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The irrationality of a thing is no argument against its existence, rather a condi-

tion of it. Friedrich Nietzsche

1 Introduction

In the last 15 years after the Great Financial Crisis, central banks in western economies

had to face the problem of a zero (or effective) lower bound (ZLB) on the nominal interest

rate. This spurred a very large and important literature on the topic. At least from the

seminal contribution by Benhabib et al. (2001), it is well-known that rational expectations

(RE) models with a ZLB on the nominal interest rate generally admit multiple equilibria

and also multiple steady states. Most recently, however, Ascari and Mavroeidis (2022)

highlight an even more serious concern regarding this type of models when stochastic shocks

hit the economy, a standard assumption in macroeconomic models. They show that in

models featuring a ZLB constraint, a stochastic environment and RE, equilibrium existence

is not generic (incoherence), and when these model do admit an equilibrium, they generally

admit more equilibria (incompleteness) than previously acknowledged.1 Specifically, Ascari

and Mavroeidis (2022) derive conditions for existence of a rational expectations equilibrium

(REE), and for existence and uniqueness of a minimum state variable (MSV) equilibrium

for dynamic forward-looking models with occasionally binding constraints.2 Given that

a model without an equilibrium could not be of any use, Ascari and Mavroeidis (2022)

explore how modifications to the baseline New Keynesian (NK) model, such as introducing

unconventional monetary policies, could avoid the incoherence problem.

In this paper, we point to another route to tackle the incoherence problem. Rather than

modifying the baseline model, we abandon the full-information RE assumption. We show

that the problem of incoherence and incompleteness hinges on the assumption that agents

have RE. Non-existence of REE is by itself a compelling and novel reason to investigate the

possibility of non-rational equilibria. Indeed, one of the main results from this paper is that

a standard New Keynesian model with the ZLB constraint can fail to yield an REE and

still admit other types of self-confirming equilibria. To illustrate this point, we consider two

distinct equilibrium concepts which have been associated with different types of deviations

from full-information RE. First, we study an economy populated by agents who have fore-

casting models that are mis-specified and under-parameterized relative to the forecasting

models that agents would have in an REE. Under this assumption, we derive the analytical

1Following Ascari and Mavroeidis (2022) we will use the terms incoherence and incompleteness to mean
the non-existence of equilibria and the multiplicity of equilibria, respectively. Hence, a model is coherent if
it admits at least one equilibrium, and complete if the equilibrium is unique.

2Therein, an MSV equilibrium is defined as usually intended, that is, as a function of the state variables
of the model. However, an incoherent model could in principle admit other types of equilibria, but, to the
best of our knowledge, no work in the literature, including Ascari and Mavroeidis (2022), has found them.
We use the terminology MSV and REE interchangeably in the case of incoherence.

2



conditions so that the economy settles on a restricted perceptions equilibrium (RPE) in which

agents make optimal forecasts within their class of forecasting rules. Importantly, we prove

that RPE can exist when the RE model is incoherent and hence no REE exists. Alterna-

tively, we assume agents are less forward-looking than rational agents, for instance because

they are myopic à la Gabaix (2020), have imperfect common knowledge as in Angeletos and

Lian (2018), or have finite planning horizons similar to Woodford and Xie (2020). In this

setting too, a unique bounded rationality equilibrium (BRE) may exist, even if an REE does

not.

The derivation of BRE and RPE in an incoherent REE framework is a central contribution

of the paper. In this respect, some remarks are noteworthy.

First, the learning literature has typically focused on the question of whether an REE

can be learnable, because the underlying model admits an REE solution. Here, instead, an

RPE emerges as a self-confirming equilibrium, even if the underlying model does not admit

an REE, which we believe is a novel and intriguing case in the literature.

Second, and related to the previous point, whenever the NK model does not admit an

REE, it is impossible for agents to form self-confirming beliefs about the state-dependent

dynamics of inflation and output implied by the stochastic shocks, and the economy can

easily diverge into a deflationary spiral if agents attempt to learn these dynamics using

simple statistical techniques. The intuition is easy to grasp by interpreting the problem of

rational incoherence in terms of income and substitution effects, following Bilbiie (forth.).

On the one hand, a negative demand shock creates a deflation that raises the current real

interest rate when the economy hits the ZLB, inducing higher savings (substitution effect).

On the other hand, output increases more than one-to-one in response to an expected future

output if the shock is very large or very persistent (income effect). The strength of this

second effect depends on agents’ forward-lookingness. When agents are forward-looking and

rational, and the negative shock is very large or persistent, the income effect dominates and

this gives rise to a situation where the policymaker cannot set an equilibrium nominal interest

rate using a Taylor rule, i.e., incoherence. We show that deviations from RE weaken this

income effect and restore coherence. Hence, while it is a curse to be smart, it is a blessing

to be simple-minded, because the non-rationality of agents’ beliefs can save the economy

from spiralling and lead it to a coherent and complete (CC) self-confirming RPE. Note

that a similar intuition is behind the so-called “forward guidance puzzle” and its proposed

solutions that hinge on weakening agents’ forward-lookingness (e.g., Del Negro et al., 2012;

McKay et al., 2016b; Angeletos and Lian, 2018; Gabaix, 2020; Woodford and Xie, 2020;

Eusepi et al., 2021a).

Third, a basic takeaway from the existence analysis is that the baseline NK model with

RE is incoherent, but can admit RPE or BRE, when negative shocks are sufficiently large in

magnitude or sufficiently persistent. A fundamentals-driven RE liquidity trap, thus, must be
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relatively short-lived compared to the duration of actual liquidity trap events experienced

by Japan, the Euro Area and the U.S., because persistent shocks would make the REE

incoherent. This is not true for the RPE, where a liquidity trap can be highly persistent. In

this sense, one could argue that an RPE or a BRE could explain why the economy did not

blow up after a large shock as the Great Financial Crisis.

The second contribution of the paper concerns the stability properties of these equilibria

under learning, that is, the issue of whether RPE and REE can emerge from a process of

learning. Following the adaptive learning literature, we employ the expectational stability

or “E-stability” criterion to select an equilibrium that may arise through an economy-wide

adaptive learning process in which agents recursively update the parameters of their sub-

jective forecasting models using simple statistical techniques such as least squares. We find

there is a unique E-stable RPE when an RPE exists. Similarly, only one MSV REE can be

E-stable.

Finally, while E-stability is useful for selecting a self-confirming equilibrium in the case

of incompleteness, it is worth noting that adaptive learning can ensure completeness and

coherence all by itself. Specifically, we prove that a unique temporary equilibrium always

exists in our model with a ZLB constraint and adaptive learning agents, provided that

agents do not observe current endogenous variables before market clearing takes place–a very

common assumption in the learning literature. If learning agents condition their forecasts on

current information about endogenous variables, then a temporary equilibrium only exists

under more stringent assumptions.

After a brief literature review, the paper proceeds as follows. Section 2 introduces a

simple model of the ZLB that nests our different assumptions about expectations formation

as special cases. Section 3 illustrates the problem of rational incoherence and the possibility

of irrational coherence. Section 4 shows how adaptive learning resolves incompleteness issues,

and also discusses the plausibility of the RPE concept. Section 5 suggests an additional route

to irrational coherence: lagged information about economic shocks. Section 6 concludes. The

proofs of all the Propositions can be found in the Appendix.

1.1 Literature Review

To the best of our knowledge, our paper is the first paper to analytically characterize the

existence, uniqueness, and learnability of restricted perceptions equilibrium in a model with

an occasionally binding ZLB constraint and persistent, recurring shocks to the economy. We

build on earlier studies of RPE (see Branch, 2006, for a survey),3 or related concepts such as

consistent expectations equilibria (Hommes and Sorger, 1997) and behavioral learning equi-

3See also Evans and Honkapohja (2001). Some related issues are considered by Marcet and Sarget (1989),
Evans et al. (1993), Branch and Evans (2006a), Branch and Evans (2006b), Bullard et al. (2008), Evans and
McGough (2020) and Evans et al. (2021), among many others.
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libria (Hommes and Zhu, 2014). A recent strand of this literature considers RPE and related

self-confirming equilibria in models with regime-switching between active and passive mon-

etary policy regimes (e.g., Airaudo and Hajdini, forth.; Ozden and Wouters, 2021), but this

literature abstracts from the occasionally binding constraint, and instead, Airaudo and Haj-

dini (forth.) assume exogenous regime changes, and Ozden and Wouters (2021) numerically

study a model with endogenous transition probabilities between regimes. More generally, the

earlier literature primarily focuses on frameworks that may admit REE, whereas we prove

that models with the ZLB constraint may only admit non-rational equilibria such as RPE.

This paper contributes to an already large literature about deviations from RE and the

ZLB. Earlier work on adaptive learning at the ZLB studied monetary and fiscal policies

that can prevent an economy with learning agents from getting stuck in the liquidity trap

(Evans et al., 2008; Benhabib et al., 2014; Evans et al., forth.),4 unconventional policies

such as forward guidance (Cole, 2021; Eusepi et al., 2021a), make-up strategies such as price

level targeting (Honkapohja and Mitra, 2020) or average inflation targeting (Honkapohja

and McClung, 2021). Christiano et al. (2017) show that the E-stability criterion selects one

of multiple equilibria of a model with a transitory demand shock that can drive the economy

into a liquidity trap. This finding is closely related to our result about E-stability of REE

in the case of incompleteness. However, their model assumes that the economy returns

to a steady state after the shock dissipates, whereas our framework allows for multiple,

recurring liquidity trap episodes, consistent with the recurrence of ZLB events in the U.S. and

elsewhere. Thus, we extend insights from Christiano et al. (2017) to models with recurring

demand shocks. More generally, the above mentioned papers do not consider existence and

stability of equilibria of models with recurring, fundamentals-driven liquidity traps.

A number of earlier works, including Angeletos and Lian (2018), Gabaix (2020) and

Woodford and Xie (2020), study bounded rationality equilibrium and the ZLB. Among

other things, these papers show that deviations from RE that make agents less forward-

looking than rational agents can resolve the so-called NK paradoxes of the ZLB, such as the

prediction that forward guidance announcements can have arbitrarily large effects on the

economy (“forward guidance puzzle”). Our contribution is to show that these deviations from

RE also resolve the problems of incoherence and incompleteness that plague the standard

NK model (Ascari and Mavroeidis, 2022).

Finally, Mertens and Ravn (2014), Nakata and Schmidt (2019, 2020), and Bilbiie (forth.),

among others, study conditions for the existence of both fundamentals-driven and confidence-

driven liquidity trap equilibria, which are caused by fundamental shocks to the economy

and non-fundamental (sunspot) shocks, respectively.5 One takeaway from these papers is

4See also Evans and McGough (2018b) for a related discussion on interest rate pegs and adaptive learning.
5Additionally, Bianchi et al. (2021) study implications of fundamentals-driven liquidity traps in a nonlin-

ear New Keynesian model.

5



that fundamentals-driven liquidity trap equilibrium is unlikely to exist if shocks are too

persistent, but sunspot equilibria can feature very persistent liquidity traps. However, to

our knowledge, confidence-driven liquidity trap equilibria have only been derived in coherent

models (i.e. models that admit at least one MSV solution). An incoherent model can fail to

admit confidence-driven liquidity trap equilibria, and tight restrictions on the variance and

persistence of fundamental shocks are necessary for existence of both MSV and confidence-

driven liquidity trap equilibria.

2 Model and expectations formation mechanisms

We employ a model that nests the simple New Keynesian model as well as alternative

bounded rationality models explored by Gabaix (2020), Angeletos and Lian (2018), Woodford

and Xie (2020):

xt = MÊtxt+1 − σ(rt −NÊtπt+1) + ϵt, (1)

πt = λyt +MfβÊtπt+1, (2)

rt = max{ψπt,−µ}, (3)

where 0 < M,N,Mf ≤ 1, 0 < β < 1, 0 < σ, λ, µ, and ψ > 1 (i.e. the “Taylor principle”

holds). The model is log-linearized around the zero inflation steady state. Note that Ê

denotes (possibly non-rational) expectations and Ê = E denotes model-consistent expecta-

tions. Also note that the model nests the simple New Keynesian model of Woodford (2003)

if M =Mf = N = 1.

We follow earlier work, including Eggertsson and Woodford (2003), Nakata and Schmidt

(2019), Christiano et al. (2017), and Ascari and Mavroeidis (2022), and assume that the

demand shock, ϵt, follows a 2-state Markov process with transition matrix:

K =

(
p 1− p

1− q q

)
,

with 0 < p = Pr(ϵt = ϵ1|ϵt−1 = ϵ1) ≤ 1, 0 < q = Pr(ϵt = ϵ2|ϵt−1 = ϵ2) ≤ 1. If we assume

q = 1 and ϵ2 = 0, similar to Eggertsson and Woodford (2003) or Christiano et al. (2017),

then we have a model in which a transitory shock, ϵt = ϵ1 ̸= 0, displaces the economy from

steady state, but the economy eventually returns to the absorbing steady state of the model

when ϵt = ϵ2 = 0. In the standard RE version of the model there are two non-stochastic

steady states: one with zero inflation, and one with zero nominal interest rates. However,

equilibrium inflation and output in the temporary state (ϵt = ϵ1) depends on whether agents

have full-information RE or whether they are boundedly rational in some way.

We consider three models of expectations formation. First, agents have full-information

RE in the special case of the model with no discounting in the Euler equation and Phillips

curve (1)-(3) and model consistent expectations.
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Definition 1 Agents have full-information rational expectations (RE) if and only

if Ê = E and M =Mf = N = 1 in the NK model given by Equations (1)-(3).

An REE, defined in Section 3, is a solution of the model (1)-(3) obtained under these as-

sumptions. In keeping with the literature, we treat full-information RE as the benchmark

model of expectations formation, against which we compare ZLB dynamics under alterna-

tive expectations formation mechanisms. Particular attention is paid to the possibility that

agents do not have full knowledge about the structure of the economy, and consequently

expectations can be model-inconsistent (i.e., Ê ̸= E). The adaptive learning literature in

particular studies agents with imperfect knowledge who learn to forecast the law of motion

for aggregate variables using standard statistical tools like least squares. In this setting, im-

perfect knowledge can imply model-inconsistent expectations, but the focus of a large swath

of this literature is whether agents can form self-confirming beliefs, either by learning an

REE, or some non-rational, self-confirming equilibrium if their subjective forecasting models

are mis-specified with respect to the rational forecasting models. Holding fixed the structure

of the model, imperfect knowledge by itself can lead us to new insights about policy and

macroeconomic dynamics.

