! N (0;�) ; (85)

with the ij-th element of � given by

�ij = �ij + �R
0
i�0Rj ; (86)

Rj =
1

� (1=3� �=4)E
�
(Ht�j(�; �0)� �=2)

@Ht(�; �0)

@�

�
;

8 (i; j) 2 f1; :::;mg2, where �ij is a dummy variable that takes a value 1 if i = j and 0 otherwise.
One can write� = Q�Q0, where is an orthogonal matrix, and � is a diagonal matrix with elements

f�jgmj=1. So, we have
Q0
p
nb�(m) d! N (0;�) : (87)

Finally

INDMES = n
mX
j=1

�̂2nj
d!

mX
j=1

�jZ
2
j ; (88)

where f�jgmj=1 are the eigenvalues of the matrix � and fZjgmj=1 are independent standard normal
variables.
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