Definition 2 Agents have imperfect knowledge if Ê ̸= E; M =Mf = N = 1 in the NK

model given by Equations (1)-(3)

Of course, we can deviate from RE without breaking the assumption that agents have full

knowledge about the structure of their economic environment. For instance, Gabaix (2020)

derives a model in which households and firms are relatively myopic due to cognitive lim-

itations. In this setting, myopia implies a change in the model structure in the form of

discounting in the aggregate demand curve (1) (i.e., M < 1) and additional discounting

in the Phillips curve (2) (i.e. Mf < 1). However, nothing in Gabaix’s (2020) model pre-

vents agents from having full knowledge about the world they inhabit, and therefore noth-

ing prevents these boundedly rational agents from having model-consistent expectations.

Hence, Gabaix’s (2020) behavioral model shows how we can deviate from full-information

RE without sacrificing the assumption that agents have perfect knowledge. Bounded ratio-

nality models by Angeletos and Lian (2018) and Woodford and Xie (2020) may also lead to

reduced-form structural models with additional discounting in the structural equations. If

M,Mf or N is less than one, we say that agents are boundedly rational.

Definition 3 Agents are said to be boundedly rational if and only if Ê = E and

min{M,Mf , N} < 1.
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3 Coherence: Existence of an Equilibrium

This Section investigates the problem of coherence, that is, of the existence of an equilibrium,

under the three three models of expectations formation just described.

3.1 Rationality without Coherence

We start by assuming full-information RE to illustrate the problem of incoherence. For

simplicity, we focus on MSV REE, but some of the insights from our paper can be extended

to study non-fundamental “sunspot” equilibria which feature extraneous volatility. Since our

model, (1)-(3), is a purely forward looking model with a 2-state discrete-valued exogenous

shock, the MSV REE law of motion for Yt = (xt, πt)
′ will assume the form Yt = Yj where

Yt = Y1 if ϵt = ϵ1 and Yt = Y2 otherwise.

Definition 4 Rational expectations equilibrium (REE). Y = (Y′
1,Y

′
2)

′ is a rational

expectations equilibrium if and only if Yj solves (1)-(3) given Êt(Yt+1|ϵt = ϵj) = Pr(ϵt+1 =

ϵ1|ϵt = ϵj)Y1 + Pr(ϵt+1 = ϵ2|ϵt = ϵj)Y2 and ϵt = ϵj for j = 1, 2.

There are up to four MSV REE of (1)-(3). First, there is a possible solution in which

interest rates are always positive (“PP” solution). Then, there is a potential solution with

binding ZLB if and only if ϵt = ϵ1, which we refer to as the “ZP” solution. Analogously,

there could be a “PZ” solution with binding ZLB if and only if ϵt = ϵ2. Finally, it is possible

that the ZLB is always binding (“ZZ” solution). We add a superscript i to Y to distinguish

between the REE (i.e. Yi where i = PP,ZP, PZ, ZZ). Following Ascari and Mavroeidis

(2022), if at least one of the four possible REE exist then the model is coherent.

Proposition 1 Consider (1)-(3) and suppose M = Mf = N = 1, ϵ2 ≥ 0. An REE exists

if and only if ϵ1 > ϵ̄REE, where ϵ̄REE is a constant that depends on the model’s parameters,

defined in Equation (30) in the Appendix.

Proposition 1 generalizes Proposition 5 of Ascari and Mavroeidis (2022) to the case with

q < 1. It establishes that under the conventional assumption that the Taylor rule (3) satisfies

the Taylor Principle and recurrent demand shocks, we need to restrict the magnitude of the

shocks, ϵt, to get an REE. For a solution to exist, ϵ1 cannot be too negative (i.e. the shock

cannot be too “big”, in absolute value). The lower bound on ϵ1, denoted as ϵ̄REE, is increasing

in p for standard parameters, which means that a model with more persistent shocks requires

tighter restrictions on the magnitude of the shocks for an equilibrium to exist. This explains

why fundamentals-driven liquidity trap cannot be persistent in an REE. A “big” shock is

needed to take the economy into a liquidity trap, but then, for an REE to exist, it cannot

be persistent. Thus, the model is not generically coherent; solutions only exist for special

calibrations of the shock process and solutions do not exist if the shocks are too persistent

(i.e. p is very high) or if the shock is big (ϵ1 is very low).
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Intuition from a special case. While Proposition 1 deals with the case with q < 1, the

assumption that the high demand state is absorbing (q = 1) and equal to zero (ϵ2 = 0)

is helpful for intuition.6 Under this assumption, the economy under full-information RE

either returns to the steady state with zero inflation (i.e. πt = xy = it = 0) or the steady

state with zero interest rates (i.e. it = −µ, πt = −µ < 0 xt = −µ(1 − β)/κ < 0). The

“temporary state” value of output when ϵt = ϵ1 (assuming for brevity that we go back to

the zero inflation steady state) is given by:

xt = ν(p)Etxt+1 − σmax{ ψλ

1− βp
xt,−µ}+ ϵ1, (4)

ν(p) =

(
1 +

λσ

1− βp

)
> 1, (5)

which we obtain by substituting the Phillips curve and Taylor rule into (1). From (4), it is

apparent that for any p, sufficiently low values of ϵ1 preclude unconstrained interest rates.

Thus, for a sufficiently large demand shock, output will be given by:

xt =
1

1− pν(p)
(σµ+ ϵ1) (6)

if a solution of the model exists at all. However, if the negative demand shock is sufficiently

persistent, so that pν(p) > 1, then xt and therefore temporary inflation, πt =
κ

1−βpxt are

decreasing in ϵ1. This implies that sufficiently large ϵ1 will increase xt and πt, precluding

existence of a solution in which the ZLB binds. Therefore, for a solution to exist we need

to do one of two things. First, we can restrict p to be small enough to ensure pν(p) < 1,

which in turn implies a solution for any ϵ1. Or, alternatively, we need to restrict ϵ1 to be

small (i.e. close to zero) to rule out a situation where large demand shocks preclude both

unconstrained and constrained equilibrium interest rates – i.e., incoherence. Both options

require restrictions on the support of the demand shock.

Figure 1a graphically illustrates the determination of demand for the case pν(p) < 1. It

can be seen that a solution exists for any ϵ1. Figure 1b graphically illustrates equilibrium

determination when pν(p) > 1. It is apparent that two solutions exist if ϵ1 is small, but no

solution if ϵ1 is large in magnitude.7

How should we interpret this restriction on p and ϵ1? Following Bilbiie (forth.), there are

two effects of the demand shock, ϵ1, when interest rates are pegged at the zero level. First,

6The assumption q = 1 is standard in the literature (e.g., Eggertsson and Woodford, 2003; Christiano et
al., 2017; Bilbiie, forth.). To explain the intuition, we borrow heavily from Ascari and Mavroeidis (2022)
and Bilbiie (forth.).

7In fact two or four solutions exist in the two cases, respectively, depending on whether one assumes the
economy returns to the zero inflation steady – as in Figures 1a and 1b – or one assumes the economy goes
to the permanent liquidity trap steady state – not depicted in Figures 1a and 1b. Moreover, the Figures
visualize that the condition pν(p) ⪋ 1 relates to the relative slope of the AS and the AD curve under ZLB.

See Ascari and Mavroeidis (2022).
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Figure 1: Incoherence and Income vs. Substitution

(a) pν(p) < 1 (b) pν(p) > 1

a larger demand shock (i.e. more negative value of ϵ1) raises real interest rates given a fixed

nominal rate, and this induces households to save more. This intertemporal substitution

effect should put downward pressure on inflation and output. At the same time, ν(p) > 1

implies strong income effects at the ZLB; current income, xt, responds by more than an

increase in expected future output, Etxt+1. For high values of p, an exogenous increase in

real interest rates (via lower ϵ1) raises demand and inflation through this second income

effect. In the case where pν(p) > 1 the income effect dominates the substitution effect, and

the negative demand shock has the counter-intuitive effect of raising inflation at the ZLB,

while lowering inflation away from the ZLB (see the green and yellow dots respectively in

Figure 1b) . In this scenario, we need to make sure that ϵ1 is not too negative. On the

other hand, if pν(p) < 1 then intertemporal substitution effects dominate and more negative

ϵ1 leads to more negative inflation and output, which in turn ensures that a solution with

binding ZLB always exists.

In sum, we can discuss the problem of incoherence in our model in terms of income

and substitution effects. RE implies that agents are very forward-looking, which in turn

can imply a scenario where income effects dominate substitution effects. Tight restrictions

on persistence parameter, p, are necessary to avoid this scenario, while restrictions on ϵ1

are essential to ensure equilibrium when income effects are strong. Much of the rest of

this paper investigates whether deviations from RE ensure that these substitution effects

dominate income effects when pν(p) > 1, thus opening up the possibility that non-rational

solutions exist when rational solutions may not.
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3.2 Coherence without Rationality

What if no REE exists? Here we investigate the possibility of the existence of non-rational

equilibria. First, we look at the case of imperfect knowledge as in Definition 2. We show

that the NK model with a ZLB may still admit RPE if we are willing to assume that agents

omit the demand shock from their subjective forecasting model, and attempt to forecast

period-ahead inflation and output using their estimates of the long-run average of both

variables. Second, bounded rationality does not need to imply imperfect knowledge, and so

it is important to consider what happens when agents are boundedly rational as in Definition

3. It turns out that bounded rationality in the form of discounting (M,Mf , N < 1) can imply

an even more complete resolution of the problem of incoherence than RPE.

3.2.1 Restricted Perceptions

The model (1)-(3) has a single state variable, ϵt, which follows a regime-switching process.

Consequently, the REE law of motion for output and inflation is a regime-switching inter-

cept – see Definition 4. Rational agents are assumed to know the functional form of the

REE solution. However, agents without RE could fail to grasp the structure of the REE –

particularly in the case of incoherence when no such equilibrium exists – and consequently,

they might try to forecast inflation and output using an under-parameterized forecasting

model which omits the state variable, ϵt. Agents with these restricted perceptions instead

try to forecast the unconditional mean of output and inflation:

E(Y ) = q̄Ŷ2 + (1− q̄)Ŷ1,

where Y = (x, y)′, Ŷj is Yt when ϵt = ϵj and q̄ = Pr(ϵt = ϵ2) = (1 − p)/(2 − p − q). If the

agents form conditional forecasts using the unconditional mean of inflation and output (i.e.

if ÊtYt+j = E(Y )) then agents’ beliefs about the long-run averages of inflation and output

are true and self-confirming only if Ŷj solves (1)-(3) given EtYt+j = E(Y ) = q̄Ŷ2+(1− q̄)Ŷ1

and ϵt = ϵj for j = 1, 2.

Definition 5 Restricted perceptions equilibrium (RPE). Ŷ = (Ŷ′
1, Ŷ

′
2)

′ is a re-

stricted perceptions equilibrium if and only if (i) Ŷj solves (1)-(3) given EtYt+1 = Ȳ :=

q̄Ŷ2 + (1− q̄)Ŷ1 and ϵt = ϵj for j = 1, 2; and (ii) E(Yt) = Ȳ.8

There are four possible RPE of (1)-(3) indexed by i = PP,ZP, PZ, ZZ, which are anal-

ogous to the REE discussed earlier. Notice that the actual law of motion for inflation and

output in the RPE is still a regime-switching process. A sufficiently attentive learning agent

might be expected to notice that their forecasting model is misspecified in an RPE and

8See Evans and Honkapohja (2001, sec. 3.6 and 13.1) and Branch (2006) for a thorough discussion of the
RPE concept.
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consequently, we might question whether this equilibrium concept is “reasonable.” A later

section discusses issues related to the plausibility of the RPE concept in the context of learn-

ing, but in any case, the simple RPE concept put forth in this section is the natural RPE

concept for this model.9 This RPE concept also makes the analysis tractable, leading to the

following useful result.

Figure 2: Restricted Perceptions Equilibrium

Proposition 2 Consider (1)-(3) and suppose M =Mf = N = 1, ϵ2 ≥ 0. Then:

i. An RPE exists if and only if ϵ1 > ϵ̄RPE, where ϵ̄RPE depends on the model’s parameters,

see Equation (31) in the Appendix, and satisfies ϵ̄RPE = −∞ if q = 1.

ii. ϵ̄REE ≥ ϵ̄RPE if and only p+ q > 1.

Proposition 2 is one of the main results of this paper. It tells us that models with persistent

shocks (i.e. p + q > 1) admit non-rational equilibria but not rational equilibria if ϵ1 ∈
(ϵ̄RPE, ϵ̄REE). Thus we can gain traction in an otherwise incoherent model of the ZLB by

assuming restricted perceptions.

As in the case of REE, it is useful to study RPE when q = 1 and ϵ2 = 0 to develop

intuition, see Figure 2. In this case, we have q̄ = 1 and so the RPE forecast is simply

equal to one of the two non-stochastic steady states of the model. Substituting the forecast

consistent with the economy reverting to the zero inflation steady state into the model – so

Êtxt+1 = Êtπt+1 = 0 in (1)-(3) – and solving for equilibrium output in the temporary state

9In an RPE, agents have “restricted perceptions” in the sense that they omit key fundamental state
variables from their forecasting models. In our simple model, ϵt is the only state variable. Consequently, the
natural RPE for this model involves the PLM that omits ϵt.
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with ϵt = ϵ1 gives: xt = σµ+ ϵ1, assuming the ZLB binds. Thus, effectively the perceived p

is equal zero and the slope of the aggregate demand curve becomes vertical in the temporary

state under a ZLB. It follows that an RPE exists for any p and ϵ1. No support restrictions

for the shock distribution are needed. Restricted perceptions ensures that income effects of

raising real rates do not dominate substitution effects, and thus equilibrium is ensured for

any assumptions about p and ϵ1, in accordance with Proposition 2.

3.2.2 Bounded Rationality

Assuming bounded rationality in the form of discounting (M,Mf , N < 1) yields the following

proposition that illustrates how deviations from RE ameliorate incoherence concerns, as in

Proposition 2.

Proposition 3 Consider (1)-(3) and suppose min{M,Mf , N} < 1 and ϵ2 ≥ 0. Then:

i. A BRE exists if and only if ϵ1 > ϵ̄BR, for some constant ϵ̄BR that depends on the

model’s parameters, see Equation (34) in the Appendix.

ii. If (M − 1)(1−Mfβ) + λσN < 0 then ϵ̄BR = −∞.

However, bounded rationality provides a larger resolution of the problem with respect

to imperfect knowledge, as coherence can be ensured for any assumption about p, q and ϵt

if M,Mf , N are sufficiently small. Thus, if we are willing to explore deviations from RE

that alter the decision problem of the agents (e.g. the Euler equation), and not just the

expectations formation of agents (e.g. the RPE approach), then we can robustly resolve

coherence problems.

Again, we can understand the coherence result in terms of the income and substitution

effect of shocks that raises real interest rates at the ZLB. Assume q = 1 and ϵ2 = 0. The

BRE value of output in the temporary state binding ZLB is given by:

xt = νBR(p)Etxt+1 − σmax{ ψλ

1−Mfβp
xt,−µ}+ ϵ1, (7)

νBR(p) =

(
M +N

λσ

1− βMfp

)
.

In this bounded rationality model therefore, output at the ZLB is given by

xt =
1

1− pνBR(p)
(σµ+ ϵ1). (8)

Clearly, substitution effects dominate income effects if and only if pνBR(p) < 1, similar to

the RE case. However, unlike the RE case, we have νBR(p) < 1 if and only if

Nλσ + (M − 1)(1− βMf ) < 0,
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which is the condition in Proposition 3. Therefore, myopia can ensure that substitution

effects dominate income effects for any p (i.e. existence of a MSV solution for any p and ϵ1).

Though bounded rationality can provide a larger resolution of the problem if (M −
1)(1 − Mfβ) + λσN < 0, the RPE can provide a larger resolution of the problem with

respect to bounded rationality if (M − 1)(1 −Mfβ) + λσN > 0. Figure 3 depicts different

combinations of values of the negative shock, ϵ1, and of the bounded rationality discount

factor, M , that yield coherence in the REE, RPE and BRE cases. The blue line and red line

depict ϵ̄REE and ϵ̄RPE, respectively, and the black line depicts ϵ̄BRE for different values of ϵ1

and M = Mf . Panels (a), (b) and (c) shows that the difference between ϵ̄REE, ϵ̄RPE, and

ϵ̄BR can be substantial. Panel (a) shows that larger values of M can rule out existence of

BRE in cases where an RPE exists. Panel (b) shows that the same result holds even if the

expected low demand state duration is calibrated to match the duration of the 2008-2015

U.S. ZLB episode (i.e. p = 0.965 implies an expected low state duration of 28 quarters).

However, if M < 0.86 in the calibrated model then (M − 1)(1 − Mfβ) + λσN < 0 and

ϵ̄BRE = −∞. Panel (c) reveals that in addition to small M , a high degree of price stickiness

(small λ) is necessary for the BRE approach to provide a fuller solution of the incoherence

problem than the RPE concept. For high values of λ even heavy cognitive discounting in

the Euler equation and Phillips curve will not resolve the problem of incoherence.10 The

so-called “curse of flexibility” is therefore a much more pronounced problem for both REE

and BRE than for RPE.

Figure 3: Region of Coherence of the REE, RPE, and of the BRE

(a) (b) p = 0.965 (c) λ = 0.2

Note: The area above the blue (red) curve depicts values of ϵ1 for which at least one REE (RPE) exists.
The area above the black curve depicts values of ϵ1 and M =Mf for which at least one BRE exists. Other
parameter values: β = 0.99, σ = 1, λ = 0.02, q = 0.98, p = 0.85, N = 1, ϵ2 = 0.01.

Not only does (M − 1)(1 −Mfβ) + λσN < 0 ensure coherence in the case of bounded

10For any M , Mf , N , there is always a large enough value of the product λσ to ensure that (M − 1)(1−
Mfβ) + λσN > 0. Thus, price rigidity and the intertemporal elasticity of substitution play a key role in the
existence of BRE.
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rationality, it also ensures existence of a unique BRE (“completeness”).

Proposition 4 Consider the model given by (1)-(3) and assume ψ > 1. A unique bounded

rationality equilibrium (BRE) exists for any p, q, ϵ1, ϵ2 if and only if λσN+(M−1)(1−Mfβ) <

0. Further, there exist ϵPP,BR and ϵZP,BR such that ϵPP,BR > ϵZP,BR and

i. The PP solution is the unique BRE if and only ϵ1 > ϵPP,BR.

ii. The ZP solution is the unique BRE if and only if ϵPP,BR > ϵ1 > ϵZP,BR.

iii. The ZZ solution is the unique BRE if and only if ϵ1 < ϵZP,BR.

The condition (M − 1)(1−Mfβ) + λσN < 0 completely mitigates concerns about inco-

herence and incompleteness, but the condition requires a rather high degree of discounting in

the Euler and Phillips curve equations. As it turns out, the condition is satisfied by Gabaix’s

preferred calibration: M = 0.85, Mf = 0.8, N = 1, β = 0.99, λ = 0.11, σ = 0.2. For that

calibration, we have:

λσN + (M − 1)(1−Mfβ) = −0.0092 < 0.

On the other hand, it is not satisfied for the calibration in McKay et al. (2016a): M = 0.97,

Mf = N = 1, β = 0.99, λ = 0.02, σ = 0.375. That calibration yields:

λσN + (M − 1)(1−Mfβ) = 0.0072 > 0.

Thus bounded rationality offers a full solution of the problems of incoherence and incom-

pleteness for some, but not all, calibrations featured in the literature.

4 Learning to solve the incompleteness problem

We just saw that a BRE can ensure coherence and completeness with sufficient discounting,

without any restrictions on the support of the shock. What about completeness in the REE

and RPE cases? The coherence condition guarantees existence, but generally that implies

a multiplicity of admissible MSV solutions in the case of RE (e.g., Ascari and Mavroeidis,

2022). Incompleteness is by itself a problem which can only be solved using some criterion

for selecting an equilibrium. Here we investigate whether learning can provide any guidance,

that is, whether the “E-stability” criterion can select an equilibrium of the model as the

outcome of an adaptive learning process.
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4.1 Learning the REE

In order to define when an REE is E-stable, we first need to be precise about what it means

for agents to be learning. Under adaptive learning, agents are assumed to have imperfect

knowledge, as defined in Section 2. Since they lack RE, they also lack sufficient knowledge

to compute the REE analytically. However, adaptive learning agents still need to forecast

inflation and output in order to make consumption, labor, savings and pricing decisions

consistent with (1)-(2).11 Consequently, adaptive learning agents are assumed to have a

subjective forecasting model, or “perceived law of motion” (PLM) for output and inflation.

If the learning agents choose a PLM that is also consistent with how expectations are formed

in an REE, then it is possible for learning agents to “learn” an REE if their beliefs about

the PLM converge to RE, as beliefs are updated recursively using some statistical scheme

for estimating the coefficients of the PLM and observable macro data.

Recall from Section 3.1 that our model admits four possible REE in which output and

inflation follow a 2-state process, which are indexed by superscript i to Y, i.e. Yi where

i = PP,ZP, PZ, ZZ. Agents could conceivably learn one of these REE if their PLM for

output and inflation is a 2-state process which is estimated recursively using least squares.

Consider the following model of learning, in which agents’ PLM is a 2-state process for

inflation and output, like the REE, and beliefs about the state-contingent means are updated

recursively using least squares:

Y e
j,t = Y e

j,t−1 + t−1Ij,t−1ν
−1
j,t−1

(
Yt−1 − Y e

j,t−1

)
, (9)

νj,t = νj,t−1 + t−1 (Ij,t−1 − νj,t−1) , (10)

ÊtYt+1 = Pr(ϵt+1 = ϵ1|ϵt)Y e
1,t + (1− Pr(ϵt+1 = ϵ1|ϵt))Y e

2,t, (11)

where j = 1, 2, kνj,k is the number of periods that ϵt = ϵj up until time k, and Ij,t = 1 if

ϵt = ϵj and Ij,t = 0 otherwise (i.e. Ij,t = 1 is the indicator function for state j). Y e
j,t is the

agents’ most recent estimate of the state-contingent average of Yt when ϵt = ϵj. According to

equation (9), agents revise their beliefs about the state-contingent average of Y in state j (i.e.

Y e
j,t) in the direction of their time-t−1 forecast error only if ϵt−1 = ϵj (otherwise, Y

e
j,t = Y e

j,t−1).

Equation (11) then gives agents’ time-t forecast of period-ahead inflation and forecast. It is

assumed that agents observe ϵt when forecasting at time-t and also that Pr(ϵt+1|ϵt) coincides
11Throughout this paper we restrict our attention to the “Euler equation” approach in which adaptive

learning agents are assumed to treat the RE decision rules, (1)-(2), as the decision rules given subjective
forecasts. However, under this assumption, agents are not making optimal decision given non-rational
expectations, as demonstrated by Preston (2005). An alternative approach which accounts for the true
optimal consumption and pricing decisions under non-rational expectations is the “infinite horizon learning”
approach advanced by Preston (2005) and others. Preliminary results included in the Appendix show that
identical RPE existence results can obtain under Euler equation and infinite horizon learning. We leave the
full topic of RPE existence and E-stability under infinite horizon learning for future research.
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with the actual transition probabilities – e.g. agents know Pr(ϵt+1 = ϵ1|ϵt = ϵ1) = p and

Pr(ϵt+1 = ϵ2|ϵt = ϵ2) = q. After agents form time-t expectations, we obtain the time-t

market-clearing equilibrium, Yt by substituting equation (11) into the model (1)-(3). The

process repeats itself at time t+ 1 and so on.12

We are interested in knowing if (Y e
1,t, Y

e
2,t) → (Yi

1,Y
i
2) for some REE i as time goes

on (t → ∞) and agents’ expectations evolve according to (9)-(11). We say that REE i is

“stable under learning” if (Y e
1,t, Y

e
2,t) → (Yi

1,Y
i
2) almost surely. When might this convergence

of subjective beliefs to RE occur? To make this question tractable, assume that Y e
t = (Y e′

1,t,

Y e′
2,t)

′ is sufficiently near REE i, such that the ZLB binds under adaptive learning if and only

if the ZLB would bind in REE i. This implies the following actual law of motion for Y :

Yt = Ait
(
Pr(ϵt+1 = ϵ1|ϵt)Y e

1,t + (1− Pr(ϵt+1 = ϵ1|ϵt))Y e
2,t

)
+Bi

t, (12)

where APPt = AP and BPP
t = BP,t for all t; A

ZZ
t = AZ and BZZ

t = BZ,t for all t; A
ZP
t = AP

and BZP
t = BP,t if ϵt = ϵ2 and AZPt = AZ and BZP

t = BZ,t otherwise; A
PZ
t = AP and

BPZ
t = BP,t if ϵt = ϵ1 and APZt = AZ and BPZ

t = BZ,t otherwise, and

AP =

(
1

λσψ+1
σ−βσψ
λσψ+1

λ
λσψ+1

β+λσ
λσψ+1

)
AZ =

(
1 σ
λ β + λσ

)
BP,t =

( ϵt
1+λψσ
λϵt

1+λψσ

)
BZ,t =

(
ϵt + σµ
λϵt + λσµ

)
.

Given beliefs that are local to RE beliefs, we assess the learnability of equilibrium using

the E-stability principle. An REE i is said to be E-stable if it is a locally fixed point of the

ordinary differential equation (ODE):

∂Ỹ e

∂τ
= H i(Ỹ e), where H i(Ỹ e) =

(
Y i
1 (Y

e
1 , Y

e
2 )

Y i
2 (Y

e
1 , Y

e
2 )

)
−
(
Y e
1

Y e
2

)
(13)

and Y i
j (Y

e
1 , Y

e
2 ) is the value of Y when ϵt = ϵj as a function of expectations, Ỹ e = (Y e′

1 , Y
e′
2 )′.

The relevant Jacobian for assessing the E-stability of REE i is: DTY i = ∂Hi(Ỹ e)

∂Ỹ e |Ỹ e=Yi .

An REE i is E-stable if the eigenvalues of DTY i have negative real parts, see Evans and

Honkapohja (2001).

There is an intuition for the link between the E-stability condition and stability of beliefs.

The ODE (13) is an approximation of the dynamics of Y e
t near the REE for large t, and it tells

us that agents’ expectations are revised in the direction of the forecast error, Ȳ i(Y e)−Y e. If

12Closely related learning algorithms are used by Woodford (1990), Evans and Honkapohja (1994) and
(Evans and Honkapohja, 2001, p.305-308) to study the E-stability of sunspot equilibria involving discrete-
valued shocks, and by Evans and Honkapohja (1998) to study learnability of fundamental equilibria with
exogenous shocks following a finite state Markov chain. We arrive at identical E-stability results if we
alternatively assume least squares estimation of a PLM of the form: Y et = â + b̂It where It = 1 if ϵt = ϵ2
and 0 otherwise.

17



the roots of DTȲ i have negative real parts, then agents’ expectation about the unconditional

mean of inflation and output are also revised in the direction of their REE values.

We note the E-stability conditions applied to the REE of the occasionally binding con-

straint model are identical to the E-stability conditions applied to a model that features

exogenous Markov-switching in the monetary policy stance driven entirely by ϵt (e.g., see

Branch et al., 2013; McClung, 2020).13 For example, the E-stability condition associated

to the ZP equilibrium of (1)-(3) is the same condition associated to the MSV solution of a

model that assumes rt = ψπt if ϵt = ϵ2 and rt = −µ if ϵt = ϵ1 regardless of whether the ZLB

binds.

Applying the E-stability to the model at hand leads us to the conclusion that only one

REE has the property of being E-stable.

Proposition 5 Consider (1)-(3) and suppose M =Mf = N = 1, ϵ2 ≥ 0. Then:

i. At most one E-stable REE exists.

ii. The E-stable REE is either the PP REE or the ZP REE.

Proposition 5 somewhat extends insights from Christiano et al. (2017) to models with

recurring low demand states (i.e. q < 1). Thus Proposition 5 can be applied to study an

economy such as the U.S. economy, which has visited the ZLB twice since 2007, following

two distinct negative shocks to the economy. The result in Proposition 5 makes it clear that

while multiple solutions exist, only one of them can be understood as the outcome of an

adaptive learning process. Hence, incompleteness is resolved by E-stability.

Pinning down the forecasting model Proposition 5 assumes that agents believe that

output and inflation follow a 2-state process, consistent with REE. However, the REE law of

motion can be represented in a variety of different ways. For instance, consider the following

perceived laws of motion for inflation and output:

Y e
t = aϵt−k

, (14)

Y e
t = aϵt−k

+ bϵt−k, (15)

Y e
t = a+ bϵt−k

ϵt−k, (16)

Y e
t = aϵt−k

+ bϵt−k
ϵt−k, (17)

Y e
t = a+ bϵt−k, (18)

zet = az + bzzt−1 (19)

13Mertens and Ravn (2014) also derive E-stability conditions for an equilibrium of a simple New Keynesian
model with ZLB constraint, assuming a 2-state discrete sunspot shock with an absorbing regime.
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where z ∈ {π, x}, k = 0, 1 and aϵt−k
, bϵt−k

may assume different values depending on ϵt−k.

Again, Y e
t denotes the subjective forecast of Yt implied by the forecasting model.

If learning agents instead had one of the PLMs (14)-(19) and estimated the parameters of

those models recursively, e.g. using least squares, would they eventually have self-confirming

views about inflation and output? In other words, would the data confirm their belief that

Yt follows one of the processes (14)-(19)? If agents observe ϵt and Yt when forecasting at time

t, then beliefs formed under PLMs of the form (14)-(19) can only become self-confirming if

an REE exists. Hence, we refer to (14)-(19) as “REE-consistent beliefs.”

Proposition 6 Suppose agents condition time-t forecasts on current (time-t) variables. Then

REE-consistent beliefs (14)-(19) can only be self-confirming if an REE exists.

Proposition 6 makes it apparent that agents including the demand shock, ϵt, in their

(piecewise) linear forecasting model (or Yt in the case of (19)) cannot develop self-confirming

views about the economy if an REE does not exist (incoherence). This result has implications

for how we should think about learning and equilibrium in the case of incoherence.

4.2 Learning the RPE

What about the learnability of RPE? Proposition 5 tells us that agents with imperfect

knowledge using any of the subjective forecasting models discussed in the previous section

will not learn any self-confirming equilibrium. However, Proposition 2 shows that an RPE

can exist even if an REE does not. It turns out multiple RPE may exist when the restrictions

in Proposition 2 hold. Can one or more of these RPE emerge as the outcome an econometric

learning process, similar to what we considered in the case of REE? The answer is yes. Here

we show that the model may still admit one unique learnable, self-confirming RPE.

First, we must assume agents have a subjective PLM for output and inflation that is

consistent with how expectations are formed in an RPE:

ÊtYt+j = Y e
t = Y e

t−1 + t−1
(
Yt−k − Y e

t−1

)
, (20)

where Y e
t is the agents’ most recent least squares estimate of the unconditional mean of

Y = (x, π)′ using all data available from t = 0, . . . , t− k where k = 0 if agents have current

information and k = 1 if agents have lagged information and only observe endogenous vari-

ables after markets clear. If we substitute (20) into the model and assume Y e
t is sufficiently

near RPE i then we have the following actual law of motion for Y :

Yt = AitY
e
t +Bi

t, (21)

where APPt = AP and BPP
t = BP,t for all t; A

ZZ
t = AZ and BZZ

t = BZ,t for all t; A
ZP
t = AP

and BZP
t = BP,t if ϵt = ϵ2 and AZPt = AZ and BZP

t = BZ,t otherwise; A
PZ
t = AP and

BPZ
t = BP,t if ϵt = ϵ1 and APZt = AZ and BPZ

t = BZ,t otherwise.
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We say that RPE i is stable under learning if Y e
t → Ȳ

i
almost surely, where Ȳ

i
denotes

the unconditional mean of Y i
t . Analogous to the discussion of E-stability of REE above,

we say that RPE i is said to be E-stable if it is a locally stable fixed point of the ODE,

∂Y e/∂τ = hi(Y e), where hi(Y e) = Ȳ i(Y e)− Y e, where Ȳ i(Y e) is the unconditional mean of

Y as a function of expectations, Y e. Formally, E-stability obtains if the eigenvalues of the

Jacobian, DTȲ i = ∂hi(Ye)
∂Y e |

Y e=Ȳ
i have negative real parts. An E-stable RPE is stable under

learning if agents estimate Y e
t using least squares, as in (20), or related estimation routines.

Proposition 7 Consider (1)-(3) and suppose M =Mf = N = 1, ϵ2 ≥ 0. If an RPE exists,

then:

i. There is a unique E-stable RPE.

ii. The E-stable RPE is either the PP RPE or the ZP RPE.

4.3 Is the RPE reasonable?

In an RPE, agents have badly misspecified beliefs. Agents forecast the mean of inflation

and output as if they believe those variables are constant or mean-plus-noise, despite the

fact that these variables would obviously follow a persistent 2-state Markov chain in an

RPE. Why would we consider RPE reasonable? Should agents be expected to detect their

mis-specification over time simply by looking at time series data? Few comments are in

order.

Figure 4: Region of Coherence of the REE and of the RPE

(a) (b) q = 0.9 (c) λ = 0.2

Note: The area above the blue (red) curve depicts values of ϵ1 and p for which at least one REE (RPE)
exists. Other parameter values: β = 0.99, σ = 1, λ = 0.02, q = 0.98, ϵ2 = 0.

First, if an REE exists, then we could argue these RPE are implausible. In this case,

agents could learn to do better, because there would likely be a learnable REE. But inco-

herence precludes REE, and as shown in Proposition 6, it implies that agents fail to form
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self-confirming expectations using a variety of different forecasting models that condition on

the demand shock or even a lag of the endogenous variables. In the case of incoherence of

REE, the RPE is thus a potentially reasonable alternative, because it relaxes the condition

for the existence a self-confirming equilibria. Figure 4 visualizes the difference between the

combination of values of the negative shock, ϵ1, and of its persistence, i.e., p, that yields

coherence in the REE and in the RPE cases. The area above the blue line and the red line

defines the set of pairs (ϵ1, p) so that at least one REE and RPE exist, respectively. Panel

(a) shows that the difference between the region of the parameter space for which there is

coherence in the two cases is substantial. In particular, unless the persistence, p, of the

negative demand shock falls below 0.87, RE admits an equilibrium only for very small neg-

ative shocks. Panel (b) shows that both regions are quite sensitive – they shrink by around

a quarter – to the value of the persistence of the other state where ϵ2 = 0. Finally, panel

(c) shows that the region of coherence of REE shrinks quite substantially as prices becomes

more flexible, while this is not the case for the RPE. The curse of flexibility is therefore a

much more pronounced problem for REE than for RPE, just as Figure 3 (c) shows, which

is very intuitive because the curse hinges on the rationality and forward-lookingness of the

agents.

The Figure 4 results suggest that a fundamentals-driven RE liquidity trap must be rel-

atively short-lived in the case of an REE compared to the duration of actual liquidity trap

events experienced by Japan, the Euro Area and the U.S. In contrast, a fundamentals-driven

RPE liquidity trap can be more persistent. Figure 5 depicts the maximum expected dura-

tion of the liquidity trap (equal to (1− p)−1) that we can generate in a ZP REE or ZP RPE

for different combinations of demand shock, ϵ1. It can be seen that liquidity traps cannot

be very persistent in an REE, whereas the RPE liquidity traps can be highly persistent,

particularly if q is relatively large as in panel (a).14 Panel (c) again shows that the curse of

flexibility is a more pronounced problem for the REE. The BRE results are not depicted in

Figure 5, but Proposition 4 implies that we can generate permanent ZLB events in a BRE

for very negative shocks.

Second, suppose the model is incoherent under RE, but an E-stable RPE exists and

the economy is in it. One could argue that agents inhabiting the RPE would notice that

RPE inflation and output follow a 2-state process. Hence, agents would then stop setting

one-period ahead inflation and output expectations equal to the long run average of those

variables, and start to estimate a 2-state forecasting model in their attempt to learn these

dynamics. Our previous propositions already suggest this might be a bad idea. Indeed,

Proposition 5 establishes that such beliefs cannot be self-confirming. Can they reach another

– not self-confirming – equilibrium? Figure 6 (a) depicts the results from simulating the

14Note that p = 0.965 produces an expected liquidity trap duration of around 28 quarters, which is the
length of the 2008-2015 ZLB episode in the U.S.
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Figure 5: Maximum Expected ZLB Duration in a ZP Solution

(a) (b) q = 0.9 (c) λ = 0.2

Note: The blue (red) curve depicts the maximum expected duration ZLB ((1 − p)−1) we can generate for
given ϵ1 in an REE (RPE) ZP solution. The figure only depicts values of ϵ1 for which an REE ZP or RPE
ZP solution exists. Other parameter values: β = 0.99, σ = 1, λ = 0.02, q = 0.98, ϵ2 = 0.01.

Figure 6: Simulations when REE doe not exist and an RPE exists

(a) RPE vs MSV beliefs (b) RPE beliefs

Note: The model is calibrated so that an E-stable RPE ZP solution exists, but no MSV REE exists. The
constant gain is small and set to gt = 0.00001 for all t. β = 0.99, σ = 1, λ = 0.02, p = 0.85, q = 0.98,
ϵ1 = −0.04, ϵ2 = 0.
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learning dynamics for the case of MSV-consistent beliefs and also for the case of RPE-

consistent beliefs, assuming a small constant gain.15 It clearly shows that MSV-consistent

beliefs are explosive even with very small gain parameter, while, on the contrary, the RPE-

consistent beliefs are not. Panel (b) in Figure 6 displays the dynamics of expected inflation

(and its cumulative average in red) from which it is evident that RPE expectations remain

in some neighborhood around their RPE values.16 Numerical simulation therefore suggests

another reason why the RPE might be a good alternative. If an RPE exists – and an REE

does not – and if agents try to learn using the REE PLM, then the economy will derail

into deflationary spirals. On the contrary, if agents try to learn the RPE, then expectations

remain stable and “centered” on the correct RPE values – provided that the gain parameter

is small and initial inflation and output expectations are not too far away from the average

inflation and output rate in the RPE.

Third, it is important to note that the assumption of learning by itself ensures coherence

and completeness, provided that agents have lagged information, which is the most common

assumption in the learning literature. The following proposition highlights this important

implication of learning.

Proposition 8 The model (20)-(21) is coherent and complete if Yt is not observed contem-

poraneously (i.e. k = 1).

The preceding proposition makes it clear that learning ensures the existence of a temporary

equilibrium given any p, q, ϵ1, ϵ2, provided k = 1.17 Intuitively, learning implies that expec-

tations are predetermined, and this simplifies the task of computing the market clearing

equilibrium allocation relative to the nontrivial fixed point problem needed to solve for the

REE. While expectations are not self-confirming in a temporary equilibrium – unless infla-

tion and output forecasts are identically equal to RPE values – a temporary equilibrium for

the economy always exists when agents are in the process of learning the RPE.

15For MSV learning simulation, we initialize the forecast, Y ej,1 to match the state-contingent mean of
inflation/output in the RPE when ϵt = ϵj . In other words, we assume that agents observe actual endogenous
variables in the RPE switching with ϵt during periods t < 1 and then they decide to make their forecasts
consistent with the switching at t = 1. We use the same initialization for RPE beliefs.

16Moreover, simulations – not reported – also show that RPE-consistent beliefs tend to revert to RPE
values even with decreasing gain and when initial beliefs are a small distance from RPE values. Intuitively,
the RPE-consistent beliefs could also be explosive (into deflationary spirals) whenever the gain parameter is
too large or initial beliefs are very far from the RPE value.

17If k = 0 then a temporary equilibrium can fail to exist for small values of t with decreasing gain.
Therefore, under contemporaneous information – which is the less common assumption in the adaptive
learning literature – we need to restrict the magnitude of the gain parameter to get a solution. This same
result applies to a model with “constant gain” parameter, where t−1 is replaced by some scalar, γ. If
k = 1, the model is coherent for any γ ∈ [0, 1], but is incoherent for high values of γ if k = 0. Evans and
McGough (2018b) documents that constant gain learning models with contemporaneous information can
lead to unreasonable predictions when interest rates are pegged. Proposition 8 is a complementary result
that favors the lagged information assumption.
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Of course there could be other non-rational equilibria such as the consistent expectations

equilibrium considered by Jorgensen and Lansing (2021), the stochastic consistent expec-

tations equilibria (SCEE) of Hommes and Zhu (2014) or Airaudo and Hajdini (forth.). In

particular, an SCEE arises if agents use a forecasting model akin to (19) with lagged informa-

tion about endogenous variables and the agents’ beliefs about the mean and autocorrelation

of inflation and output implied by the forecasting model is confirmed by the observable

economic data. In a SCEE, agents’ forecasts introduce a lag of inflation and output into

the model, which prevents us from analyzing the existence of SCEE in our model with an

occasionally binding constraint.18 Our numerical analysis indicates that these more sophis-

ticated non-rational equilibria may not exist for some plausible calibrations of the model.19

Thus, the RPE may even be the best alternative among non-rational equilibria of our model

with M = Mf = N = 1, but CEE or SCEE existence remains an open question. However,

whether or not these alternative non-rational equilibria exist is not relevant for the main

result of this paper: rationally incoherent models are non-rationally coherent, i.e., admit

non-rational equilibria.

4.4 RPE and Continuous Shocks

To get closed-form solutions for both REE and RPE, we must assume that ϵt follows a

discrete-valued Markov chain. To the best of our knowledge, no paper provides conditions

for existence and uniqueness of RE equilibrium which can be applied to a model similar to

our model under the assumption that ϵt is both persistent and continuously distributed.20

However, while it is hard to characterize REE in a model with continuous shocks and an

occasionally binding constraint, it is relatively easy to derive RPE.

To illustrate, consider the model (1)-(3) and suppose instead that ϵt = ρϵt−1 + vt where

ρ ∈ [0, 1) and vt ∼ N (0, σ2
v). In an RPE of this economy, agents’ forecasts are given by

Êtπt+1 = aπ, Êtxt+1 = 1−β
λ
aπ consistent with the RPE studied in the previous sections.

Substituting these expectations into the model gives the following RPE law of motion for

inflation:

πt =

{
(1 + λσ)aπ + λσµ+ λϵt if st = 0,
1+λσ
1+λσψ

aπ +
λ

1+λσψ
ϵt if st = 1.

(22)

Let h(aπ) denote E(πt) as a function of aπ. Then:

h(aπ) = Pr (st = 0)E(πt|st = 0) + (1− Pr (st = 0))E (πt|st = 1) (23)

18See, e.g., Ascari and Mavroeidis (2022) for a discussion on the difficulty of studying models with occa-
sionally binding constraints and lagged endogenous variables

19Results are available on request.
20See Mendes (2011) for analytical existence results under the assumption that ϵt is a mean-zero, i.i.d

process.
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To compute RPE, we need to compute Pr(st = 0), E(πt|st = 0) and E(πt|st = 1) as

functions of aπ. Let Φ and ϕ denote the standard normal probability distribution function

and standard normal probability density function, respectively. Further, define:

L(aπ) := (σvλ)
−1 (−µ/ψ − (1 + λσ)aπ − λσµ) (24)

It follows that:

Pr(st = 0) = Φ(L(aπ)),

E(πt|st = 0) = (1 + λσ)aπ + λσµ− λσvϕ(L(aπ))

Φ(L(aπ))
,

E(πt|st = 1) =
1 + λσ

1 + λσψ
aπ +

λσvϕ(L(aπ))

(1 + λσψ)(1− Φ(L(aπ)))
.

Therefore, we have :

h(aπ) =
1 + λσ

1 + λσψ
aπ + Φ(L(aπ))

(
(1 + λσ)λσψ

1 + λσψ
aπ + λσµ

)
− ϕ(L(aπ))λ

2σvσψ

1 + λσψ
. (25)

There is an RPE if and only if there exists āπ ∈ R such that h(āπ) = āπ. One can show

there exists a unique maximum of h(āπ), denoted a∗π, and consequently there is either no

RPE solution or there are exactly two RPE solutions.21 A necessary and sufficient condition

for existence of the RPE is h(a∗π)− a∗π > 0. We summarize the result as a proposition.

Proposition 9 Consider (1)-(3) and suppose that ϵt = ρϵt−1 + vt where vt ∼ N (0, σ2
v).

Then:

i. Two RPE exist if and only if h(a∗π) > a∗π where a∗π is given by

a∗π = L−1

(
Φ−1

(
ψ − 1

(1 + λσ)ψ

))
.

ii. An RPE does not exist if and only if h(a∗π) < a∗π.

By inspecting (25), one can see that increasing the variance and persistence of the shocks

(i.e. increasing σv and ρ) or decreasing price rigidity (i.e. increasing λ) reduces h(a), that

needs to be positive for an (actually two) RPE to exist. Consequently, sufficiently high values

of σv, ρ or λ preclude existence of RPE in the model with continuous, persistent shocks.

Figure 7 plots h(a)− a for three different values of σv, assuming ρ = 0.8. It is evident that

larger values of σv shifts h(a) down.
22 Notice that the RPE levels of inflation are always less

21To see this, note that Φ is strictly decreasing in aπ and Φ and L are injective functions and that

h′(aπ) = λσ(1−ψ)
1+λσψ + Φ(L(aπ))λσψ(1+λσ)

1+λσψ . Then under the Taylor Principle (ψ > 1), there exists a unique

maximum, a∗π, such that h′(a∗π) = 0 and h′(aπ) > 0 (h′(aπ) < 0) for all aπ < a∗π (aπ > a∗π).
22Figures 7 and 8 plot h(a∗π)− a∗π for different calibrations of key parameters. In both figures we use the

following benchmark calibration unless otherwise noted: β = 0.99, σ = 1, ψ = 2, λ = 0.02, ρ = 0.8, σ = 0.1.
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than the zero inflation steady state level, and hence the RPE display a deflationary bias akin

to the deflationary bias studied under RE in Nakata and Schmidt (2019) or Bianchi et al.

(2021). Figure 8 plots h(a∗π) − a∗π for different values of other key parameters in calibrated

models. To interpret the panels in the Figure recall that h(a∗π)−a∗π > 0 for the RPE to exist.

The figure shows that the RPE is less likely to exist if the shock variance or persistence is

high, or if prices are more flexible. Hence, the same insights from the simple 2-state process

example carry over to the case of continuous shocks (see Figure 4).

Figure 7: Existence and Multiplicity of RPE with Continuous Shocks

5 Variation on a Theme: Lagged Expectations

Throughout this paper we stuck to the standard assumption that agents observe the demand

shock contemporaneously (i.e. ϵt is included in agents’ time-t information set). This would

be a natural assumption if for example ϵt is a shock to the households’ preferences as in

Eggertsson and Woodford (2003). However, the assumption that agents observe ϵt with a

lag (so that ϵt−1, but not ϵt, is included in agents’ time-t information set) permits the study

of some additional non-rational equilibria which may exist in rationally incoherent models.

To illustrate existence of these additional “lagged expectations equilibria” (LEE), con-

sider the model (1)-(3) and suppose q = 1, ϵ2 = 0. Further suppose that agents believe

inflation and output follows a persistent 2-state Markov chain (just like rational agents) but

instead agents do not know ϵt and hence agents attach p2 probability to the prospect that
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Figure 8: RPE Existence

(a) Shock Variance (b) Shock Persistence

(c) Price Flexibility (d) Activeness of Policy
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ϵt+1 = ϵ1 when forecasting at time t in the temporary state, instead of attaching p prob-

ability to this event as agents with full-information RE would do. Under this assumption

about agents’ time-t information set, the economy either returns to the steady state with

zero inflation or the steady state with zero interest rates after ϵt = ϵ2. The “temporary

state” value of output when ϵt = ϵ1 (assuming for simplicity that we go back to the zero

inflation steady state) is given by:

xt = ν(p2)Etxt+1 − σmax{ ψλ

1− βp2
xt,−µ}+ ϵ1 (26)

where ν(p2) =

(
1 +

λσ

1− βp2

)
> 1,

which we obtain by substituting the Phillips curve and Taylor rule into (1). From this

equation, it is apparent that for any p, sufficiently low values of ϵ1 preclude unconstrained

interest rates, just as in the case of full information RE. Thus, for a sufficiently large demand

shock, output will be given by;

xt =
1

1− p2ν(p2)
(σµ+ ϵ1), (27)

if a solution of the model exists at all. We call this solution a lagged expectation equilibrium

(LEE). It is a self-confirming equilibrium because agents correctly forecast the conditional

mean of output and inflation (e.g. E(xt|ϵt = ϵ1) =
1

1−p2ν(p2)(σµ+ϵ1) and E(xt|ϵt = ϵ2) = 0).23

Note that p2ν(p2) < pν(p), and therefore if p2ν(p2) < 1 < pν(p) we will have a LEE given any

ϵ1, but only an REE if ϵ1 is sufficiently close to zero. REE existence always implies existence

of LEE, so the opposite is not true. This simple exercise reveals that there can be additional

deviations from RE, beyond the scope of this paper, which are useful for understanding an

incoherent model.

6 Concluding Remarks

Standard RE models with an occasionally binding zero lower bound (ZLB) constraint either

admit no solutions (incoherence) or multiple solutions (incompleteness). This paper shows

that the problem of incompleteness and incoherence hinges on the assumption of RE.

Models with no rational equilibria may admit self-confirming equilibria involving the use

of simple mis-specified forecasting models. The main message of the paper from the existence

analysis is that when negative shocks are sufficiently large in magnitude or sufficiently per-

sistent, the baseline NK model is incoherent, but can admit RPE or BRE. Completeness and

23In the first period such that ϵt = ϵ2, we have xt ̸= 0. However, E(xt|ϵt = ϵ2) = E(πt|ϵt = ϵ2) = 0
because state 2 is an absorbing state. Thus, the LEE is a non-rational equilibrium in which agents have
self-confirming beliefs about the state-contingent conditional means of endogenous variables.
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coherence can be restored if expectations are adaptive or if agents are less forward-looking

due to some information or behavioral friction.

In the case of multiple solutions, the E-stability criterion selects an equilibrium. An RPE

can exist as a self-confirming equilibrium, even if the underlying model does not admit an

REE. Thus, non-rationality of agents’ beliefs can save the economy from blowing up into

infinite deflationary spirals, while it yields persistent liquidity traps. These results highlight

how deviations from RE help us understand persistent liquidity traps in theoretical models

and interpret the recent episodes of liquidity traps in Japan, the Euro Area, and the U.S.

We leave room for future work. In particular, we used the RPE and BRE concepts to

make our point simple and clear, and consequently we abstracted from other self-confirming

equilibria that could emerge under adaptive learning, such as CEE or SCEE. Similarly, we

excluded other popular forms of non-rationality from our analysis, such as level-k reasoning.

Finally, we put a premium on analytical results and therefore we focused on a simple the-

oretical model. Future work could examine related issues in larger, empirically-rich DSGE

models.

Appendix

Proof of Proposition 1

Consider Proposition 1 and define a = λσ, Q = I2− (1+β+λσ)K+βK2 and π̂i = (πi1, π
i
2)

′,

and let ej denote the j-th column of the 2 by 2 identity matrix, I2. The PP solution is given

by:

π̂PP = (Q+ λσψI2)
−1

(
λϵ1
λϵ2

)
.

The PP solution exists if and only if ψπPPj > −µ for j = 1, 2. From π̂PP we see that πPP1

and πPP2 are linear in ϵ1 and

∂πPP1

∂ϵ1
=

λ((1− q)(1 + a− (p+ q − 1)β) + a(ψ − 1))

a(ψ − 1)(a(ψ + 1− p− q) + (2− p− q)(1− β(p+ q − 1)))
> 0

∂πPP2

∂ϵ1
=

λ(1− q)(a− β(p+ q − 1) + 1)

a(ψ − 1)(a(ψ + 1− p− q) + (2− p− q)(1− β(p+ q − 1)))
> 0.

Thus, PP exists if and only if ϵ1 > ϵPP = min(ϵPP1 , ϵPP2 ) where ϵPP1 and ϵPP2 solve ψπPP1 = −µ
and ψπPP2 = −µ, respectively. We have

ϵPP1 − ϵPP2 =
a(ψ − 1)(aµ(ψ − 1) + λϵ2ψ)(a(−p− q + ψ + 1) + (−p− q + 2)(1− β(p+ q − 1)))

λ(1− q)ψ(a− β(p+ q − 1) + 1)(a(ψ − q) + (1− q)(1− β(p+ q − 1)))
> 0
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Therefore, the PP solution exists if and only if ϵ1 > ϵPP = ϵPP1 where

ϵPP =
a2µ(ψ − 1)(p+ q − ψ − 1)

λψ(−(a+ 1)q + aψ + β − βp+ βq(p+ q − 2) + 1)

+
a(λϵ2(p− 1)ψ + µ(ψ − 1)(−p− q + 2)(β(p+ q − 1)− 1))− λϵ2(p− 1)ψ(β(p+ q − 1)− 1)

λψ(−(a+ 1)q + aψ + β − βp+ βq(p+ q − 2) + 1)
.

(28)

The ZP solution is given by

π̂ZP = (Q+ λσψe2e
′
2)

−1

(
λϵ1 + λσµ

λϵ2

)
.

The ZP solution exists if and only if ψπZP2 > −µ > ψπZP1 . From π̂ZP we see that πZP1 and

πZP2 are linear in ϵ1 and

∂πZP1

∂ϵ1
=

−λ((1− q)(a− β(p+ q − 1) + 1) + a(ψ − 1))

a(−a(p+ q − 1) + apψ − (β(p+ q − 1)− 1)(p(ψ − 1)− q − ψ + 2))

∂πZP2

∂ϵ1
=

λ(q − 1)(a− β(p+ q − 1) + 1)

a(−a(p+ q − 1) + apψ − (β(p+ q − 1)− 1)(p(ψ − 1)− q − ψ + 2))

From the last equations it is clear that
∂πZP

1

∂ϵ1
> 0 and

∂πZP
2

∂ϵ1
> 0 if and only if denZP > 0

where denZP = −(−a(p+ q − 1) + apψ − (β(p+ q − 1)− 1)(p(ψ − 1)− q − ψ + 2)). Solving

for ϵZP1 and ϵZP2 such that ψπZP1 = −µ and ψπZP2 = −µ, respectively, we have

ϵZP1 − ϵZP2 =
a(aµ(ψ − 1) + λϵ2ψ)den

ZP

ϵ∆ZP,den
ϵ∆ZP,den = (1− q)λψ(a+ β(1− p− q) + 1)((1− q)(a− β(p+ q − 1) + 1) + a(ψ − 1)) > 0

Therefore, if denZP > 0 then ϵZP2 < ϵ1 < ϵZP1 is necessary and sufficient for existence of ZP;

otherwise, ϵZP1 < ϵ1 < ϵZP2 is necessary and sufficient for existence of ZP. Further, we can

show:

ϵZP1 =
a2µ(ψ − 1)(p+ q − ψ − 1)

λψ(−(a+ 1)q + aψ + β − βp+ βq(p+ q − 2) + 1)

+
a(λϵ2(p− 1)ψ + µ(ψ − 1)(−p− q + 2)(β(p+ q − 1)− 1))− λϵ2(p− 1)ψ(β(p+ q − 1)− 1)

λψ(−(a+ 1)q + aψ + β − βp+ βq(p+ q − 2) + 1)

= ϵPP

and

ϵZP2 =
a2µ(ψ − 1)(p+ q − 1)− λϵ2(p− 1)ψ(β(p+ q − 1)− 1)

λ(q − 1)ψ(−a+ β(p+ q − 1)− 1)

+
a(λϵ2pψ + µ(ψ − 1)(2− p− q)(β(p+ q − 1)− 1))

λ(q − 1)ψ(−a+ β(p+ q − 1)− 1)
(29)
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Therefore, ϵ1 > ϵZP = min{ϵPP , ϵZP2 } is necessary and sufficient for existence of ZP or PP

solution.

The PZ solution is given by

π̂PZ = (Q+ λσψe1e
′
1)

−1

(
λϵ1

λϵ2 + λσµ

)
.

The PZ solution exists if and only if ψπPZ1 > −µ > ψπPZ2 . One can show

∂πPZ1

∂ϵ1
=

λ(1− (a+ 1)q + β(q − 1)(p+ q − 1))

a(a(p− qψ + q − 1)− (β(p+ q − 1)− 1)(p− qψ + q + ψ − 2))

=
λnumPZ

1

denPZ

∂πPZ2

∂ϵ1
=

λ(1− q)(a− β(p+ q − 1) + 1)

a(a(p− qψ + q − 1)− (β(p+ q − 1)− 1)(p− qψ + q + ψ − 2))

=
λnumPZ

2

denPZ
.

Clearly numPZ
2 ≥ 0. Now ∂denPZ

∂ψ
= anumPZ

1 , so denPZ is increasing in ψ if and only if

numPZ
1 > 0. Since denPZ is linear in ψ there exists a unique ψPZ such that denPZ = 0:

ψPZ = 1 +
(1 + a+ (1− p− q)β)(1− p)

numPZ
1

Therefore, if numPZ
1 < 0, ψPZ < 1 and denPZ is decreasing in ψ, which implies denPZ < 0

for ψ > 1. Otherwise, denPZ < 0 if numPZ
1 > 0 and 1 < ψ < ψPZ and denPZ > 0 if

numPZ
1 > 0 and ψ > ψPZ .

Solving for ϵPZ1 and ϵPZ2 such that ψπPZ1 = −µ and ψπPZ2 = −µ, respectively, we have

ϵPZ1 − ϵPZ2 =
(aµ(ψ − 1) + λϵ2ψ)den

PZ

λ((1− q)(a− β(p+ q − 1) + 1))ψnumPZ
1

There are three cases to consider. First, if denPZ > 0 (which implies numPZ
1 > 0), then

∂πPZ1 /∂ϵ1 > 0, ∂πPZ2 /∂ϵ1 > 0 and ϵPZ1 > ϵPZ2 so ϵ1 > ϵPZ1 > ϵPZ2 > ϵ1 is necessary for PZ

existence, but not possible. Second, if denPZ < 0 and numPZ
1 > 0, then ∂πPZ1 /∂ϵ1 < 0,

∂πPZ2 /∂ϵ1 < 0 and ϵPZ1 < ϵPZ2 , so ϵ1 < ϵPZ1 < ϵPZ2 < ϵ1 is necessary for PZ existence, but

not possible. In the third case, denPZ < 0 and numPZ
1 < 0, which implies ∂πPZ1 /∂ϵ1 > 0,

∂πPZ2 /∂ϵ1 < 0, and ϵPZ2 < ϵPZ1 so that ϵPZ2 < ϵPZ1 < ϵ1 is necessary and sufficient for PZ

existence in this case.

One can show:

ϵPZ1 − ϵPP =
a(p− 1)(aµ(ψ − 1) + λϵ2ψ)(a− β(p+ q − 1) + 1)

(numPZ
1 )λ((1− q)(1 + a− (−1 + p+ q)β) + a(ψ − 1))

> 0
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if PZ exists (since this requires numPZ
1 < 0). Therefore, if PZ exists then ϵ1 > ϵPP and

hence the PP or ZP solution also exists.

The ZZ solution is given by

π̂ZZ = (Q)−1

(
λϵ1 + λσµ
λϵ2 + λσµ

)
.

The ZZ solution exists if and only if ψπZZj < −µ for j = 1, 2. One can show

∂πZZ1

∂ϵ1
=

λ(1− (a+ 1)q + β(q − 1)(p+ q − 1))

a(a(p+ q − 1)− (p+ q − 2)(β(p+ q − 1)− 1))

=
λnumZZ

1

adenZZ

∂πZZ2

∂ϵ1
=

λ(1− q)(a− β(p+ q − 1) + 1)

a(a(p+ q − 1)− (p+ q − 2)(β(p+ q − 1)− 1))

=
λnumZZ

2

adenZZ
.

Clearly numZZ
2 ≥ 0. We can further show that −numZZ

1 = denZZ + (1 − p)(1 + a − (p +

q− 1)β) ≥ denZZ . Hence denZZ > 0 implies numZZ
1 < 0. Solving for ϵZZ1 and ϵZZ2 such that

ψπZZ1 = −µ and ψπZZ2 = −µ, respectively, we have

ϵZZ1 − ϵZZ2 =
adenZZ(aµ(ψ − 1) + λϵ2ψ)

λnumZZ
1 ψ(1− q)(a− β(p+ q − 1) + 1)

There are three cases to consider. First, if denZZ > 0 (which implies numZZ
1 < 0) then

∂πZZ1 /∂ϵ1 < 0, ∂πZZ2 /∂ϵ1 > 0, ϵZZ2 > ϵZZ1 , so that ZZ existence requires ϵZZ2 > ϵ1 > ϵZZ1 .

Second, if denZZ < 0 and numZZ
1 > 0 then ∂πZZ1 /∂ϵ1 < 0, ∂πZZ2 /∂ϵ1 < 0, ϵZZ2 > ϵZZ1 , so

that ZZ existence requires ϵ1 > ϵZZ2 > ϵZZ1 . In the third case, denZZ < 0 and numZZ
1 < 0

which implies ∂πZZ1 /∂ϵ1 > 0, ∂πZZ2 /∂ϵ1 < 0, ϵZZ1 > ϵZZ2 , so that ZZ existence requires

ϵZZ1 > ϵ1 > ϵZZ2 .

Now it can be shown that ϵZZ2 = ϵZP2 and

ϵZZ1 − ϵPP =
a(p− 1)(aµ(ψ − 1) + λϵ2ψ)(a− β(p+ q − 1) + 1)

λnumZZ
1 ((1− q)(1 + a− (−1 + p+ q)β) + a(ψ − 1))

> 0

if numZZ
1 < 0. Since ϵZZ2 = ϵZP2 and existence of ZZ only hinges on ϵ1 > ϵZZ1 if numZZ

1 < 0

it follows that the ZP or PP solution will exist if the ZZ solution exists.

We conclude that an REE exists if and only if

ϵ1 > ϵ̄REE = min{ϵPP , ϵZP2 } (30)

where ϵPP and ϵZP2 are defined in (28) and (29), respectively. ■
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Case. q = 1

Here we show that Proposition 1 nests Proposition 5 of Ascari and Mavroeidis (2022) as a

special case. Specifically, we compute the condition from limq→1 ϵ̄REE and show that this

recovers the result in Proposition 5 of Ascari and Mavroeidis (2022). Alternatively, we could

repeat the preceding analysis in the model with q = 1, but this gives the same result.24

Define θ = (1−p)(1−pβ)
λσp

= (1−p)(1−pβ)
ap

. From the preceding analysis, an REE exists if and

only if ϵ1 > ϵ̄REE = min{ϵPP , ϵZP2 } where ϵZP2 can be expressed as ϵZP2 = χ(1− q)−1. In the

limit q → 1 we have:

ϵPP = µ

(
a(p− ψ)

λψ
− paθ

λψ

)
+
λϵ2(p− 1)(a− βp+ 1)

aλ(ψ − 1)

χ =
(p(1 + a+ β)− p2β − 1)(aµ(ψ − 1) + λϵ2ψ)

(1 + a− pβ)ψλ
.

Now, p(1 + a + β) − 1 − p2β < 0 if and only if θ > 1. Therefore, ϵ̄REE = ϵZP2 → −∞ as

q → 1 if θ > 1. We conclude that any value of ϵ1 ensures existence of a solution when θ > 1

and q = 1. If θ < 1, then χ→ +∞ and ϵ̄REE = ϵPP .

Now we show that our conditions recover Proposition 5 in Ascari and Mavroeidis (2022).

First, we have µ = log(rπ∗) > 0 which implies r−1 ≤ π∗ where r and π∗ are the steady

state gross real interest rate and inflation rate, respectively. Further, we set ϵ2 = 0 and

ϵ1 = −σM̂t+1|t = σprL. The critical threshold, ϵPP becomes

−rL ≤ µ

(
θ

ψ
+

(ψ − p)

pψ

)
Thus, a solution exists if and only if either θ > 1 or θ < 1 and −rL ≤ µ

(
θ
ψ
+ (ψ−p)

pψ

)
as in

Ascari and Mavroeidis (2022).

Proof of Proposition 2

The proof of Proposition 2 is a straightforward extension of the proof of Proposition 1.

Define q̄ = Pr(st = 2) = (1− p)/(2− p− q). The regime-specific levels of inflation in RPE

i, π̂i = (πi1, π
i
2)

′, are given by fixed point restrictions that have the same basic form as the

REE fixed point restrictions except we replace q with q̄ and p with 1 − q̄. Therefore, RPE

will exist if

ϵ1 > ϵ̄RPE = min(ϵPP,RPE, ϵZP,RPE2 ), (31)

where ϵPP,RPE, ϵZP,RPE2 have the same form as ϵPP , ϵZP2 given in (28),(29) except we replace

q and p with q̄ and 1− q̄, respectively. One can show:

ϵPP − ϵPP,RPE = ΞPP (1− p− q)

ϵZP − ϵZP,RPE = ΞZP (1− p− q)

24Mathematica routine available on request.
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ΞPP = a(1+a−β(p+q−2))(1−p)(ψ−1)(aµ(ψ−1)+λϵ2ψ)
λψ(a(1−ψ)(2−p−q)+(a+1)(q−1))((1−q)(1+a−β(p+q−1))+a(ψ−1))

≤ 0

and ΞZP = a(aµ(ψ−1)+λϵ2ψ)(1+a−β(p+q−2))
λ(a+1)(q−1)ψ(1+a−β(p+q−1))

< 0. Hence, ϵ̄REE ≥ ϵ̄RPE if p+ q > 1. ■

Proof of Proposition 3

Consider Proposition 3 and define a = λσ, Q = I2 − (M +Mfβ + λσN)K + βMMfK
2 and

π̂i = (πi1, π
i
2)

′, and let ej denote the j-th column of the 2 by 2 identity matrix, I2. The PP

solution is given by:

π̂PP,BR = (Q+ λσψI2)
−1

(
λϵ1
λϵ2

)
.

The PP solution exists if and only if ψπPP,BRj > −µ for j = 1, 2. From π̂PP,BR we see that

πPP,BR1 and πPP,BR2 are linear in ϵ1 and

∂πPP,BR1

∂ϵ1
=

numPP,BR
1

denPP,BR
≥ 0

∂πPP,BR2

∂ϵ1
=

numPP,BR
2

denPP,BR
≥ 0.

where

numPP,BR
1 = λψ(aψ + βMMf (p(q − 1) + q(q − 1) + 1)−Mq − q(βMf + aN) + 1) ≥ 0

numPP,BR
2 = λ(q − 1)ψ(βMf (M(p+ q)− 1)−M − aN) ≥ 0

denPP,BR = (a(ψ −N) + (1−M)(1− βMf ))den
PP,BR
1 ≥ 0

denPP,BR1 = aψ +M(p+ q − 1)(βMf (p+ q − 1)− 1)

+ βMf − (p+ q)(βMf + aN) + aN + 1 ≥ 0

Thus, PP exists if and only if ϵ1 > ϵPP,BR = min(ϵPP,BR1 , ϵPP,BR2 ) where ϵPP,BR1 and ϵPP,BR2

solve ψπPP,BR1 = −µ and ψπPP,BR2 = −µ, respectively. We have

ϵPP,BR1 − ϵPP,BR2 =

ψdenPP,BR(µ(a(ψ −N) + (1−M)(1− βMf )) + λϵ2ψ)

λnumPP,BR
1 numPP,BR

2

≥ 0

Therefore, the PP solution exists if and only if ϵ1 > ϵPP,BR = ϵPP,BR1 where

ϵPP,BR =
η1η2η3

λψ(−q(aN + βMf ) + aψ + βMMf (p(q − 1) + q(q − 1) + 1)−Mq + 1)
(32)

η1 = (a(ψ −N) + (1−M)(1−Mfβ)) ≥ 0

η2 = (−(p+ q)(aN + βMf ) + a(N + ψ) +M(p+ q − 1)(βMf (p+ q − 1)− 1) + βMf + 1)

η3 =
λϵ2(1− p)ψ(−aN + βMf (M(p+ q)− 1)−M)

denPP,BR
− µ
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The ZP solution is given by

π̂ZP,BR = (Q+ λσψe2e
′
2)

−1

(
λϵ1 + λσµ

λϵ2

)
.

The ZP solution exists if and only if ψπZP,BR2 > −µ > ψπZP,BR1 . From π̂ZP,BR we see that

πZP,BR1 and πZP,BR2 are linear in ϵ1 and

∂πZP,BR1

∂ϵ1
=

λψ(a(ψ −Nq) + βMf (M(p(q − 1) + q(q − 1) + 1)− q)−Mq + 1)

denZP,BR

∂πZP,BR2

∂ϵ1
=

λ(1− q)ψ(aN + βMf (1−M(p+ q)) +M)

denZP,BR

From the last equations it is clear that
∂πZP

1

∂ϵ1
> 0 and

∂πZP
2

∂ϵ1
> 0 if and only if denZP,BR > 0

where denZP,BR =M(aN(p+ q−1)(βMf (p+ q)−2)+aψ(βMf (−p(p+ q−1)+ q−1)+p)+

(βMf − 1)(p+ q)(βMf (p+ q − 1)− 1)) + aψ(aNp+ βMfp− 1)− (aN + βMf − 1)(aN(p+

q − 1) + βMf (p + q − 1) − 1) +M2(βMf − 1)(−(p + q − 1))(βMf (p + q − 1) − 1). Solving

for ϵZP,BR1 and ϵZP,BR2 such that ψπZP,BR1 = −µ and ψπZP,BR2 = −µ, respectively, we have

ϵZP,BR1 − ϵZP,BR2 =
(µ((1−M)(1−Mfβ) + a(ψ −N)) + λϵ2ψ)den

ZP,BR

λϵ∆ZP,BR

ϵ∆ZP,BR = (1− q)numZP,BR
1 (M + aN +Mfβ(1−M(p+ q))) > 0

numZP,BR
1 = ψ(a(ψ −Nq) + βMf (M(p(q − 1) + q(q − 1) + 1)− q)−Mq + 1) ≥ 0

Therefore, if denZP,BR > 0 then ϵZP,BR2 < ϵ1 < ϵZP,BR1 is necessary and sufficient for existence

of ZP; otherwise, ϵZP,BR1 < ϵ1 < ϵZP,BR2 is necessary and sufficient for existence of ZP. Further,

we can show:

ϵZP,BR1 = ϵPP,BR

and

ϵZP,BR2 =
µη1(−(p+ q)(aN + βMf ) + aN +M(p+ q − 1)(βMf (p+ q − 1)− 1) + βMf + 1)

λ(q − 1)ψ(aN − βMMf (p+ q) +M + βMf )

− ψϵ2λ(aNp+ βMf (M(−p(p+ q − 1) + q − 1) + p) +Mp− 1)

λ(q − 1)(aN − βMMf (p+ q) +M + βMf )
(33)

Therefore, ϵ1 > min{ϵPP,BR, ϵZP,BR2 } is necessary and sufficient for existence of ZP or PP

solution.

The PZ solution is given by

π̂PZ,BR = (Q+ λσψe1e
′
1)

−1

(
λϵ1

λϵ2 + λσµ

)
.
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The PZ solution exists if and only if ψπPZ,BR1 > −µ > ψπPZ,BR2 . One can show

∂πPZ,BR1

∂ϵ1
=

λ(1− (M + aN)q +Mf (M +Mp(−1 + q)− q +M(−1 + q)q)β)ψ)

denPZ,BR

=
λnumPZ,BR

1

denPZ,BR

∂πPZ,BR2

∂ϵ1
=

λ(1− q)(M + aN +Mf (1−M(p+ q))β)ψ

denPZ,BR

=
λnumPZ,BR

2

denPZ,BR
.

where denPZ,BR = −M(aN(p + q − 1)(βMf (p + q) − 2) + aψ(βMf (p − 1) − βMfq(p + q −
1)+ q)+ (βMf − 1)(p+ q)(βMf (p+ q− 1)− 1))+ (aN +βMf − 1)(aN(p+ q− 1)+βMf (p+

q− 1)− 1)− aψ(aNq + βMfq− 1) +M2(βMf − 1)(p+ q− 1)(βMf (p+ q− 1)− 1). Clearly

numPZ,BR
2 ≥ 0.

Solving for ϵPZ,BR1 and ϵPZ,BR2 such that ψπPZ,BR1 = −µ and ψπPZ,BR2 = −µ, respectively,
we have

ϵPZ,BR1 − ϵPZ,BR2 =
ψ(η1µ+ ψλϵ2)den

PZ,BR

λ(1− q)ψ(M + aN +Mfβ(1−M(p+ q)))numPZ,BR
1

There are four cases to consider. First, if denPZ,BR > 0 and numPZ,BR
1 > 0, then

∂πPZ,BR1 /∂ϵ1 > 0, ∂πPZ,BR2 /∂ϵ1 > 0 and ϵPZ,BR1 > ϵPZ,BR2 so ϵ1 > ϵPZ,BR1 > ϵPZ,BR2 > ϵ1 is

necessary for PZ existence, but not possible. Second, if denPZ,BR < 0 and numPZ,BR
1 > 0,

then ∂πPZ,BR1 /∂ϵ1 < 0, ∂πPZ,BR2 /∂ϵ1 < 0 and ϵPZ,BR1 < ϵPZ,BR2 , so ϵ1 < ϵPZ,BR1 < ϵPZ,BR2 <

ϵ1 is necessary for PZ existence, but not possible. In the third case, denPZ,BR < 0 and

numPZ,BR
1 < 0, which implies ∂πPZ,BR1 /∂ϵ1 > 0, ∂πPZ,BR2 /∂ϵ1 < 0, and ϵPZ,BR2 < ϵPZ,BR1 so

that ϵPZ,BR2 < ϵPZ,BR1 < ϵ1 is necessary and sufficient for PZ existence in this case. In the

fourth case, denPZ,BR > 0 and numPZ,BR
1 < 0. One can show:

denPZ,BR = δ(p− 1)(M + aN +Mfβ(1−M(p+ q)))

+ numPZ,BR
1 η1ψ

−1

δ = (M − 1)(1−Mfβ) + aN

Hence, denPZ,BR > 0 and numPZ,BR
1 < 0 implies δ < 0, sinceM+aN+Mfβ(1−M(p+q)) >

0. Now, for PZ to exist it must be the case that

πPZ,BR1 − πPZ,BR2 =
−ψδλϵ1 − ψη1(λϵ2 + aµ)

denPZ,BR
> 0

→ ϵ1 >
η1(λϵ2 + aµ)

−δλ
> 0
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where the last three inequalities hold if δ < 0 and denPZ,BR > 0. Also, if denPZ,BR > 0 then

ϵ1 < ϵPZ,BR2 is necessary for existence of PZ solution. If δ < 0, we have:

ϵPZ,BR2 =
λϵ2ψ(aNp− aψ +M(βMf (−p(p+ q − 1) + q − 1) + p) + βMfp− 1)

λ(1− q)ψ(aN + βMf (1−M(p+ q)) +M)

− µη1(−(p+ q)(aN + βMf ) + a(N + ψ) +M(p+ q − 1)(βMf (p+ q − 1)− 1) + βMf + 1)

λ(1− q)ψ(aN + βMf (1−M(p+ q)) +M)
< 0

Since ϵ1 > 0 > ϵPZ,BR2 > ϵ1 does not hold, the PZ solution does not exist if denPZ,BR > 0

and numPZ,BR
1 < 0.

Hence, a PZ solution can only exist if denPZ,BR < 0 and numPZ,BR
1 < 0 and ϵ1 > ϵPZ,BR1 .

One can show:

ϵPZ,BR1 − ϵPP,BR =
ψ2a(1− p)(aN +M +Mfβ(1−M(p+ q)))(λψϵ2 + µη1)

−λnumZP,BR
1 numPZ,BR

1

> 0

if PZ exists (since this requires numPZ,BR
1 < 0). Therefore, if the PZ exists then ϵ1 > ϵPP,BR

and hence the PP or ZP solution also exists.

The ZZ solution is given by

π̂ZZ,BR = (Q)−1

(
λϵ1 + λσµ
λϵ2 + λσµ

)
.

The ZZ solution exists if and only if ψπZZ,BRj < −µ for j = 1, 2. One can show

∂πZZ,BR1

∂ϵ1
=

λ((1− (M + aN)q +Mf (M +Mp(−1 + q)− q +M(−1 + q)q)β)ψ)

denZZ,BR

=
λnumZZ,BR

1

denZZ,BR

∂πZZ,BR2

∂ϵ1
=

λ(1− q)(M + aN +Mfβ(1−M(p+ q)))ψ

denZZ,BR

=
λnumZZ,BR

2

denZZ,BR
.

where denZZ,BR = −δ(1+aN+Mfβ− (p+q)(aN+Mfβ)+M(p+q−1)(Mfβ(p+q−1)−1)

and clearly numZZ,BR
2 ≥ 0. Solving for ϵZZ,BR1 and ϵZZ,BR2 such that ψπZZ,BR1 = −µ and

ψπZZ,BR2 = −µ, respectively, we have

ϵZZ,BR1 − ϵZZ,BR2 =
denZZ,BR(η1µ+ λψϵ2)

λ(1− q)(M + aN +Mfβ(1−M(p+ q)))numZZ,BR
1

There are four cases to consider. First, if denZZ,BR > 0 and numZZ,BR
1 < 0 then

∂πZZ,BR1 /∂ϵ1 < 0, ∂πZZ,BR2 /∂ϵ1 > 0, ϵZZ,BR2 > ϵZZ,BR1 , so that ZZ existence requires ϵZZ,BR2 >

ϵ1 > ϵZZ,BR1 . Second, if denZZ,BR < 0 and numZZ,BR
1 > 0 then ∂πZZ,BR1 /∂ϵ1 < 0, ∂πZZ,BR2 /∂ϵ1 <
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0, ϵZZ,BR2 > ϵZZ,BR1 , so that ZZ existence requires ϵ1 > ϵZZ,BR2 > ϵZZ,BR1 . In the third

case, denZZ,BR < 0 and numZZ,BR
1 < 0 which implies ∂πZZ,BR1 /∂ϵ1 > 0, ∂πZZ,BR2 /∂ϵ1 < 0,

ϵZZ,BR1 > ϵZZ,BR2 , so that ZZ existence requires ϵZZ,BR1 > ϵ1 > ϵZZ,BR2 .

Now it can be shown that ϵZZ,BR2 = ϵZP2 and

ϵZZ,BR1 − ϵPP,BR =
−ψa(1− p)(M + aN +Mfβ(1−M(p+ q)))(ψλϵ2 + η1µ)

λnumZZ,BR
1 η4

> 0

if numZZ,BR
1 < 0, where

η4 = (1− q)(aN + βMf (1−M(p+ q)) +M) +

a(ψ −N) + (1−M)(1− βMf ) ≥ 0

Since existence of ZZ in the first three cases only hinges on ϵ1 > ϵZZ,BR1 if numZZ,BR
1 < 0

and ϵZZ,BR2 = ϵZP,BR2 it follows that the ZP or PP solution will exist if the ZZ solution exists

in the first three cases.

In the fourth case, denZZ,BR > 0 and numZZ,BR
1 > 0. One can show that:

denZZ,BR = −δ(−δ + (2− p− q)(M + aN +Mfβ(1− (p+ q)M)))

numZZ,BR
1 = ψ(−δ−1denZZ,BR + η5)

= ψ(−δ + (1− q)(M + aN +Mfβ(1− (p+ q)M)))

η5 = (p− 1)(M + aN +Mfβ(1− (p+ q)M)) ≤ 0

Therefore, δ < 0 if and only if the fourth case (numZZ,BR
1 > 0 and denZZ,BR > 0) applies.

In the fourth case, ∂πZZ,BR1 /∂ϵ1 > 0, ∂πZZ,BR2 /∂ϵ1 > 0, ϵZZ,BR1 > ϵZZ,BR2 = ϵZP,BR2 , so that

ZZ existence requires ϵZP,BRE2 > ϵ1.

We conclude that a BRE exists if and only if

ϵ1 > ϵ̄BR :=

{
min

{
ϵPP,BR, ϵZP,BR2

}
, if δ > 0

−∞, if δ < 0,
(34)

where ϵPP,BR and ϵZP,BR2 are defined in (32) and (33), respectively.

■

Proof of Proposition 4

Suppose δ = (M − 1)(1−Mfβ) + aN < 0. First, δ < 0 implies numPZ,BR
1 = ψ((1− q)(M +

aN +Mfβ(1−M(p+ q)))− δ) > 0 and hence no PZ solution exists since numPZ,BR
1 < 0 is

necessary for existence of PZ solution, as demonstrated in the proof of Proposition 3.
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Also from the proof of Proposition 3, we know that the ZZ solution exists if and only if

ϵ1 < ϵZP,BR2 = ϵZZ,BR2 . From the proof of Proposition 3, we have

ϵZZ,BR1 − ϵZZ,BR2 =

ϵZZ,BR1 − ϵZP,BR2 =
denZZ,BR(η1µ+ λψϵ2)

λ(1− q)(M + aN +Mfβ(1−M(p+ q)))numZZ,BR
1

> 0

where the last inequality follows from the fact that denZZ,BR > 0 and numZZ,BR
1 > 0 if and

only if δ < 0. Further, we have the following from the proof of Proposition 3:

ϵPP,BR − ϵZZ,BR1 =
ψa(1− p)(M + aN +Mfβ(1−M(p+ q)))(ψλϵ2 + η1µ)

λnumZZ,BR
1 η4

> 0

where the last inequality follows from the fact that numZZ,BR
1 > 0 if and only if δ < 0.

Therefore, ϵPP,BR > ϵZP,BR2 and the ZP solution exists if and only if ϵPP,BR > ϵ1 > ϵZP,BR2 .

Define ϵZP,BR ≡ ϵZP,BR2 . We conclude that the PP solution is the unique BRE when ϵ1 >

ϵPP,BR, the ZP solution is the unique BRE when ϵPP,BR > ϵ1 > ϵZP,BR, and otherwise the

ZZ solution is the unique solution. ■

Alternatively, one can show that (M +1)(1−Mfβ)+λσN < 0 ensures completeness and

coherence using techniques developed by Ascari and Mavroeidis (2022).25

Proof of Proposition 5

Consider Proposition 5. To assess E-stability of an REE, we express Y i = (Y i′
1 , Y

i′
2 )′ as a

function of agents’ expectations, Ỹ e = (Y e′
1 , Y

e′
2 )′:

Y PP (Ỹ e) =

(
pAP (1− p)AP

(1− q)AP qAP

)
Ỹ e + ΓPP ,

Y ZP (Ỹ e) =

(
pAZ (1− p)AZ

(1− q)AP qAP

)
Ỹ e + ΓZP ,

Y PZ(Ỹ e) =

(
pAP (1− p)AP

(1− q)AZ qAZ

)
Ỹ e + ΓPZ ,

Y PP (Ỹ e) =

(
pAZ (1− p)AZ

(1− q)AZ qAZ

)
Ỹ e + ΓZZ ,

where Γi collect terms that do not depend on beliefs, Ỹ e. It immediately follows that

DTY PP = K ⊗ AP − I,

DTY ZP =

(
pAZ (1− p)AZ

(1− q)AP qAP

)
− I,

DTY PZ =

(
pAP (1− p)AP

(1− q)AZ qAZ

)
− I,

DTY ZZ = K ⊗ AZ − I.

25Results available on request.

39



REE i is E-stable if the real parts of the eigenvalues of DTY i are negative for i =

PP,ZP, PZ, ZZ. It is straightforward to show that the real parts of the eigenvalues of

DTY PP are negative and the real parts of the eigenvalues of DTY ZZ are positive. Therefore,

the PP solution is always E-stable and the ZZ solution is always E-unstable. We now proceed

to show that only one REE can be E-stable in two steps.

First, we show that the PP solution does not exist if the ZP solution is E-stable. Because

DTY ZP is a 4 by 4 matrix the following condition is necessary for E-stability of the ZP

solution:

Det(DTY ZP ) =
a

1 + aψ
denZP > 0

where denZP is defined in the proof of Proposition 1. Therefore, E-stability of the ZP

solution implies denZP > 0. Furthermore, since denZP > 0 implies ϵPP > ϵZP2 (see proof of

Proposition 1), E-stability of the ZP solution implies ϵPP > ϵZP2 , where ϵPP , ϵZP2 are defined

in the proof of Proposition 1. Also from the Proposition 1 proof, if ϵPP > ϵZP2 then ϵ1 > ϵPP

is necessary for existence of PP and ϵ1 < ϵPP is necessary for existence of ZP. It follows that

the E-stability and existence of the ZP solution precludes existence of the PP solution.

Second, we show that the PZ solution is never E-stable. The following condition is

necessary for E-stability of the PZ solution:

Det(DTY PZ ) =
1

1 + aψ
denPZ > 0

where denPZ is defined in the proof of Proposition 1. Therefore, denPZ > 0 is necessary for

the PZ solution to be E-stable. From the proof of Proposition 1, denPZ < 0 is necessary for

existence of the PZ solution. We conclude that the PZ solution can never be E-stable.

In sum, if the PP solution exists it is E-stable. If the ZP solution exists and is E-stable

then the PP solution does not exist. The ZZ and PZ solutions are never E-stable. ■

Proof of Proposition 6

Consider (14)-(19), let Y e
t denote the subjective forecast of Yt implied by a given forecasting

model, and assume that agents observe ϵt and Yt when forecasting at time t. Furthermore, to

deal with possible multiplicity of time-t temporary equilibria, i.e. a time-t solution of (1)-(3)

given forecasts and ϵt with binding ZLB (st = 0) and a solution with slack ZLB constraint

(st = 1), we simply assume that ϵt determines st. E.g. if ϵt = ϵj, st = 0 and st = 1 are both

possible in temporary equilibrium, and sk = 0 for some k < t such that ϵk = ϵj, then we

select the temporary equilibrium characterized by st = 0.

(i) First consider (14)-(18).

Case. k = 0.
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If k = 0 and expectations are formed under PLMs (14)-(18) then Y e
t follows a 2-state

process: Y e
t = Y e

j if ϵt = ϵj. Further, ÊtYt+1 = Pr(ϵt+1 = ϵ1|ϵt)Y e
1 + (1−Pr(ϵt+1 = ϵ1|ϵt))Y e

2

is a 2-state process. Therefore, if k = 0 then Y e
j = Yj is necessary and sufficient for the agents

to have self-confirming beliefs under the PLMs (14)-(18). These self-confirming beliefs imply:

ÊtYt+1 = Pr(ϵt+1 = ϵ1|ϵt)Y1 + (1 − Pr(ϵt+1 = ϵ1|ϵt))Y2. Substituting ÊtYt+1 into the model

and solving for Y1 and Y2 straightforwardly implies that Y1, Y2 is an REE. Hence, beliefs

formed under (14)-(18) with k = 0 are only self-confirming if an REE exists.

Case. k = 1.

Beliefs are only self-confirming under the PLMs (14)-(18) with k = 1 if Y e
j = E(Yt|ϵt−1 =

ϵj) for j = 1, 2 where E denotes the true mathematical expectation operator. Further,

ÊtYt+1 formed under (14)-(18) follows a 2-state process and therefore temporary equilibrium

Yt follows a 2-state process: Yj, where Yj is the actual equilibrium value of Y given Y e
j and

ϵt = ϵj for j = 1, 2. It follows that beliefs are self-confirming if and only if E(Yt|ϵt−1 = ϵ1) =

pY1+(1−p)Y2 and E(Yt|ϵt−1 = ϵ2) = (1−q)Y1+qY2. Therefore, if agents have self-confirming

beliefs under PLMs (14)-(18) with k = 1 then ÊtYt+1 = Y e
t+1 = pY1+(1− p)Y2 if ϵt = ϵ1 and

ÊtYt+1 = Y e
t+1 = (1− q)Y1 + qY2 otherwise. Substituting ÊtYt+1 into the model reveals that

Y1, Y2 is an REE.

(ii) Now consider (19). If agents observe time−t information when forming time−t ex-
pectations then

Êtzt+1 = az + bzzt (35)

where z ∈ {π, x}. We say that (19) yields self-confirming beliefs if agents correctly under-

stand the mean and serial correlation of x and π, i.e., az = (1− bz)E(zt), bz = (E(ztzt−1)−
azE(zt))/E(z

2
t−1). Given fixed az, bz and expectations (35), Yt is a 2-state process: Yj,

where Yj is the actual value of Yt given expectations and ϵt = ϵj. This implies E(ztzt−1) =

qq̄z22+((1−q)q̄+(1−p)(1−q̄))z1z2+p(1−q̄)z21 , E(z2t ) = q̄z22+(1−q̄)z21 , E(zt) = q̄z2+(1−q̄)z1.
Solving for az and bz and substituting these values into (35) yields:

Êt(zt+1|ϵt = ϵ1) = pz1 + (1− p)z2

Êt(zt+1|ϵt = ϵ2) = qz2 + (1− q)z1

Substituting expectations into the model and solving for z1, z2 straightforwardly reveals that

z1 and z2 must be an REE. Therefore, (19) is not consistent with a non-rational equilibrium

of an incoherent model if agents have current information.26

We conclude that if beliefs formed under PLMs (14)-(18) are self-confirming then an REE

exists. Consequently, (14)-(18) are not consistent with any non-rational equilibrium of an

incoherent model.

■
26Note that our result is related to Evans and McGough (2018a), who study E-stability of REE in linear

models when agents cannot observe exogenous shocks.
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Proof of Proposition 7

To assess E-stability of each RPE, we express the RPE unconditional mean of inflation and

output as a function of agents’ expectations, Y e:

Ȳ PP (Y e) = APY
e + Γ̄PP ,

Ȳ ZP (Y e) = (q̄AP + (1− q̄)AZ)Y
e + Γ̄ZP ,

Ȳ PZ(Y e) = ((1− q̄)AP + q̄AZ)Y
e + Γ̄PZ ,

Ȳ ZZ(Y e) = AZY
e + Γ̄ZZ ,

where Γ̄i collect terms that do not depend on beliefs, Y e. It immediately follows that

DTȲ PP = AP − I,

DTȲ ZP = q̄AP + (1− q̄)AZ − I,

DTȲ PZ = (1− q̄)AP + q̄AZ − I,

DTȲ ZZ = AZ − I.

It is straightforward to show that the real parts of the eigenvalues of DTȲ PP are negative

and the real parts of the eigenvalues of DTȲ ZZ are always positive. Therefore, the PP RPE

is always E-stable and the ZZ RPE is never E-stable.

The ZP RPE is E-stable if and only if

tr(DTȲ ZP ) = β + a− aq̄ψ(β + a+ 1)

aψ + 1
− 1 < 0

Det(DTȲ ZP )) =
q̄a(aψ + ψ)

aψ + 1
− a > 0

where tr(B) denotes the trace of matrix B. We have tr(DTȲ ZP ) < 0 < Det(DTȲ ZP ) if and

only if q̄(1 + a)ψ − 1− aψ > 0. From the proofs of Propositions 1 and 2:

ϵPP,RPE − ϵZP,RPE2 = v(q̄(1 + a)ψ − 1− aψ))

v =
a(λϵ2ψ + aµ(ψ − 1))

(1− q̄)λψ(a+ 1)(a(ψ − q̄) + 1− q̄)
> 0

Therefore, if the ZP RPE is E-stable then ϵPP,RPE > ϵZP,RPE2 and the condition for PP

existence becomes ϵ1 > ϵPP,RPE and the condition for ZP existence becomes ϵPP,RPE > ϵ1 >

ϵZP,RPE2 as demonstrated in the proofs of Propositions 1 and 2. Hence, if the ZP RPE exists

and is E-stable then the PP solution does not exist.

Next consider the PZ solution. The PZ solution is E-stable if and only if

tr(DTȲ PZ ) =
β − 2aψ + a− 1

aψ + 1
+
q̄ (βaψ + a2ψ + aψ)

aψ + 1
< 0

Det(DTȲ PZ )) = −a(1− ψ)

aψ + 1
− aq̄(aψ + ψ)

aψ + 1
> 0
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which holds if and only if 0 < ψ − 1− q̄ψ(1 + a) = denPZ,RPEa−1 where denPZ,RPE is equal

to denPZ defined in the Proposition 1 proof when q = q̄ and p = 1 − q̄. From the proof

of Proposition 2, the PZ RPE only exists if denPZ,RPE < 0. Hence the PZ RPE is never

E-stable.

Therefore, the PP RPE is the only E-stable RPE solution when ϵ1 > ϵPP,RPE, and the

ZP RPE is the only E-stable RPE solution when ϵPP,RPE > ϵ1 > ϵZP,RPE2 . It follows that a

unique E-stable RPE solution exists when ϵ1 > ϵ̄RPE. ■

Proof of Proposition 8

Consider (1)-(3) and suppose that expectations evolve according to

Êt (yt+1) = Êt−1 (yt) + gy,t

(
yt−k − Êt−1 (yt)

)
(36)

with k = 0, 1, gy,t ∈ [0, 1] , given some initial condition Ê0 (y1) = ay0. To demonstrate

coherence and completeness, we begin by showing that there is a unique solution for π0, x0,

R0 given initial expectations and exogenous shocks. Substituting (1), (3), E0y1 = ay0 into

(2) we have

π0 = −λσmax{ψπt,−µ}+ λ (ax0 + σaπ0 + ϵ0) + βaπ0 + u0 (37)

Given ax0, aπ0, u0, ϵ0 there is a unique solution for π0 obtained from (37) if ψ > 0. The

unique solution for R0, x0 is obtained from the Phillips curve (2) and interest rate rule (3).

Therefore, for t ≥ 0, we have:

Êt−1πt = β−1 (πt−1 − λxt−1 − ut−1) (38)

Êt−1xt = (1 + σλβ−1)xt−1 − σβ−1πt−1 + σRt−1 − ϵt−1 + σβ−1ut−1 (39)

Substituting (38)-(39) into (36), and then (36) into (1)-(3), the model can be written in the

form

A11Y1t + A12Y2t + A∗
12Y

∗
2t = B10X0t +B11Yt−1 +B∗

11Y
∗
2t−1 + ϵ1t (40)

A21Y1t + A22Y2t + A∗
22Y

∗
2t = B20X0t +B21Yt−1 +B∗

21Y
∗
2t−1 + ϵ2t (41)

Y2t = max{Y ∗
2t,−µ} (42)

for t > 0, where Y1t = (xt, πt)
′, Y ∗

2t = R∗
t = ψπt, Yt = (Y ′

1t, Y2t)
′, and X0t are exogenous

shocks.

Case. k = 0.

Under contemporaneous information, we have

A11 =

(
1− gx −σgx
−λ 1− βgπ

)
A12 =

(
σ 0

)′
A∗

12 =
(
0 0

)′
A21 =

(
0 −ψ

)
A22 = 0 A∗

22 = 1
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Following Proposition 1 of Mavroeidis (2021), we have coherence and completeness if and

only if

1 +
σλψ

(1− gx,t)(1− βgπ,t)− λσgπ,t
> 0

It is easy to see that we only have coherence and completeness under the Taylor principle

(ψ > 1) if gx,t, gπ,t, or λ are not too large. For instance, as λ→ ∞ we have the coherence and

completeness condition: gπ,t > ψ, which only holds if we violate the Taylor Principle. Fur-

ther, if agents have “naive” expectations (i.e. if gx,t = gπ,t = 1) then we have the coherence

condition: ψ < 1. We need to restrict gain parameters and the slope of the Phillips curve

to have coherence under the Taylor principle, adaptive expectations and contemporanous

information (k = 0).

Case. k = 1

Under lagged information, we have

A11 =

(
1 0
−λ 1

)
A12 =

(
σ 0

)′
A∗

12 =
(
0 0

)′
A21 =

(
0 −ψ

)
A22 = 0 A∗

22 = 1

Following Proposition 1 of Mavroeidis (2021), we have coherence and completeness if and

only if

1 + σλψ > 0

which holds for all ψ > 0. ■

RPE under Infinite Horizon Learning

Consider the following infinite horizon New Keynesian model:27

xt = −σrt + Êt
∑
T≥t

βT−t ((1− β)xT+1 + σπT+1 − σβrT+1 + ϵT ) (43)

πt = λxt + Êt
∑
T≥t

(ξβ)T−t (ξβλxT+1 + (1− ξ)βπT+1) (44)

it = max{ψπt,−µ} (45)

where λ = (1−ξβ)(1−ξ)/ξ. Under infinite horizon learning, agents need to forecast the paths

of the nominal interest rate and the shock, in addition to the paths of inflation and output.

27See Eusepi et al. (2021b) for a recent derivation of the model (43)-(45). Note that this model collapses to
the standard 3-equation model in our paper if we impose rational expectations. Consequently, a stochastic
process for inflation, output and the interest rate is an REE of (43)-(45) if and only if said stochastic process
is an REE of (1)-(3).
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Consistent with the RPE studied in section 3.2, we assume that agents set endogenous and

exogenous variable forecasts at all horizons equal to the unconditional means of each variable

(i.e. ÊtzT = E(zT ) for all T > t and z = π, x, i, ϵ). We have:

E(π) = E

(
λxt + Êt

∑
T≥t

(ξβ)T−t (ξβλxT+1 + (1− ξ)βπT+1)

)

=⇒ E(x) =
1− β

λ
E(π)

and

πt = λxt +
∑
T≥t

(ξβ)T−t (ξβλE(x) + (1− ξ)βE(π))

= λxt + βE(π)

=⇒ xt = λ−1(πt − βE(π))

Substituting for xt and also for expectations in (43) gives an expression for RPE inflation:

xt = λ−1(πt − βE(π))

= −σrt + ϵt +
∑
T≥t

βT−t ((1− β)E(x) + σE(π)− σβE(r) + βE(ϵT ))

=⇒ πt = −λσrt + λϵt + (1 +
λσ

1− β
)E(π)− βλσ

1− β
E(r) +

λβ

1− β
E(ϵ)

Let ẑ = (z1, z2)
′ denote the vector of state-contingent RPE values of z for any variable,

z. Note that E(z) = q̄z2 + (1 − q̄)z1. Then the infinite horizon RPE solution for inflation

satisfies:

π̂ =

(
1 +

λσ

1− β

)
K̃π̂ − λσ

(
I − βK̃

)−1

r̂ + λ
(
I − βK̃

)−1

ϵ̂

where I is the identity matrix and

K̃ =

(
1− q̄ q̄
1− q̄ q̄

)
Premultiplying both sides of the last equation by

(
I − βK̃

)
and rearranging yields(

I − (1 + λσ)K̃
)
π̂ = −λσr̂ + λϵ̂ (46)

From the proof of Proposition 1 and 2, it can be seen that any solution of (46) is also a RPE

of (1)-(3). Hence, the infinite horizon model (43)-(45) admits the same RPE as (1)-(3), and

therefore an incoherent model can admit RPE under infinite horizon learning under some

conditions. The result is summarized in the following proposition.

Proposition 10 Consider (43)-(45) and suppose ϵ2 ≥ 0. Then:

i. An infinite-horizon RPE exists if and only if ϵ1 > ϵ̄RPE.

ii. ϵ̄REE > ϵ̄RPE if and only if p+ q − 1 > 0.
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